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Abstract

We discuss the BRST reduction and quantization of classical gauge theories
in the case where the gauge transformations are given by the action of a
Lie group on a phase space. After discussing reduction of gauge systems
in general, including the procedure of Marsden-Weinstein reduction using
the momentum mapping (which is not well known to physicists), we develop
the classical BRST formalism in a mathematically rigorous manner, using
Marsden-Weinstein reduction. It turns out that the algebra of “functions”
on the extended phase space (including ghosts and ghost momenta) has a
beautiful and mathematically rigorous formulation in terms of the exterior
algebras of the Lie algebra g and its dual g*. This leads in a natural way
to the existence of a Poisson structure on the ghosts and ghost momenta,
which in the physics literature usually is postulated.

BRST quantization in the case of Lie group gauge transformations is
then treated by specifying exactly the quantum ghost algebra and exploring
the quantum BRST condition |y = 0. It turns out that BRST quantiza-
tion runs into problems similar to those encountered in for instance Dirac’s
quantization scheme. This in our eyes defeats the purpose of BRST quanti-
zation.
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Chapter 1

Introduction

Constrained Hamiltonian systems are systems of which the dynamics are
required to satisfy a set of conditions called constraints. It is a classical
result by Dirac that all gauge systems are constrained Hamiltonian systems.
When quantizing constrained systems, several problems arise. For example,
because of the existence of unphysical degrees of freedom, the usual inner
product becomes infinite.

Over time a number of ways of dealing with constraints and their quan-
tization have been proposed. In general, there are two approaches: one
can first try to eliminate all gauge freedom in the classical theory (which is
called reduction), and then quantize the remaining system. Or one can try
to quantize the complete system including the unphysical degrees of free-
dom, and impose some sort of “quantum constraint” in order to eliminate
the gauge freedom in the quantum theory. This is done in the approach
taken by Dirac.

Another example of the second approach is the BRST! method of quan-
tizing and reduction. The existence of the BRST symmetry was first dis-
covered [3, 13] within the context of the Faddeev-Popov path integral for
Yang-Mills theories. Later on it was recognized that this symmetry exists
for any gauge invariant system, and it was realized that it could be used as
a method for reducing classical gauge theories.

In the BRST method, one first enlarges the classical phase space by
introducing even more unphysical degrees of freedom, called the ghosts, and
their conjugates, the ghost momenta. The reduced system can then be
found by constructing the cohomology of a nilpotent operator called the
(classical) BRST operator. When quantizing the resulting system, one then
has to impose a condition on the quantum state space, the so called BRST
condition.

The main purpose of this paper is to give a the BRST procedure a sound

!Named after its discoverers Becchi, Rouet and Stora [3] and, independently of the
former three, Tyutin [13].
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mathematical background. In the physics literature it is often not clear
what is the precise origin of the ghosts and their momenta, and important
properties of the extended phase space and its Poisson structure are often
given in an ad hoc fashion. However, it turns out to be possible to give the
concepts emerging in the BRST procedure a precise mathematical meaning.

After treating a number of ways of dealing classically with constrained
systems, we give a precise derivation of the BRST reduction process. Then
we turn to quantizing these systems, with an emphasis on the investigation
of the quantum BRST condition.

Our contribution is giving a pedagogical treatment of the somewhat im-
penetrable mathematical literature, in such a fashion that mathematical
rigour has not been sacrificed, yet the conceptual ideas have come to the
foreground. We hope that this discussion will open the eyes of physicists to
the beauty of a mathematically oriented treatment of the BRST formalism.
(This work might be contrasted with the treatment given in [8], which is
mathematically incomprehensible, and as a result is also conceptually hard

to grasp.)



Part 1

Reduction of Constrained
Systems






Chapter 2

Constrained Systems

2.1 Introduction

We will first set up the theory of constrained Hamiltonian systems in the way
which is the most familiar to physicists, using coordinates ¢* for positions
and p; for momenta. Qur treatment is mainly based on [8, 12]. In the next
chapter we will give a geometrical reformulation of this subject.

2.2 The Lagrange and Hamilton formalisms

The classical motions of a physical system are those that make the action
given by

to
5= / L(q, i)dt
t

1

stationary under variations §¢" (¢) of the Lagrangian variables ¢.i=1,...,n,
which vanish at the endpoints ¢; and ¢3. The equations of motions are the
Euler-Lagrange equations

d 0L JOL
dt0¢  0q"’
for : =1,...,n. This is the Lagrange formalism.

Another way to describe the system is in the Hamilton formalism. In
moving from the Lagrange to the Hamilton formalism the first step is to
define momenta p; conjugate to ¢* by

oL

p’:a_q’i’

(2.1)
and the Hamiltonian H by

H (¢, p:) = pid' (¢,pj) — L (', " (¢,p;)) -
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The equations of motion in the Hamilton formalism are then given by

d¢’ _ 0H
dt op;’
dp; 0H
= ——_, 2.2
dt J0q (2:2)

In general, the time development of any phase space function F is given by
its Poisson bracket with the Hamiltonian,

F (qivpi) = {FvH}v
the Poisson bracket being defined as

OF 0G  OF 0G
0¢' dp;  Op; 0¢*

{FvG}:

2.3 Primary and Secondary Constraints

When the velocities as functions of the coordinates and momenta are non-
invertible, the momenta are not all independent, and there exist relations

¢ (¢,p) = 0, (2.4)

for m = 1,...M, that follow from the definition of the momenta. These
relations are called primary constraints. We will assume (2.4) defines a
submanifold embedded in phase space, the primary constraint surface.

The Hamiltonian H, defined by

H=q"p, - L, (2.5)

is not uniquely determined as a function of the p’s and ¢’s. From (2.5) we

find

oL
8H = ¢"6p, — =—6¢". 2.6
¢"0pn = 5.0 (2.6)
It can be shown [8] that if A\,d¢"™ 4+ p"dp, = 0 then
aqn
o mdoy
T

Applying this result to (2.6) we find for the equations of motion:

W OH 06,
T opn opn’
OH m@cbm‘

T
¢m (q,p) = 0.
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These equations can also be derived by demanding

to
5/ (¢"pn— H—u"¢,,) =0,
ty

for arbitrary variations 6¢", 0p,,, du"™ with the restriction 6¢™ (t1) = dq (t2) =
0. So we see that the u™’s enter the action as Lagrange multipliers for the
constraints. It is clear that the theory is invariant under H — H + ¢™¢,,
since this only leads to a redefinition of the u™’s.

The time development of an arbitrary function of the p’s and ¢’s F (g, p)
is now given by

F={F H}+u"{F¢,}. (2.7)

A requirement for the primary constraints is that they should be pre-
served in time. This leads to

{Sms HY + 4™ {¢y, bpr} = 0. (2.8)

Equation (2.8) can either reduce to a relation independent of the u’s or it
may impose a restriction on the u’s. In the former case, if this relation is also
independent of the primary constraints it is called a secondary constraint.
Secondary constraints are thus a consequence of the equations of motion,
while primary constraints are only a consequence of the non-invertibility of
the velocities as functions of the p’s and ¢’s.

If there is a secondary constraint, say x(g,p), we must impose a new
consistency condition

DG HY+ 0™ {X, én ) = 0.

This can give either new secondary constraints or merely restricts the choice
of u’s, etc. Eventually we will end up with a set of secondary constraints

Qbk:(),

for k = M+ 1,...,M + K, where K is the total number of secondary
constraints. The reason for this notation is that the distinction between
primary and secondary constraints is not an important one, and it will be
useful to denote both primary and secondary constraints by

¢; =0, j=1,... M+ K =1 (2.9)

The equations ¢, are called dependent if there exist one or more functions
C’ such that

ij = Cijﬁbi-

If this is the case the constraints, as well as the system as a whole, are called
“reducible”. If the ¢; are independent, they are called “irreducible”.
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2.4 Weak and Strong Equations

It is convenient to introduce the weak equality symbol =~ to indicate an
equality which is in general only true on the constraint surface ¢; = 0 (or
“on shell”). Thus, two functions F' and G that coincide on the constraint
surface are said to be weakly equal, F = G. If a relation holds throughout
phase space, the symbol = is used and the relation is called strong.

