
SUPERGEOMETRY

1. Supercalculus

We begin by considering the analog of domains in Rp. A superdomain U of
dimension p|q is a pair a domain U ⊂ Rp and the algebra of functions on it

C∞(U) = C∞(U)⊗R Λ∗R(ξ1, . . . , ξq)

Notice that functions on U are not determined by their values at points in U . The
central object in this defintion is not the domain U but the ring of functions on
it (this is of course a very useful viewpoint). Each element F in C∞(U) can be
decomposed as

F =
∑

α

fα(u)ξα

with fα smooth functions on U . C∞(U) sits inside C∞(U) as the ’constants’ with
respect to the grassmann variables.

For each point x ∈ U , there is an evaluation map evx : C∞(U)→ R. evx(f⊗1) =
f(x) and evx(1⊗ ξ) = 0. The kernel of the evaluation map at x gives the maximal
ideal mx. This is no longer just the ideal of functions vanishing at x. It is the ideal
generated by the functions vanishing at x and the grassmann variables.

For two superdomains U ,V, a morphism φ : U → V is a pair (φ0, φ∗) where
φ0 : U → V is a smooth map and a R-superalgebra homomorphism φ∗ : C∞(V)→
C∞(U) with the compatiblity condition that φ∗(mφ0(x)) ⊂ mx. Notice that this
is equivalent to evφ0(x)(f) = evx(φ∗f). Those in the know will recognize this as a
morphism of locally ringed spaces.

The main computational tool in differential geometry is the notion of coordinates.
To specify a mapping between domains in Euclidean spaces one only needs to
determine the map in coordinates. Fortunately for us, we have not strayed too
far from ordinary differential geometry and this result continues to hold. For a
superdomain U , we have a natural choice for coordinates, namely the set (ui, ξi)
where (ui) are the coordinates on Rp.

Lemma
(1) A morphism φ : V → U is uniquely determined by the image of the coordi-

nate functions (ui, ξi) of U
(2) Take any p even functions (v1, . . . , vp) and q odd functions (θ1, . . . , θq) in

C∞(V) so that (evx(v1), . . . , evx(vp)) ∈ U for every x ∈ V . Then there
exists a morphism φ : V → U with φ∗ui = vi and φ∗ξi = θi.

The key point in the proof of part one is that a morphism that vanishes on the
coordinate functions, also vanishes on all polynomials. The image of any function
must then lie in

⋂
x(mx)q+1 = {0}. For the second part, we generalize the ordi-

nary definition of the pullback of a function in coordinates. We restrict ourselves
to the case 1|q for ease of exposition. Ordinarily, the pullback of a functions of
one real variable F (y) under a map φ is given by φ∗F (x) = F (φ(x)). To extend
this definition, we must determine how to ’evaluate’ F on terms that have a even
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combinations of grassmann variables. First we decompose φ∗x = y into the piece
yred lying in C∞(V ) and a nilpotent piece ynil. We define

φ∗F (yred + ynil) =
∑

r

1
r!

∂rF (yred)yr
nil

This enables one to pull back Taylor grassmann series and then one checks that this
gives a homomorphism. Extension to larger even dimensions is straightforward.

When we have an isomorphism of superdomains φ : V → U we will also label as
coordinates the image of the standard coordinates on U . The above lemma holds
with definition since we can simply reduce to the above case.

The basic object of calculus is the tangent space TU to the superdomain U .
We will view locally free sheaves as the central notion for vector bundles over
supermanifolds. Consequently, we declare that the tangent space to U is the C∞(U)-
module of derivation of the algebra C∞(U). Just as in the usual calculus setting,
we have coordinate vector fields.

∂

∂ui
fα(u)ξα =

∂fα

∂ui
ξα

∂

∂ξi
fα(u)ξα = αi(−1)α̃1+···+ ˜αi−1fα(ξ1)α1 · · · (ξi−1)αi−1(ξi)αi−1(ξi+1)αi+1 · · · (ξq)αq

The parity of the coordinate vector is determined by the parity of the coordinate
function.
Lemma TU is a free C∞(U)-module with basis ( ∂

∂ui ,
∂

∂ξi .
Derivations outside of the span of ( ∂

∂ui ,
∂

∂ξi must annihilate all polynomials; so
the result follows as in part one of the previous result.

