
Unification

Groups and representation spaces inside larger groups and representation spaces

GUT,

ToE or GraviGUT, includes gravity (and fermions),

Should also include three generations of each kind of Dirac fermion, acted on by a finite group,

Also, unification of fields and field equations is nice
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Why three generations?

1936, Isidor Isaac Rabi upon discovery of the muon:

"Who ordered that?"

1976, James Bjorken upon discovery of the tau lepton:

"What, another one?"

(apocryphal)



C, P, T, and Triality



Groups

Group Properties
Ordered group product of elements:

Identity element:

Inverses:

Associativity:

The number of elements in a finite group is the order.

An  dimensional Lie group is a continuum of elements, , parametrized by  real (or complex)
parameters, . It is also a manifold. Near the identity, , Lie group elements may be described by
exponentiating  Lie algebra generators, ,

Finite collections of Lie group elements (maybe or maybe not connected to the identity) can make an embedded
finite group.

A represenation space (or G-module), , is a real or complex vector space upon which a group
representation, , or Lie algebra representation, , acts linearly. A representation
is faithful iff every  is unique and:
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Quaternion group

Quaternions, , and , so  elements:

Quaternion multiplication does not necessarily commute,

The center of a group is the subgroup of elements that commute with everything,

Group multiplication table, , with further multiplications by  implied:

Group representation by Pauli matrices:
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Pin group

The group of spacetime reflections, , is the pin group, .

We choose chiral matrix representative basis vectors, , of ,

A reflection, represented by , through a vector, , acts on vectors (in the vector
representation space, ) via adjoint action, and on spinors (in the spinor representation space) via left
action,

Even numbers of reflections generate the spacetime spin group, , of Lorentz
transformations, with  the component connected to the identity. Explicitly:

 and  are distinguished reflections, parity reversal and unitary time reversal,
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Spin eigenvalues

 is a  dimensional Lie group, with spatial rotation and Lorentz boost generators, 
and . Two commuting generators span the Cartan subalgebra,

These act on vectors, spinors, and the Lie algebra itself. Eigenvectors (weight vectors) are particle states and
eigenvalues (weights or charges), spin and boost,  and , are conserved in interactions.
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Fermion basis states



C, P, and T

Since every fermion has an anti-fermion, there is a charge symmetry, , that transforms between them. This
symmetry is not in , but operates on the complex representation space of  spinors as an
anti-unitary operator,

in which  is complex conjugation. We can combine this with our unitary time operator to get anti-unitary time
conjugation, and add a phase to parity conjugation,

These three conjugations, , , and , combine to give

The CPT Group, , of order , thus has multiplication table:

Since  commutes, this is identifiable as the split-biquaternion group, , the direct product of
the quaternion group, , and .
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CPT cube

Charge, parity, and time conjugation operators act on fermion states and their weights:
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Biquaternionic spinors

Equate  spinor representation space with left-chiral biquaternions — complex quaternions,

Using the Pauli matrix representation of quaternions, , we have the isomorphism to
biquaternionic spinors,

The action of Lorentz generators (rotations and boosts) on biquaternionic spinors is

showing .

The , , and  generators become:

with the complex conjugation and quaternion multiplication in , , and  acting to the left. These combine to
give .
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Quaternion triality and the CPTt Group

How to extend  non-trivially to act on generation-triples of fermions? Introduce the quaternion triality
generator:

This can act via the adjoint to cycle imaginary quaternions,

Whether we include the adjoint generator, , or the  generator itself, , these generators
produce the binary tetrahedral group, , of order , which is a semi-direct product of subgroups  and

.

Combining this triality generator with , , and , we draw several conclusions:

Triality and  commute.

The PTt Group generated by  is .

The CPTt Group generated by  is , of order , the central product of the
binary tetrahedral group, , and the dihedral group, , of order , with a shared
central .

Three generations of fermions can be described by three sets of triality-related biquaternionic spinors,

Note these imply the complex structure in our biquaternionic spinors is triality invariant.
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Multi-generational fermion states

To incorporate triality, fermions need minimum of  weight coordinates, , with helicity, , and
.

Projective representation of charge, parity, time, and triality conjugations in these coords:

 produces 24-cell of three fermion generations, gen I cube red, gen II cube green, gen II cube blue,
related by triality, black.

Note: gen II and gen III fermion charges only make physical sense after transformation by  and .
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Fermions in Exceptional Unification

How many fermion states in the Standard Model? Up or down type fermions, either leptons or  colors of quarks,
so  fermion types times 24-cell for each, gives  fermion states.

Only Exceptional Unification accommodates . E8 Theory with octo-octonionic .

3
8 192

GCPTt { , ,U, V , p, x, y, z}ωt ωS