2.5 The Total Hamiltonian

Once we have found a complete set of constraints (2.9), it is useful to look
at the restrictions on the u’s. These are

{o;; H} +u™ {¢;,¢,,} = 0. (2.10)
A general solution is
u"t=U"4+V",

where U™ is a particular solution of (2.10) and V™ is the most general
solution of the homogeneous system

v {(bj?ém} ~ 0,

which is a linear combination of the independent solutions V,™,a=1,...A.
Thus the most general solution of (2.10) is given by

um = U™ 40 () V™,

where the coefficients v® (¢) are totally arbitrary.
We can now rewrite (2.7) in the form

Fx{F H +v¢,},

where we have defined

’

H = H+u"¢y;
ba = V" O (2.11)

The function Hy = H' 4+ v®¢, is called the total Hamiltonian. In terms of
the total Hamiltonian the equations of motion become

F~ {F Hr}.
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2.6 First-Class and Second-Class Constraints

An important classification of constraints is the distinction between first-
class and second-class constraints. A constraint ¢, is said to be first-class if
its Poisson bracket with every constraint vanishes weakly:

{éi,ﬁb‘j,}zo, ]:1,J,

or equivalently
{¢;10,} = Cijkqbkv

where the C’ijk are certain functions on phase space. Later on we will assume
them to be constants, in which case one is in the “group case”. From
the previous section it is clear the ¢, appearing in (2.11) are first-class.
Moreover, they form a complete set of first class primary constraints. Any
constraint which is not first-class is second-class.

From now on will confine ourselves to the case were there exist only first-
class constraints, and we will denote them by G,, which is the usual symbol
found in the literature on this subject.

The notion of first-class constraints can be extended to general functions
on phase space: a function F is first-class if

{F,G,} =0, a=1,...A.

2.7 Gauge Transformations

Since the functions v® appearing in the total Hamiltonian are arbitrary, not
all the canonical variables are observable. Since the v® are functions of time,
the value of the canonical variables at a time t5 will depend on the choice of
the v® in the interval t; < ¢t < t5. In particular, if £ = t; + &t, the change
of a dynamical variable F due to two different choices v® and v takes the
form

SF = 609 {F, Gy}, (2.12)

with dv® = (v® — v'*)§t. This transformation does not alter the physical
state at t3. The first-class primary constraints generate gauge transforma-
tions.

Furthermore, the following two results hold:

1. The Poisson bracket {G,, Gy} of any two first-class primary constraints
generates a gauge transformation.

2. The Poisson bracket {G,, H'} of any first-class primary constraint G,
with the first-class Hamiltonian H' generates a gauge transformation.
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This may indicate that some secondary first-class constraints may also
act as gauge generators, since {G4,Gp} and {G,, H'} will be linear combi-
nations of first-class constraints. There is no reason to expect these to be
primary, however. Though it is not always true that every first-class sec-
ondary constraint is a gauge generator (the so called “Dirac conjecture”)
we only look at theories in which all first-class constraints generate gauge
transformations.

2.8 Gauge invariant functions

Two phase space functions that coincide on the constraint surface G, = 0,
denoted by X, cannot be distinguished. So, relevant functions are not all the
smooth phase space functions but functions which are smooth on ¥. The
space C* (X) of smooth functions on ¥ can be characterized as follows. The
functions that vanish on ¥ form an ideal in C*° (P), the space of smooth
functions on the whole phase space P. Given this ideal, denoted by A/, one
can consider the quotient algebra containing the equivalence classes of phase
space functions whose difference is an element of A/. This quotient is just
C> (%).

A classical observable is, by definition, a function on the constraint sur-
face that is gauge invariant. This can be expressed as

{F,Ga} =0, (2.13)

i.e. observables are first-class.

2.9 The Extended Hamiltonian

The motion generated by the total Hamiltonian Hr contains only the first-
class primary constraints. To account for all the gauge freedom one has to
add all first-class constraints. This leads to the extended Hamiltonian Hg:

HE:H/—I—/\aGa.

For the time evolution of gauge invariant functions, it doesn’t matter which
Hamiltonian one uses, because of (2.13). For any other variable or function,
we must use Hg to account for all the gauge freedom.

The equations of motion for the extended Hamilton formalism can also
be derived by an action principle, namely

5Sp = 0,
SE = /(qnpn - H - /\aGa) 3
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which reduces to

F ~ {F Hg};

as it should.



Chapter 3

Geometric Reduction

3.1 Introduction

We will now treat the subject of constrained Hamiltonian systems and re-
duction using a geometrical formalism, based on [1, 5, 6]. There are several
reasons for doing this. First of all, it is not always possible to use global
coordinates on a configuration space. Even if this can be done, the phase
space doesn’t have to be a cotangent bundle of this configuration space. And
lastly, the geometrical approach provides a more intuitive and conceptually
clear way of dealing with Hamiltonian dynamics (through the flow of vector

fields).

3.2 Tangent and Cotangent Bundle as Phase Spaces

In general, we can take the configuration space M, the space of which the
¢"’s are the coordinates, to be an n-dimensional differentiable manifold. For
describing dynamics, i.e. the time evolution of the system, this space is
however unsuitable. One needs at least first-order differential equations,
which geometrically are vector fields. The obvious candidate for a space on
which we can define vector fields is the tangent bundle TM of M, which we
can identify with the velocity phase space, with local coordinates ¢* and ¢*.!
The Lagrangian L is a function on T'M,

L:TM — R.

Hamiltonian mechanics takes place on the cotangent bundle T*M which
is the momentum phase-space with coordinates (q‘, p;) and the Hamiltonian
H is a function on T*M,

H:T"M — R.

'Here ¢' is nothing but a convenient notation; the ¢’s are completely independent from
the ¢’s, i.e. the dot here does not denote the time derivative.

15



3.3. HAMILTON EQUATIONS 16

The transformation from T'M to T*M (i.e.. from the Lagrange to the Hamil-
ton formalism) is given by the fiber derivative FL:

FL : TM — T*M;

.y - oL
FL(¢,¢) = (q’,pizaq._)-

FL maps the fibers of TM into fibers of T*M. In general FL will only be
bijective in the unconstrained case.

3.3 Hamilton Equations

If we introduce local coordinates (qi,pi) on the phase space S = T*M, the
general form of a vector field X on S is given by

0 0

X=d=—+08,—
aaql—l_ﬁlapz?

where o' and §; are functions on S. An integral curve v of X is a curve

v : R—=>S;
to— ()= (d1),pi1),

which satisfies

L) =X (3.0

In local coordinates this reduces to

A
¢ = oy

pi = B
Comparing this with the original Hamilton equations of motion (2.2) we can

conclude that the physical trajectories are integral curves of the so called
Hamiltonian vector field Xy,

_OH 9 9H D
H= opi0¢ ~ oq op;’

This leads us to the symplectic form.

Definition 1 A symplectic manifold is a pair (W,w), where W is a manifold
and w a closed, non-degenerate antisymmetric 2-form called the symplectic
form. This means in particular

1. dw=0;
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2 w(X,)Y)=0,VY eTW < X =0;

3. w(X,Y) = —w (Y, X).

In coordinates (qi,pi) on S we introduce the canonical symplectic form

w = dq* A dp;.
It is then easily shown that
ixgdg = g}jj
ixpdpi —g—f]{,
and so
IXpWw = ixXg (dqi A dp,-) = (iXqui) dp; — (tx,dp;) d¢’
= Sy Sy = an
which can be rewritten as
ixgw(,Y)=w(Xy,Y)=dH(Y) =LyH, (3.1)

for any vector field Y. This replaces the original Hamilton equations of
motion. Now, w is symplectic on S = T*M, so given a Hamiltonian (3.1)
has a unique solution in S, namely

Xy = (dH)*.

3.4 Poisson Brackets
When we define the Poisson bracket for two functions F,G € C* (S) by

{F,G} =w (Xr, Xg), (3.2)

it is easy to show that within a chart (qi,p,-), where Xp = 3_158?1" — gfi 8?%

and similarly for G, (3.2) becomes

OF 0G  OF 0G

6= 50 ap, ~ an0g

which is the standard expression (2.3) for the Poisson bracket.
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3.5 Geometric Description of Constraints

We will now reformulate the concept of constrained Hamiltonian systems,
introduced in the previous chapter, in a geometrical setting [5, 6].

