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Abstract

There are many double complexes in the mathematics and physics
literature which are related to BRST transformations and anomalies,
e.g. Variational-, BRST-, Faddeev-, Koszul-Tate-, Weil-, Gelfand-
Fuks-, semi infinite-, Cech-DeRham-, foliation-, Lie group/algebra-
bicomplex. The goal is to identify them and to establish relations
between them; to compute their cohomologies and the corresponding
anomalies. Here we list and identify only few of them and refer to [11]
for more details.
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1 Variational bicomplex

Of all the bicomplexes mentioned above, the variational bicomplex is the
“smallest” in the following sense. Let m : P — M™ be a fiber bundle and
consider the jet bundle J*°(r). Its exterior forms are bigraded by horizontal
(r) and vertical (s) degrees

QP(J=(m) = D Q™ (I=(n)), d = dg+dy : Q" — QFlsgQrst,

r+s=p

Horizontal and vertical derivatives satisfy Poincare lemmas and d%, = 0,
d%/ = 0, dgdy = —dydpy, hence d*> = 0. With F* = {w S Qn’su(w) = w}
(functional forms), I the Euler operator we have the augmentad variational
bicomplex [1]:
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The local cohomologies HP(m) = ker d /im d can be computed explicitly
using spectral sequences [1]. These are local cohomologies because for any
w e Q*(J>®(m)) we have w(j, X1, -+, Xs) € Q"(M), for any jet j € J>(n)
and vector fields X; on J* (7).

2 BRST bicomplex

The BRST bicomplex described in [2],[9],[10] is related to the variational
bicomplex as follows: Let m : P — M be a principal G—bundle and 7 :
QOP(P, LieG) — M Lie algebra valued equivariant p-forms. Let G denote the

Lie group of gauge transformations and LieG its Lie algebra. Set Clf =



A9(LieG, Q0 (J®(n?)) (local q - cochains) and define djo. : CL? — CLIMP to
be the Chevalley-Eilenberg coboundary operator with respect to a represen-

tation p:
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where p’ is the derived representation of LieG on Q(P, LieGG) induced by a
representation p of G . We have 67, = 0. Then we define the BRST operator
s: CIP — CIP a5
(—1)p+!
q+1

It is clear that s is nilpotent, s> = 0 . We call the associated local cohomol-
ogy of this bicomplex {C{* s} the BRST cohomology of the gauge algebra
LieG, denoted by Hjper(LieG) . In [9],[10] we derived the classical BRST
transformations using the Chevalley-Eilenberg constriction for the adjoint

representation:

loc -

1
sA=dn+[An], sn:—§[?7ﬂ7], sn=", sb=0,

where the vector potential A € Cyt and the ghost field € C;;2 is the Maurer
Cartan form on G. We derive a homotopy formula on this bicomplex and with

the introduction of Chern-Simons type forms wi*, = a;p(A, [4, A1, F4™)

we obtain the associated descent equations dwj, | = —dwy, 5 , Odwy, 5 =
—dwgq_3 L. ., 0wt = 0. We identify the non-Abelian anomaly,

which automatically satisfies the Wess-Zumino consistency condition, as a

cohomology class in Hy, (LieG) represented by wj, , in n = 2¢—2 dimensions.

For example, for ¢ = 2,q = 3 we get the 2- and 4-dimensional non-
Abelian anomaly respectively, represented by wy = Tr(nd.A) , and w; =
Tr(n01oc(Adjc A + %A?’)) resp., where A = A+ .



3 Faddeev’s bicomplex

Let w : (P,G) — M be a principal bundle and consider G = {f : S? —
G|oo — 1}, the space of p-loops. We have the exterior derivative d : Q7(P x
GP) — QIT(P x GP) and the simplicial group coboundary operator A :
QIP(P x GP) — QI7P(P x GP™) induced by A; : P x GP™' — P x GP :
(T, 91575 Gpa1) = (T, 91,0+, GiGin1, 5 Gp1)-

For example for S? the Chern-Simon form is w{ = Tp(A) , where dT'p(A) =
p(F) = Trace F? (p=invar. polynomial, T= transgression). We get the stair
case equations [12]:

q=3 | Tr F?
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w3 represents the anomaly.

4  Koszul-Tate complex

Let M be a Poisson manifold with a Hamiltonian G action. Extend the
momentum map J : LieG — C*°(M) to a super derivative ¢ and extend the
Lie algebra d, d : ALieG ® C*(M) — Lie*G ® (ALieG @ C*>°(M)) defined
by dk(€) = € -k , (- = repres. of LieG on ALieG ® C*°(M)) to d such that

we have



APLie*G ® ANLieG ® C*(M) -2 APLie*G ® A7 LieG @ C*(M)
|
AP Lie*G @ N1 LieG @ C(M)

§ and d being defined by

S(wRERL) = wRIRJ(E), H(WwRIRf) = w0, d(wRk) = dwRk+(—1)P Adk.

We have 6° = 0, d? = 0 and dd = éd. The total differential defines the BRST
operator D = d + (—1)P26 : C* — CF*1, satisfying nilpotency D? = 0, where
Ck =3, =k APLie*G ® N1LieG @ C>(M).
The functions on the reduced phace space are given by the cohomology
3]
C>®(JY0)/G) = Hp(ALie*G ® ALieG @ C*°(M)) .

which equals the space Eg Y of the associated spectral sequence.

5 Weil complex

Let A(Lie*G) be the exterior algebra and S(Lie*G) the symmetric algebra
of LieG, the Lie algebra of infinitesimal gauge transformations. The Weil

algebra W (LieG) = A(Lie*G) ® S(Lie*G) is a graded differential G algebra
W(LieG) =Y W™, W'=Y AP(Lie*G) ® S9(Lie*G).

pt+2q=r
Let {e,} be a basis of LieG and {6} its dual basis of Lie*G, and let {u®}
be a basis of S(Lie*G) . The antiderivation dy of degree 1 on W(LieG)
is given by oy = dp + 0s + h , where 6, : WP — WPH is given by: for
¢ € AP(LieG), x; € LieG

(5A¢)(m0’ - 7%) - Z(—l)wab([xm%],ﬂ?o» e By, ,@W - wp))

v<p

or 0p = %Za w(0%)La(eq) , where Ly is the Lie derivative and u(a)b = a Ab.
We have 63 = 0 . Moreover dg = >, p1(0%)Ls(eq) : WP — WPHL Note that
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62 # 0 but (6p + 0g)> = 0, so 6% = —(6ads + ds0x). The operator h :
WP — WPt is defined by h = 3, pus(6%) @i4(eq) and is an antiderivative of
degree 1 (i4 = interior product). The BRST operator is the total differential
dw = 0a + 05 + h . The associated anomalies in H*(LieG) can be computed
explicitly [7].
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