The next object one tackles after the tangent space is its dual, the cotangent
space. The cotangent space of a superdomain is free C∞(U)-module given by

Ω1(U) = Hom(TU , C∞(U))

It has the standard dual basis (dui, dξi) with dui even and dξi odd. From here we
move to the exterior algebra of U . We have a canonical even derivation d : C∞(U)→
Ω1(U) given by df(X) = Xf . The exterior algebra of a manifold is commutative
as a superalgebra if we declare all one-forms to be odd. Thanks to our definition of
the exterior algebra of a super vector space, in Λ∗(Ω1(U)) = Ω∗((U) the parity of
the (dui, dξi) are reversed. Consequently, d extends to an odd derivation of Λ∗((U)
with d2 = 0.

Lemma The complex (Ω∗(U), d) is a resolution of R.
This follows from the usual Poincare lemma and an examination of this complex

for R0|1, see [2].
For a morphism φ : U → V, and coordinates (yi) on V and (xi) on U the Jacobian

of φ is defined as in a familiar manner

(Jxy)ij
∂

∂xi
φ∗yj

The standard statement of the implicit function theorem holds with this definition;
from this, the multitude of corollaries follow, e.g. the inverse function theorem, the
rank theorem, etc. See [4].

Another result whose validity extends into the superrealm is the Frobenius the-
orem. See [2]. This allows us to define flows of nonvanishing vector fields.
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The Lie derivative for functions and vector fields is defined in the same way as
in the ordinary case. It extends to sections of the tensor products of powers of the
tangent and cotangent bundles as a derivation that respects the usual contractions.

This covers the majority of differential calculus. The next object of interest is
integral calculus on supermanifolds, or more precisely, just integration. So what
do we integrate? The answer is sections of the Berezinian of the cotangent bundle,
B(Ω1(U). In the superrealm, there is usually no top power exterior power of a
free module, hence no top degree differential forms. What we need for integration
is a proper transformation law under change of coordinates. Sections of B(Ω1(U)
have this property. Given coordinates (ui, ξi) on U we get a section [du1 . . . dξq] of
B(Ω1(U). For F =

∑
α fα(u)ξα we set

∫

U
F [du1 . . . dξq] = (−1)nm

∫

U
f1,...,1du1 ∧ · · · ∧ dup

Of course, this only makes sense for compactly supported sections. We leave it as an
exercise to check that the integral is invariant under oriented change of coordinates,
see [4].

Example On R0|1 we have
∫

R0|1 ξdξ = 1 whereas
∫

R0|1 dξ = 0.
One often views integration against the grasmmann components as being akin to

differentiation since only the term with all nonzero constant grassmann variables.

2. Supermanifolds

This section is quite short because after the definition, most everything is a
straightforward globalization of the local notions defined (and presented in an in-
variant manner) above. So first the definition.

A supermanifold of dimension p|q is a pair (M,OM ) with M a smooth manifold
and a supercommutative sheaf of rings OM so that (M,OM is locally isomorphic (as
a locally ringed manifold) to a superdomain U of Rp|q. Morphisms of supermanifolds
are morphisms as locally ringed manifolds. Some examples are below.

Example

(1) Superdomains are supermanifolds.
(2) Manifolds are supermanifolds. The sheaf is simply the sheaf of smooth

functions with even parity. Also, if (M,OM ) (or justM) is a supermanifold,
there is a natural quotient OM → OM/N where N is the ideal sheaf of
nilpotents. This induces a morphism of supermanifolds M ↪→ M which
embeds the underlying manifold M into the supermanifold M.

(3) A super Lie group is a supermanifold G with multiplication m : G ×G → G
and inversion i : G → G morphisms and an identity element e : R0|0 → G
so that they satisfy the usual relations.

(4) An oft useful way of viewing supermanifolds is by the collection of morphism
sets into M. More precisely, instead of focusing on the space itself we look
at the set of morphisms Hom(B,M) for each supermanifold B. A super Lie
group then can be defined as a functorial assignment of group structures to
the sets Hom(B,G).
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