In the previous sections we have assumed the fiber derivative FL to be
bijective (i.e., the unconstrained case), in which case FL(TM) = T*M is
automatically a symplectic manifold if endowed with the canonical symplec-
tic form w = dq' A dp;. In the general case where constraints might occur
FL will fail to be bijective, and FL (T M) will be a submanifold P C T*M,
which doesn’t have to be symplectic.

In any case, we can still define a closed two-form w which in turn defines
a mapping from TP to T*P given by

Q,:TP—-T"P: X - Q,(X) = ixw. (3.3)

For finite-dimensional manifolds there are then two possibilities: either w is
symplectic, in which case €2, is an isomorphism and (P,w) is a symplectic
manifold, or w is degenerate, €, is neither injective nor surjective and (P, w)
is called a presymplectic manifold. Equation (3.3) allows us to write (3.1) as

O, (Xy) = dH. (3.4)

Thus for a given Hamiltonian H (3.4) doesn’t always have a solution if
(P,w) is presymplectic. There may however be a submanifold of P on which
(3.4) does have a solution. There exists a systematic algorithm to find this
submanifold, a precise mathematical formulation of which will be given in
the next section. In general the process is as follows.

We start with a presymplectic manifold (P,w) and a Hamiltonian H.
Since €, is not surjective, the image Q,, (T, P) of the fiber T, P is in general
a subspace of T, P, and the 1-form dH is in general not in the range of Q.
We can now restrict ourselves to a subset M; of P where dH is in the range
of 2,,. We’ll assume M is a manifold and call it a constraint manifold. This
gives us a map

j:M; — P,
and the embedding of the tangent space of M; :
J«:TMy — TP.
The image of this mapping is denoted by T'M:
TM,={XeTP[,, | X=4Y , YeTM}.

On M; we have a solution Xy of the equations of motion, but in general X g
is an element of TP[,;, not of TM,. Elements of T M, are called tangent
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to M. If Xy is not tangent to M; an integral curve of it will leave M,
and the system will evolve to a point where (3.3) doesn’t have a solution.
Since this is unacceptable, we restrict ourselves to a submanifold M, of M,
where X is tangent to My. Ms is the next constraint manifold. On My we
have a solution Xy which is tangent to M; but not necessarily to M itself.
So we again restrict ourselves tot the next constraint manifold Mz C M,
where X is tangent to Ms. On Mz we can have the same problem, and we
are forced to make a chain of submanifolds which hopefully ends at some
submanifold M} on which Xy is tangent to My on all points of M.

3.6 The Constraint Algorithm

We will now turn to the mathematical formulation.

Definition 2 The symplectic complement TM~* of TM C TP with respect
to w is defined by

TM*={YecTP[, | ¥ |WX)=w(X,Y)=0 , VXcTM}

We'll also need the following theorem [6].
Theorem 3 Let o € T*P, then
a € Q (TM) <= <TM¢‘ a) =0, (3.5)

With this we can construct the algorithm. For a given Hamiltonian H
we want to investigate wether or not the equation

Q, (X) =ixw=dH (3.6)

has solutions. A necessary condition is that dH must be an element of
Q, (TP), thus according to (3.5) we must have

<TP¢‘ dH) = 0. (3.7)
We now take M to be the submanifold of P on which (3.7) holds:
My={peP | (TP aH)@m) =0}.

On M; we have a solution Xy of (3.6), but it need not be tangent to M.
For a solution to be tangent to M; we must have

dH € Q,, (TM,),
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or, using the theorem,

<TM1¢‘ dH) = 0. (3.8)
So we introduce a submanifold My of My,

M, = {m M, | <TM1l‘ dH) (m) = 0},
on which (3.8) holds. This way we find a chain of submanifolds
My={meM_ | <TM,{1‘ dH) (m) =0} .

If finally we end up with a manifold My, with the property

<TM,§‘ dH) = 0

for all its points the chain stops. My, is called the final constraint manifold.

3.7 Gauge Freedom and the Reduced Phase Space

Given the final constraint manifold M C P on which
iXHw[MK = dH[Mk , Xy €eTP, dH € T*P, (3.9)

has a solution Xy tangent to M, we can pull back (3.9) to M} using

7 M — P;
wp = Jw;
Hk - j*Hkv
and obtain
iXkak = dHy, ‘X—Hk € TMy, dHy € T M. (3.10)

Every solution Xp of (3.9) tangent to M}, can be written as

Xu = jX,

where X is a solution of (3.10). The converse is in general not true; if X is
a solution of (3.10) then j.X is not always a solution of (3.9). So (3.9) and
(3.10) are different.

To discuss the difference between the two equations, we look at the non-
uniqueness of the solution of both equations. We first consider (3.9). To any
solution Xz we may add an element Z of ker Q, N T M, to obtain another
solution tangent to M.
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This arbitrariness is called gauge freedom, and Xy and Xy+Z are gauge
equivalent vectors. Gauge freedom thus means that an initial condition, a
point m (0) of My, will evolve to different points mx,, (¢), depending on the
choice for the solution of (3.9).

We now make the assumption that this freedom has no physical signif-
tcance, so Xy and Xy + Z describe the same physics. This leads to the
following.

Definition 4 Points on M}, are physically equivalent or gauge equivalent if
they can be reached from the same initial condition by integral curves of solu-
tions of (3.9) in the same amount of “time”, i.e. the variable t parametrizing
the integral curves.

Definition 5 A gauge vector field is a vector field the integral curves of
which consist of physically equivalent points.

The collection
Gy =kerQ,NTM,

considered above consists of gauge vector fields. These are in general not
the only possible gauge vectors. It can be shown that:

e If X is a solution of (3.9) tangent to My and Z a gauge vector field
then their commutator [X, Z] is also a gauge vector field.

o If Z,,Z, are gauge vector fields then [Z, Z5] is a gauge vector field.

The gauge vector fields obtained in this way can be elements of Gy,
though they don’t have to be. Starting from G; we can construct a series
of sets Go,G3, ... ,G, of gauge vector fields by defining

Gn = Gn—l + [.X, Gn—l] + [Gn—17Gn—1]7 n = 27 3, ey

with X a solution of (3.9) tangent to M. Obviously G,,—; C G4, so by this
construction we enlarge in every step the collection of gauge vector fields
until for some n; we have

an—l - an

The process stops, and we have G, = G, for n > ny. G,, is then the
complete set of gauge vector fields for (3.9).

Now consider the pullback equation (3.10). We can add to a solution
Xy, any element Z of Gy = kerQ,,. We could apply to G; the same
procedure as above, but G turns out to be stable under this process. Hence
the set of gauge vectors of (3.10) is G;. Since G, the initial gauge freedom
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of (3.9), belongs to j.G; = TM,j‘ NTM, and G, is stable, all G,, and in
particular the complete set of gauge vector fields of (3.9) Gy, will belong
to TMi* N TM,. So the gauge freedom of (3.9) is contained in that of
(3.10). We have found that every solution of (3.9) corresponds to a solution
of (3.10), and equally so for gauge freedom, but not necessarily vice versa.
In most cases however,

G, = TMj N TM,, (3.11)

and both equations will have corresponding solutions. From now on we will
assume (3.11) to be true.
We now introduce the following terminology: My, is called

1. 4sotropic it TM, C TM,ﬁ‘;
2. coisotropic or first class if TM,ﬁ‘ CTM,;
3. second class or weakly symplectic if TMy N TM;- = {0} ;

4. mized in all other cases.
This leads to the following statements regarding gauge freedom:

1. An isotropic constraint manifold has as its gauge vectors all tangent
vectors. This means that all points are gauge equivalent and that
there is no dynamics on Mj. In terms of coordinates and functions,
this means that the constraint functions form a basis for the space of
functions on all of phase space.

2. A first class manifold has maximal gauge freedom: all potential gauge
vectors (i.e. vectors in TM) are actual gauge vectors (i.e. belong to
TM,). In the language of the previous chapter, this means that all
constraints are first-class.

3. In a second class manifold there is no gauge freedom, all point are
physically inequivalent. This is the same as saying that all constraints
are second-class.

In this paper we will only look at first class constraint manifolds.

3.8 The Reduced Phase Space

To eliminate the gauge freedom on a first class manifold we want to identify
gauge equivalent points of M. We have to find the set L,, of all points that
are equivalent to a given point m of M. One constructs L,, by taking the
union of all integral curves of vector fields Z going through m. One says
that My is “foliated” by the “leaves” L, of gauge equivalent points.
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We can then form the quotient space R = My /- of My by the following
equivalence relation: two points mq and mqy are equivalent if they lie on the
same leaf L (i.e. if they are gauge equivalent). R is the space of leaves Ly
of M.

There exists a canonical projection
7w M, — R,

which assigns to each point of M, the leaf to which it belongs. We assume
R is a smooth manifold and 7 is a smooth mapping. R is called the reduced
phase space of the presymplectic manifold (P,w) and Hamiltonian H.

A two-form wpr on R is introduced as follows. Take X and Y to be two
vectors tangent to a point r of R. This point corresponds to a leaf L in
Mj,. Take a point m on L and two tangent vectors X and Y in Ty My, that
project on X and Y:

X = n.X;
Y = Y.

Then wpg is given by
wr(X)Y) = wg <X’,}N’) ,

where wy = j*w, the pullback of w onto My. It can be shown that wgr
defined this way is symplectic.

Because of the way the final constraint manifold has been constructed
we have

<TM,§‘ dHy) = 0.

This means Hy is constant along the leaves of the foliation, since TMj is
the tangent space to the leaves. In other words, Hy is gauge invariant and
defines a function Hr on R by

Hpr(Ly) = Hi (m).

We now have constructed a symplectic form wp and a Hamiltonian Hr on
the reduced phase space R. The equations of motion read

iXp, (Wr) = dHp,

with a unique solution Xp,. R is the true phase space of the presymplectic
system (P,w, H).
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3.9 Gauge Vectors and Constraints

We have now two descriptions of gauge freedom on constraint manifolds:
the first in terms of the Poisson bracket with a constraint function (as given
by (2.12)), the second in terms of gauge vectors. These two are of course
related: the gauge vectors are the Hamiltonian vector fields for the functions

Pa-



Chapter 4

Lie Gauge Groups

4.1 Introduction

From now on, we will assume the gauge transformations to be actions of a
Lie group G on phase space. Some essential elements from Lie group theory
and Lie group actions on manifolds are treated in appendix A. This chapter
closely follows [1], where we’ve added the perspective of constrained systems.

4.2 The Momentum Mapping

As we have seen in the previous chapters, we can think of gauge transforma-
tions as the flow of gauge vectors. In the case of a Lie group action, these
gauge vectors are just the infinitesimal generators of the Lie group action.
Choosing an element £ of g, the Lie algebra of G, we get a in each point z
in phase space a gauge vector

X€() = S (expit, 0)

t=0

Now, given a gauge vector field X¢, one can look for the constraint
associated with it, i.e. the function whose Hamiltonian vector field is just
X¢. Such a function, denoted by J (¢) : P — R, by definition obeys

dJ (&) = ixew.
We can view J as a map from g to C*® (P):
J:g = C=(P);
&€ = J©.
Now define a map J : P — g* (the dual of the Lie algebra g) by

J(z)-€=J(&) ().

25
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So J is a map from P to the space of linear functionals on g. Under certain
conditions, which will be given below, J is called a momentum mapping for
the action of G. Since the Lh.s. of this equation is linear in £, so is the r.h.s.
By choosing a basis &; in g we can write for every x € g

T =17 (Xigi) =x'J (&) =X
The functions .J; thus form a basis for the constraints.

Now we give the formal definition of the momentum mapping.

Definition 6 Let (P,w) be a connected symplectic manifold and ® : G x
P — P a symplectic action of the Lie group G on P, that is, for each
g € G, the map &, : P — P s symplectic'. We say that a mapping from P
onto g*,

J:P—g"
is a momentum mapping for the action provided that, for every £ € g,

dj (f) = iX'fwv

where J (&) : P — R is defined by J (&) (z) = J(z) - € and X¢ is the
nfinitesimal generator of the action corresponding to €. In other words, J
is a momentum mapping provided that

R 7 3
=%

for all € € g. The collection (P,w,®,J) is called a Hamiltonian G-space.

X

Definition 7 A momentum mapping J is called Ad*-equivariant if
T (@, (2)) = Ad-1 ] (2)
for every g € G.
An Ad*-equivariant momentum mapping obeys [1]
{7©.7©} =7 (D

This is just the first-class condition, since

() = {
(

So when J is Ad*-equivariant, all constraints are first-class.

et (P,w) be a symplectic manifold. A map j : P — P is called symplectic if it
preserves the symplectic form, i.e. j*w = w.
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4.3 Reduction using the momentum mapping

As we have seen, the functions J; = J (&;) form a basis for the constraints,
so the constraint manifold ¥ is defined by the relations

Ji=0, i=1,..., dim g.

Since

the constraint manifold is just the submanifold P’ C P on which the r.h.s.
of the above equation holds. After factoring out the action of the group, we
get a manifold

Py=J"10) /G =%/G,

which, under certain conditions, is symplectic. This is the reduced phase
2
space.

We will now give the mathematical theorems and definitions.

Theorem 8 Let (P,w) be a symplectic manifold on which the Lie group G
acts symplectically and let J : P — g* be an Ad"-equivariant momentum
mapping for this action. Assume G acts freely and properly on ¥ = J=1 (0).
Then Py = X/G has a unique symplectic form wg with the property

mwo = Tw,
where ™ : ¥ — Py is the canonical projection and v : 32 — P is the inclusion.

The assumption that G acts freely and properly is made to ensure that
3/G is a manifold. So Py is the phase space of the physical degrees of
freedom. For example in electrodynamics, J~! (0) would be the manifold on
which Gauss’ law would hold, while dividing out the group action amounts
to identifying the gauge invariant field configurations (though in this case G
would be infinite dimensional).

For the proof of this theorem we’ll need the following lemma.

Lemma 9 Forp e X andG-p={®(9,p)lg € G}, T, (¥) is the w-orthogonal
complement of T, (G - p) = { X¢ (p)‘ Eeg}.

%(In general, the constraint manifold is given by J~' (u), where p is a regular value of
J. We will restrict ourselves to the case of Marsden-Weinstein reduction, which is the one
described above. This actually isn’t a restriction, since one can always adjust the system
such that g = 0. For a discussion of these matters, see for example [1].)
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Proof of the Lemma. If{ € gandY € T,P, we have

w (X4 Y) = (4 ©) (V) =TT (V)&

since J is a momentum mapping. Since T}, (X) = kerT,J, Y € T, (X)) iff
w (X6 (p) ,Y) = 0 forall £ € g, that is, Y is in the w-orthogonal complement
of T, (G-p). m

Now we can prove the theorem.

Proof of Theorem 8. For X € T, (X), let [X] = T'7 (X) denote the
corresponding equivalence class in T}, (X) /T, (G - p). The assertion m*wy =
w is

wo((X],Y]) =w(X,Y), X YeT,(2).

Since m and T'w are surjective, wg is unique.

Now, from the lemma it follows that wg is a well-defined two-form. It is
smooth since 7*wq is smooth. It is closed, since dn*wg = dt*w = *dw = 0,
so  (dwg) = 0, and thus dwy = 0 because of the surjectivity of 7 and 7).
For non-degeneracy of wg, suppose wq ([X],[Y]) =0 for all Y € T,%, hence
w(X,Y)=0for all Y € T,(X). Thus, using the lemma, X € T, (G - p),
that is, [X] = 0 and so wq is a (weak) symplectic form. m

To complete the reduction process, we now include the Hamiltonian.

Theorem 10 Let ® be a symplectic action of G on (P,w) with a momentum
mapping J. Suppose H : P — R is invariant under the action, that is,

H(p)=H (®,(p)) forallpe P, geG.
Then J is an integral for Xy, i.e. if F; is the flow of Xy, then
J (i (p) =7 ().

Proof. For each £ € g we have H (®expte (p)) = H (p) since H is invari-
ant. Differentiating at ¢ = 0 gives

dH (p) (Xé) =0,
that is,
w (XuX€) =0,

that is,
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which proves that

J©) (F () =7 (&) (n).

|
This is the geometric Hamiltonian version of Noether’s theorem, which
states that for every symmetry there exists a conserved quantity.

Theorem 11 Under the assumptions of theorem 8, let H : P — R be in-
variant under the action of G. Then the flow F; of Xy leaves ¥ invariant
and commutes with the action of G on %, so it induces canonically a flow
H; on Py satisfying w o F; = Hyow. This flow is a Hamiltonian flow on Py
with a Hamiltonian Hy satisfying Hyonw = H o1. Hy is called the reduced
Hamiltonian.

Proof. From theorem 10 we know that J is an integral for X, i.e.

J(F(p)=J(p)-

It follows that > is invariant under the flow and that we get a well-defined
flow H; induced on Py. We clearly have 1o F; = H; o7, so n"Hjwg =
Frm*wy = Ffv*w = "w = 7*w. But since 7 is a surjective submersion,
we conclude Hwy = wq, so the flow H; on Py is Hamiltonian. The relation

Hgom = Hot plus invariance of H under the action of G defines Hy uniquely.
Hence, if [Y]| =T7 (Y) € TPy, we have

dH,[Y] = i*dH (Y) = i*w (Xg,Y).

But from the construction of H;, its generator Z satisfies Tmo Xy = Z o,
so dHo[Y] = t*w (Xu,Y) =wo (Z,[Y]), that is, Z has energy Hy. ®

So here we finally have constructed the reduced phase space of the orig-
inal system, comsisting of the physical Hamiltonian Hy and the physical
state space Py. This is the culmination of geometric theory of constrained
systems.



Chapter 5

BRST Reduction in the
Group Case

5.1 Introduction

The BRST formalism focuses on the space of functions on phase space rather
than on phase space itself. We have seen earlier that the physically interest-
ing functions (i.e. observables) are functions on the constraint manifold that
are gauge invariant. In obtaining the set of these functions two steps have
to be taken. First, functions on phase space that coincide on shell are to
be identified. This gives us the set of functions on the constraint manifold.
From that set, we should only take those functions that are invariant under
gauge transformations.

In contrast to the methods of reduction described earlier, in the BRST
formalism one first enlarges the space of phase space functions by adding
so-called ghosts and their conjugate momenta. These are “extra” degrees
of freedom. Their purpose is to allow the definition of two graded (su-
per)derivations, § and d. Through their (co)homology we can obtain the
set of functions on the constraint manifold and gauge invariant functions,
respectively.

Under certain condition these two differential operators can then be com-
bined into one operator called the (classical) BRST operator D. In that case,
gauge invariant functions on shell are then given by the cohomology of D.

When quantizing the system, the complete set of functions (including
ghosts, ghost momenta, and non-physical functions) are quantized. At the
quantum level the system is then reduced using the quantum BRST opera-
tor.

30
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5.2 Restriction to the Constraint Surface

We will now treat Marsden-Weinstein reduction in a BRST context, explain-
ing [11].

As we have seen in section 2.8, the space of functions C* (X) on the
constraint surface ¥ is given by

C*> (P)

N )
where A denotes the ideal of functions that vanish on the constraint surface.
The ideal N is generated by the functions .J; (which form a basis for the

constraints), and we will denote it by C® (P) - J;.
Consider the algebra

= () =

Age C™ (P),

where Ag is the exterior algebra of the Lie algebra viewed as a vector space.
Elements of Ag are called ghost momenta (because they will become conju-
gate to the ghosts defined below) and their degree ¢ is called the antighost
number.

Define the derivation

§:A%gRC™(P) = A" 'ge C™(P)

by its action on the “generators” £ ® 1, & € gand 1 ® F, F € C* (P) and
the fact that it’s a (super)derivation. We define

SEon)=10J() VYeg
S(1@F) =0 VF € C (P),

which makes sense since J (¢) € C (P). Note that 1 € R~Aj. It is
immediate to check that & is a nilpotent derivation, i.e. 62 = 0. The
homology of ¢, denoted by Hj (Ag ®@ C* (P)) is given (as usual) by

ker §
q oo _
HY (Ag© C (P)) = 12
It inherits the grading of Ag® C* (P). The algebra we're interested in is
HY, since (using A% = C and ® = Q¢),
(ker8)® = A%g®C* (P) ~C> (P);
(Im&)° = Alg@C>®(P)-J;~ C°°( ) - i,
and so
ker §)° C* (P

T (md)°  C*(P)-J;
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5.3 Factoring out the Gauge Group

The second part in the reduction process is factoring out the gauge trans-
formations. In the BRST formalism this is achieved by looking for functions
which are constant under the action of the gauge group. These are the gauge
invariant (and hence physically relevant) functions.

First, we will assume we have a representation of g on some vector space
V. (In the end we will take V' to be A%g @ C'* (P) or one of its homology
spaces.) Define a map

d:V - g"®V ~Hom (g, V)

dv(§) =¢&v, Eeg, veYV, (5.1)

where £v means the representation of £ acting on v.! Extend this map to

d:APg*@V — APHg* @V

dw@v)=dv@v+ (-1)PwAdv, weAPg”

where dw is the usual exterior derivative (when g* is viewed as the space of
p-forms on the Lie group G with Lie algebra g). Elements of Ag* are called
ghosts, and their degree p is called the pure ghost number. Since d? = 0, we
can look at its cohomology

kerd
Imd

HY(Ag"@V) = .

We have

(Imd)° = 0
(kerd)® = {v] &v =0},

and since kerd at p = 0 are just those v that are infinitesimally invariant
under g, i.e., are gauge invariant, we get

HY (Ag* ® V) = {gauge invariant v} .

! This actually leads to the standard Lie algebra cohomology, which was known long
before its application in the BRST method. See for example [2].
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5.4 Bringing d and ¢ Together

To conclude the reduction process, form the algebra
Ag" @ Ag® C™ (P),
and redefine ¢ so it acts trivially on Ag*,
§:APg* @ Ag® C™ (P) = APg*@ AT g C™ (P).
We still have
d:APg* @ NMg@ C™ (P) — APTlg* @ AMlg@ C™ (P),

where we have taken V in section 5.3 to be Ag® C* (P). The action of g
on this space is given by

fi(fj) = [fufj]:qjkfm
&(F) = XSF.

Combining the results of the previous two sections, we immediately see
that

HY (Hy (Ag* @ Ag® C™ (P))) = {gauge invariant functions on £}. (5.2)

It is perhaps not immediately clear whether (5.2) is well defined, since the
action of d could in principle mix up the equivalence classes in Hy. It can
be shown however [8, 11], that the relation

dé = éd
holds, which makes (5.2) well defined.

5.5 The BRST Operator
Consider the “total differential”

D=d+ (-1)"é.
It is a derivation

D:APg* @ Ag®@ C™ (P) = AP g* @ Alg®@ C™° (P) + APg" @ AT 'g @ C™ (P).

We now combine the p and ¢ grading into a p — ¢ grading (called the ghost
number) and define the space C* by

CH(Ag" @ Ag@ C*(P) = 3 APg" @ A% 0 C™ (P),

k=p—q
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so that
D:CF(Ag" @ Ag@ C™ (P)) = C* (Ag* @ Ag® C™ (P)),
and
D? =0.

This operator D is the classical BRST operator. Under certain conditions
(to be specified below), the cohomology of D at k = 0 is given by

HY) (Ag© Ag© C™ (P) = HY (HY (A" ©Ago C™ (P))  (53)

= {gauge invariant functions on X} .

On its generators it acts as follows

D(n') = d;
D (5i) = jz’ - Cibcfc776§ (5-4)
D(F) = dF.

Now the conditions which must be fulfilled for (5.3) to hold are the
following [4, 8]:

e The constraint surface ¥ = J~'(0) should be a submanifold of P.
This has of course been assumed all through this paper.

e The complex (Ag® C* (P),§) should be acyclic, i.e.
HI (Ag© C™ (P)) =0, q#0.

e The space C* (X) is given by HJ (Ag ® C* (P)). That this is the case
was shown in section (5.2).

In [4] it is shown that all three conditions are fulfilled if and only if 0 € ¢*
is a regular value of the momentum mapping JJ, which in its turn is the case
if and only if G acts (almost) freely on J~! (0).

5.6 Super-Poisson Bracket

Since we will want to quantize the whole algebra Ag*@Ag@C> (P), we need
to have a Poisson bracket defined on it. This is a non-trivial matter. Kostant
and Sternberg [11] achieve this by using the fact that Ag*@Ag= A (g F g)
has a scalar product by evaluation of g* on g. They use this scalar product to
construct the Clifford algebra Cl(g* & g), which induces a Poisson bracket
on A(g*@®g). Then, by taking the tensor product, A (g* G g) @ C* (P)
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becomes a super-Poisson algebra. Some facts about super-Poisson algebra
are gathered in appendix B.

We will not give the derivation here, but only give its results. Let {77’}
be a basis for g* and {¢,;} a basis for g. Furthermore, let F' be any element
of C* (P). Their super-Poisson brackets are given by

.y ={&¢ = o
{771'75]‘} ={¢&, '} = &
{nlvF}:{gng} = 07
and {F,G} is given by the usual Poisson bracket on C* (P).> These rela-

tions then define a Poisson bracket on the whole phase space by means of
the graded Leibniz rule.

5.7 The BRST Generator

We now want find an element Q of A (g* & g) @ C* (P) which is such that
Poisson bracket with €2 is just the operator D of section 5.5, i.e.

{Q,.} =D.
As we will check, it is given by
a7t 1 c a b
=1"Ja = 5Ca "M Ec-

First, we will calculate the Poisson bracket with a function F € A (g* G g)®
= (P),

{n“fa - %Cabc'n“n”fa F} =1 {Ja, F} = 1" X% F.
But according to (5.1) this is just dF,
(F"X%F)  x = (1"X5F) - xi¢; = \"X%F = X*F.
For the basis vectors &; of g we find
{Uaja - %Cabcnanbfcvéi} = {n", &} Ja - %Cabc {Uaﬁbfcafi}

_ 7. _ } c a, b __ sb _a
— Jz 2Cab gc <5z)7 51'7 )
= Ji— Cibcfcnb-

2 Actually, Kostant and Sternberg set {n®, ¢,} = 26¢. We drop the factor 2 here.
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And finally, for the basis 7° of g* we get
a7 1 c a : 1 c a 7
{n Ja = 5Ca " 1€ s } = —5Can"1"s;
1.
— _ZC ip% b.
2 ab r] r]

To check that this is just d7 we evaluate

1 . 1 .
(-3Cuint) (€& = —5Cu (s1dt - apat)

= —Cu',
which is the same result we get when using the Eilenberg-Cartan formula:

d"f &) = 5k"7i (fl)'_ 51"7i (€k) — "7i (ks &)
—Cy"n" (§1)

= _Ckli'
Summarizing, we get

@} = af;

{Q.¢ = Ji—Cibcfc"?b;

{Q,F} = dF,

which is in complete accordance with (5.4). So
{Q,.} =D.

Since D% = 0, the relation {Q,Q} = 0 should hold. Indeed, we have

A 1 Cn 1 o
Q. = {'n“Ja —~ §Cabcn“nb€c,n’Ji —~ 5%"“?7’?7’&}

. . 1 o
{U“Jm n’Jz} +2 {'n“Ja, —5Cijkn’n’€k}
1 c. a,b 1 k_ 1. 7
+ §Cab nn 5@50@']‘ U R
The first two terms cancel each other:
. . . 1
{najay anb} +2 {ndjdv —§Cabc”7a”7bfc}

= o {Jar o} = Cada {11, }
= "’ C e = Cop Jann"s!

= Ca'n"n'Je = Cu i’ Je

= 0,
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while the third term is identically zero:
1 c b 7 c k 7
5Ca e 5 C 7Es CaC '7'7507'7'751@}
= anbccijk ({n“nbfc, '’ }fk + i {n' e €} )
1 C a
:anbcijk<’7 ot L'} €+ ot {€ it }E,)
1 o .
= SCufCy* (nn (5in? = nisl) & — v (850 = n°d}) €. )
1., . . 1
= 5Cu Coi 0 '€, — SC Cran' e,
1 . 1
+§Cijkcakcnln]77a€c - §Cabccick77a776ﬁlf
=0. (5.5)

(That this is zero can be seen as follows. For any anticommuting function
P, the following equation holds:

{{P,P},P} =0.
Taking P = n°.J, we get
{{n“fm nbjb} ,ncjc} = {n“anabdjw ncfc}
= 7"n"Cu'n’ {fd, jc}
= ClCu " Je = 0.

This result and the fact that the .J, are independent proves (5.5)).

5.8 The Ghost Number Generator
The grading k of the algebra
CH(Ag© Ago C= (P)) = Y AP @ A'g @ C (P),
k=p—q
defined in section 5.5, usually called the ghost number, has the nice property

that for any element of ¢ € C*, k can be evaluated by taking the Poisson
bracket of ¢ with the ghost number generator G given by

G =1
By checking on generators,
{g7 ga} = _ga;
{9.9" = 0%

{9, F}

Il
o
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we see that for any ¢ € CF,

{G,c} = kc.



Part 11

Quantization of Constrained
Systems
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Chapter 6

Standard Operator Methods

6.1 Introduction

In general, quantizing a system means that each function F on phase space is
represented by an operator 13’, acting on some (pseudo)Hilbert space, which
contains the state vectors. The Poisson bracket is then replaced by the
commutator, under the identification’

[.] e ik {,.}.

When dealing with gauge theories, there exist unphysical degrees of free-
dom, which under the above prescription would be quantized as well. There
are in general two ways of approaching this problem. One could first try to
reduce the classical theory and then quantize the reduced system. This is
called reduced phase space quantization. On the other hand, one could first
quantize the complete theory, and then try to reduce the quantum system.
This is the approach of the Dirac and BRST quantization methods. We will
throughout assume we know how to quantize the original system (though
not including ghosts and ghost momenta).

For notational convenience and compatibility with most literature on
this subject, the constraints J, will from now on be denoted by G, in the
classical theory. At the quantum level, operators which are the quantization
of some phase space function F will be denoted by F. (So the quantization

of G, will be denoted by Ga)

!Since the n* and ¢, are anticommuting, their Poisson bracket becomes an anticom-
mutator after quantization. To avoid notational clutter, both the commutator and the
anticommutator will be denoted by [.,.]. It is an anticommutator in the case where both
arguments are odd.
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6.2 Reduced Phase Space Quantization

When quantizing gauge systems, it would appear to be logical to quantize
only the reduced system. This way, only the physically meaningful observ-
ables would be realized as operators an some Hilbert space, which would
contain only physical states. There are, however, some serious drawbacks to
this approach.

First of all, it may be very hard or even impossible to explicitly construct
the set of gauge invariant functions. Also, it could be that the reduced phase
space doesn’t have some sort of canonical coordinates ¢, p which obey

{Gi, p;} = dij.

Finally, going to the reduced system may spoil some manifest symmetry,
like Lorentz invariance.

Because of this, methods have been invented to reduce the system at the
quantum level, i.e. to first quantize the complete system, after which some
sort of physical condition is imposed upon the operators and states.

6.3 Dirac quantization

In the Dirac quantization method, one first quantizes the complete gauge
theory. As said before, there exists then states which are not physical. To
remove this unphysical states, Dirac proposed the following “physical state
condition”: a state |¢) is a physical state if it obeys

Galy) =0 (6.1)

for all . This would seem reasonable, since then physical states would be
left unchanged by the finite transformation

¢ Ga |y = |y .

There are, however, some complications. The classical condition for fist
class constraints,

{Ga, G} = CopGe
could be spoiled by quantum corrections of order A2,
[G Gb} — iHC, G+ 2Dy,
In this case (6.1) would imply

Bab |¢> =0.
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This could however restrict the physical subspace too much, and in extreme
cases reduce it to an empty subspace. Also, the classical relation

{H,G.} = V,°G,
may pick up quantum corrections,
[HG} — ik, %Gy + B2,

Therefore, to be able to apply the Dirac quantization method, one has to
assume bab = C’a =0.

Another problem arises from the inner product. In the Schrédinger rep-
resentation, the scalar product on the Dirac Hilbert space is given by

(¢ qb):/dqldqz...qu ®* (ql,...,qN)qb(ql,...,qN). (6.2)

Since the integration is over all degrees of freedom, including non-physical
ones, this integral could diverge. For example, in the simple case of just one
constraint given by p; = 0, the physical state condition reads

0
lha—qlh@ =0,

so physical states do not depend on ¢'. So if (¥)| and |¢) are both physical
states, the inner product given by (6.2) would be infinite. In other words,
(6.1) may have no solutions in the Hilbert space to which the |¢)’s belong.



Chapter 7

BRST Quantization

7.1 Introduction

As said before, in the BRST quantization procedure, one quantizes the com-
plete system (including ghosts and ghost momenta) and then imposes some
physical state condition to retrieve physical states and operators (as in the
Dirac method). We will throughout assume we know how to quantize the
original system without ghosts and ghost momenta.

7.2 Quantum BRST Operator

To include the ghosts and their momenta in the quantization procedure,
the state space should also carry a representation of the anticommutation
relations! between the 2m hermitian ghost and ghost momenta operators

i8] = 9.
The BRST generator is then represented by a hermitian operator Q, given
by

A A ~a i crasbé i ~a
Q= Gaif* — 3Cab 71 iPE. + §Cabb”7 :

The classical condition D? = 0 now reads
[Q, Q} —20? = 0.

The ghost number operator is given by

G = 'f/aéa + constant.

' From now on we’ll set & = 1.
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The constant is real and reflects the ordering ambiguity. We will use a form
of the ghost number operator which is antihermitian,

G = (it &)

¢ = —¢.
The ghost number operator obeys
G.8] = -4
6.ir| = i,

We shall assume G to be a conserved quantity. This allows us to classify the
physical states according to their ghost number,

G [phys,n) = n[phys,n) .
Since G is anti-hermitian, these states satisfy

(phys,m| phys,n) = C.0p,, . (7.1)

7.3 Quantum Ghost Algebra

We'll assume we can write the linear space that quantizes the classical BRST
extended phase space as a tensor product of a Hilbert space (containing the
so-called matter states) and a space with indefinite inner product (containing
the ghost states).

Consider states of the form [9]

[4) = |M)|G),

where |M) and |G) denote matter and ghost states respectively. The ghost
algebra may be specified exactly.

A vacuum ghost state is defined by
m

—)=0 =1,...,1
2> ’ a ’ y M,

lAa

which has ghost number m/2,

’I’Il> .
5 =

g

SN = N —

Il
| 3
NE
N~ o
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The conjugate ghost vacuum is defined by

m
——>:O, a=1,...,m,

&3

which has ghost number —m /2. The inner product between these two states
is normalized by defining

315)=0G
obeying (7.1).

The states with ghost number n in the range —m/2 < n < m/2 are not
uniquely determined by their ghost number. This requires an extra index
on these states:

—%> =1, (7.2)

‘_ﬂ k>a1...ak _ cay ”"\ak _ﬂ>
2 2/
m N o m
— —k> = —>.
‘ 2 aj...ag gal gak 2

The states with lower and upper indices are not independent, since

)= )

which satisfies (7.2). This leads to the following relation (up to a sign):

5 M, = Eaal3)

_ (_1)m(m—1)/2§

~ ~m

~1 m
al...gakn - _E>
m agp41---Gm
e
5 +

. (_1)m(m—1)/2

8(11 i

(with no summation over the indices), where ¢ is the totally antisymmetric
symbol in m dimensions.
A general state |1) may be written as

[0) =3 IM)y, a, IG)"
k=0

To avoid double counting the indices are restricted to be in increasing order.
This general state may be decomposed according to ghost number:

" m
) = ;\¢,—5+k>;

m >a1...ak

m
‘¢7_5+k> = |M>a1...ak _E
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Using the material from appendix C we can represent the states |[—m/2 + k)

as products of Grassmann variables 6°,

and the ghost operators as

77 — 3

5 17
— -,

Sa 06

Using these identifications, we find

m a a a
6 =T kY = M), 0767 . .0%,

7.4 Quantum BRST Cohomology

By analog with (6.1), the physical state condition in the BRST formalism
is given by
Q) = 0.
Since € is nilpotent, we can define BRST closed and exact operators in the
same way as in the classical case. We get:
{Q,A} =0 & Ais BRST-closed,
A= [Q,B} & A is BRST-exact.
BRST-exact operators are BRST-closed, so one can define the “quantum

operator cohomology” H,, (Q) as the set of equivalence classes of BRST-

closed operators modulo the exact ones.
Nilpotency of €2 also allows the definition of closed and exact states:

Q) =0 < [¢) is BRST-closed;
[0y =Q|p) < |¢) is BRST-exact.

So we define “quantum state cohomology” H <Q) as the equivalence classes

of BRST-closed states modulo exact ones,

_ ker
ImQ

H., (Q)
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The claim of quantum BRST reduction is that Hg (Q) will contain the
physical states.

To examine the quantum BRST condition we will first look at the concep-
tually simple system in which some of the variables (¢%, pq), (e = 1,...m),
are unphysical?. In that case the BRST operator is given by

Q= pan".

The obvious outcome of the BRST procedure should be that the phase space
should reduce to a space with no ghosts and ghost momenta, and with no
(Ga, p*) degrees of freedom.

Consider a general state with ghost number —m/2 + k,

m m aj...ag
‘¢7_5+k>:|M>a1...ak _?+k> ’ (73)

where repeated indices denote a summation over all different ghost states.
BRST invariance implies

ﬁ[al |M>a2...ak] =0, (7.4)

where the brackets denotes anti-symmetric summation. These are (,:;1)
equations on (Tg) matter states.
The dual state to (7.3) is given by

<G5, % — k‘ _ by by <ﬂ ok

5 by by (M| (7.5)

and satisfies
m m
<¢7 5 B k‘ w? _E —I_ k> = bl"'bm—k <M| M>a1...ak *

BRST invariance of 7.5 implies

byobyp (M| Pa=0, a#by ... by_k. (7.6)
So for BRST invariant states we have

by by (M

ﬁc |M>a1...ak =0.

In [9] it is shown that even though we have restricted our analysis to
states of the form | M) |G), the resulting space of physical states is still too
big. A way out proposed in [9] is to require that all inner products in

2This is a typical example of a system which runs into trouble when trying to quantize
it in the Dirac quantization scheme, see 6.3.
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the original state space are finite?. But in [9] this is enforced through the
definition of vacuum states |0) and |0} , obeying

q10), = 0;
bal0), = 0; (7.8)
q(0[0), =

But this involves finding the solution to Dirac’s physical state condition
given by (7.8), which is exactly what BRST was trying to avoid. (A similar
construction is found in [8].) This, in our opinion, defeats the purpose of
BRST as a quantization procedure.

Let’s however finish the argument. After having found the vacua defined
in (7.8), construct states of the form

(Al =4(0[A (), [|B)=B(g)

0) (7.9)

P

From the requirement that (A| B) should be finite follows that |B) cannot
be an eigenstate of p,, for else

(Al B) = 4(0]A(p)|B)
= const X 4(0[ B (¢)[0), = 0.

Let’s also assume that A (p) and B (¢) may be given in terms of power series,
AP =) _A"(H)", B@ =Y Ba(d"
n=0 n=0

Now consider general states with ghost number —m/2+ k&, where the matter

3To see what happens without this condition, suppose we impose another condition
Pay |Al>a1...ak =0. (77)

This can be interpreted as the BRST condition on the matter state |M)

implies

, which

ay...ap_1

phys, — = 4+ k — 1>

phys,—@+k> =n" 5
:Q|>7

2

since
n® =i[Qq"].

So after imposing the condition (7.7), the original BRST invariant physical state turns
into a null state.

On the other hand, (7.7) implies that the state [M), ~, must contain the state |0)
satisfying pa, |0)p = 0. But this makes the inner product infinite, since (0| 0)p = oc.

This is contradictory to the previous statement that |]\l)a1mak is a null state.
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parts are constructed from states of the form (7.9),

o, N, -2 + k>
N NN m
M > e W) |10, -5+ k),
AMt+Ae+ . FA=N—-k b=1
where |M*>a1...ak is a matter state independent of the unphysical ¢%, p,, and

N is the eigenvalue of the so-called BRST scaling operator fJ, defined by
L=igpa+i€, =i Q0] .
Suppose the state ‘w, N, -3+ k> is BRST invariant,
o, N, -Z 4 k) =

Then using

/ N,—%+k> :NW,N,—%+I€>

we get

‘¢,N,-%+k>:ﬂ( @t

N, -5 —|—k>)

So all BRST invariant states are BRST exact, unless N = 0. This leads to
the conclusion that the physical states are given by

_§>

m *
‘phys, —5> = |M~)

7.5 The Non-Abelian Case

We will now look at the case where the structure constants C; are nonzero,
and try to follow the treatment given in the previous section.
Consider once again a state of the form

m aj...ag
~Tak)
5 +

, m
"‘/}7 _E + k> = |M>a1...ak

Since the BRST operator is now given by

Y sa i c
Q:GaU 2 ab777765‘|‘ Cabnv
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BRST invariance implies

. k+1
¢ b —
(G[al + C[cub) | >a2...ak+1] - 5 Zc[ajal |M>a2...aj_1baj+1...ak+1] - O

=2

Just as in the simple case described before, these are again ( ™ ] equations

ir1)
on (’:) matter states, but this time the structure constants make the analysis
much more difficult.

Once again, let’s first consider simpler cases. Suppose the states are of

the form (7.3),

m
‘¢7 _E + k> = |M>a1...ak

m aj...ap
I
5 +

with only one matter state, say |M),, ,, different from zero. Then the
BRST condition implies

(éa+%cab"— an,,) Yo x =0, a#1,... k (7.10)
=0, c=1,...k a,b#1,...k (7.11)

On the dual state of the form (7.5), with gy (M| nonzero, the BRST
condition results in

. k
o 2 .
k+1..m (M| (Ga + §Cabb -t b§—1 Cabb) =0, a=1,...k (7.12)

Cpi=0, c#1,...k;a,b=1,...k. (7.13)

So we see that in the general case the structure constants must obey con-
sistency conditions, namely (7.11) and (7.13). Because of this, not all ghost
states are formally allowed. The states at minimum and maximum ghost
number, however, trivially obey (7.11) and (7.13) and are therefore always
allowed.

In the previous section, it was shown to be necessary to demand finite
inner products in the original state space. Since the case at hand is more
general, this has to be demanded now as well. It may however (depending
on the particular model at hand) be necessary to impose further restrictions.

At a formal level, it is however possible to say something about the
resulting BRST cohomology. In the previous section it was shown that in
that simple case, all BRST invariant states not of the form |M)|G) were
BRST exact. Now, in the classical theory there always exists a canonical
transformation which puts the BRST operator into the form ' = G,n* [8].
Therefore in the quantum theory one would expect the existence of a unitary
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operator U satisfying Q' = U'QU. The states in the two representations
would then be related according to |phys) = Ut [phys)’. Then we could just
follow the treatment in the previous section. However, to explicitly specify
U is not doable, so all this remains a formal point.



Conclusion

As should now be clear, a mathematically rigorous treatment of classical
BRST theory is not only possible, it also addresses certain conceptual prob-
lems (such as the origin of the ghosts and ghost momenta). BRST quanti-
zation however is a totally different matter. While claiming to solve certain
problems arising in for example Dirac’s method, it turns out that at some
point the BRST formalism still requires the solution to Dirac’s physical state
condition. This in our view defeats the purpose of BRST quantization.
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Appendix A

Lie Groups and Lie Algebras

In this appendix we have collected some useful definitions from the theory
of Lie groups and Lie algebras [1].

Definition 12 A Lie group is a finite-dimensional smooth manifold G that
is also a group and for which the group operations of multiplication, GXG —
G : (g,h) = gh, and inversion, ' : G — G : g — g~ are smooth. The
identity is denoted by e.

Let for every g € G left translation by g be defined by the map L, : G —
G : h — gh. A vector field X on G is said to be left invariant if, for every
gea,

(Lg), X = X.

Let X1, (G) be the set of left invariant vector fields on G. It can be shown
that Xz, (G) and T.G are isomorphic as vector spaces. Let £ € T.G. Then
Xe(g) = TeLg€ is a left invariant vector field. A Lie bracket in T.G is
defined by

[€,¢] = [Xe, Xl (e)

for &, ( € T.G. The vector space T.G with this Lie algebra structure is called
the Lie algebra of G and is denoted by g. For every £ € T.G, ¢, : R — G :
t — expt{ denotes the integral curve of X¢ passing through e at ¢ = 0.

Let Ry : G = G : h — hg, called right translation by g. Then we can
define the map I, : G — G : h — ghg™ as I, = R, L,. Associated with it
is the so called adjoint mapping Ad, defined by

Ady =Ty =T.(R;~1Ly) : T.G — T.G.

Definition 13 An action of a Lie group G on a manifold M is a smooth
mapping ® : G X M — M such that:
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1. For allm € M, ® (e, m) = m;
2. For every g,h € G, ®(g,® (h,m)) = ® (gh, m) Ym € M.
Suppose ® : G x M — M is a smooth action. If £ € T.G, then ®¢ :

Rx M — M : (t,m) = ® (expt&, m) is an R-action on M, that is, ® is a
flow on M. The corresponding vector field on M given by

X¢(m) = %{) (expt&, m)

t=0

is called the infinitesimal generator of the action corresponding to &.



Appendix B

Super-Poisson Algebras

From [11] we have collected some definitions regarding superalgebras and
super-Poisson algebras.
An associative superalgebra A is a Zj-graded vector space,

A:AO@AM

together with a multiplication A X A — A, which is Zy-graded, i.e.

Agx Ay — Ap;
AL x Ay — A
Al X Ay — Ag;
Agx Ay — Ay,

which is associative. A is called supercommutative if | for 7,7 = 0,1,
a,'b]‘ = (—1)“ b]‘a,', a; € A, b]‘ € Aj.

A superderivation is a map from A to itself which can be either even or odd.
An even derivation is a map d : Ag — Ag and d : Ay — A and obeys the
usual Leibniz rule

d (ab) = (da)b+ a (db) .
An odd derivation is a map d : Ag — Ay and d: Ay — Ag such that
d (a;b) = (da;)) b+ (=) a; (db), a; € A;, b€ A.

A superalgebra L is called a Lie superalgebra if the multiplication (called
the Lie bracket and denoted by [,]) is superanticommutative:

i, 1] = — (=) [1;, 1],
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and left multiplication is a superderivation, i.e.

[0, 115, 1) = [ 1 0] + (=) [0, [, W]

A Poisson algebra P is an algebra which is both a commutative algebra
and a Lie algebra, so there are two multiplications defined on it:

1. An associative commutative multiplication P X P — P.

2. A Lie bracket multiplication P X P — P, called a Poisson bracket, and
denoted by { , }.

The Poisson bracket is a derivation for the multiplication:
{a,bc} ={a,b}c+ {a,c}b.

A super-Poisson algebra is a Poisson algebra for which both the ordinary
multiplication and the Poisson bracket are now supercommutative. So it is
a superalgebra with:

1. An associative supercommutative multiplication B; X B; — B;1; mod2-
2. A Lie bracket multiplication B; X B; = B;4;j mod2-

The Lie bracket multiplication is still called a Poisson bracket, denoted
by {, }. Furthermore, the Poisson bracket is a superderivation for the
multiplication, i.e.

{bi,bibi} = {bi, b;} b + (=) b {b;, by} .



Appendix C

Grassmann Variables

Following the treatment in [10] and [7], this appendix deals with the princi-
ples and applications of anticommuting variables. Anticommuting variables,
like the n’s and &’s appearing in the classical BRST formalism, are usually
called Grassmann variables. They satisfy the basic anticommutation rela-
tions

067 1 679° = 0.

So for any 1,

(6')* = o.
The algebra generated by these symbols contains all expressions of the form
FO) =fo+ D FO+D fi007+ > finb'676F+....  (C.1)
i <7 <j<k

This allows the definition of an associative product

f(@g@) = fogo+ Z (fogi + figo) 6

1 . .
‘|’§Z (fij90+ fig; — fi9: + fogi;) 067 + - - .
Z-hj
A left derivative 8/06" is defined as follows. It gives zero on a product

of #’s which does not contain @°. If the product does contain the 67, it is
moved to the left and then dropped, i.e.

S (06) = () = 0.

The left derivative obeys

o 0 o 0
00" 007 987 90
o . .9
90— = 5.
o6 + o6 /
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Now, in the BRST quantization, the following anticommutation relations
for the ghost and ghost momenta emerge:

('] = €, &5] = 0;

Under the identification
ni — Hi;
5]
L —,
& Y

we can represent the ghost algebra as a Hilbert space of “functions” f (8),
with the inner product

N
k=1

i1y

where the bar denotes complex conjugation.
Integration over anticommuting variables (called Berezin integration) is

defined by
0
[are = 5

/d01d02f(01,02) _ 00

oot ogd 017,

and so on. This yields for the scalar product defined by equation (C.2)
N . .
(g] f) = /dHNdOH...d01d01 exp (—29’01) g £,
i=1

which can be verified by expanding the exponential and using the definition
of Berezin integration.
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