A FEW BRST BICOMPLEXES

Rudolf Schmid^{*} Department of Mathematics Emory University Atlanta, Georgia 30322

Abstract

There are many double complexes in the mathematics and physics literature which are related to BRST transformations and anomalies, e.g. Variational-, BRST-, Faddeev-, Koszul-Tate-, Weil-, Gelfand-Fuks-, semi infinite-, Cech-DeRham-, foliation-, Lie group/algebrabicomplex. The goal is to identify them and to establish relations between them; to compute their cohomologies and the corresponding anomalies. Here we list and identify only few of them and refer to [11] for more details.

Lecture given at 21st International Conference on Differential Geometry Methods in Theoretical Physics, June 5-9, 1992, Nankai Institute of Mathematics, Tianjing, P.R. China.

^{*}Supported in part by Emory University Research Grant # 2-31220

1 Variational bicomplex

Of all the bicomplexes mentioned above, the variational bicomplex is the "smallest" in the following sense. Let $\pi : P \to M^n$ be a fiber bundle and consider the jet bundle $J^{\infty}(\pi)$. Its exterior forms are bigraded by horizontal (r) and vertical (s) degrees

$$\Omega^p(J^{\infty}(\pi)) = \bigoplus_{r+s=p} \Omega^{r,s}(J^{\infty}(\pi)), \qquad d = d_H + d_V : \Omega^{r,s} \to \Omega^{r+1,s} \oplus \Omega^{r,s+1}.$$

Horizontal and vertical derivatives satisfy Poincare lemmas and $d_H^2 = 0$, $d_V^2 = 0$, $d_H d_V = -d_V d_H$, hence $d^2 = 0$. With $\mathcal{F}^s = \{\omega \in \Omega^{n,s} | I(\omega) = \omega\}$ (functional forms), I the Euler operator we have the augmentad variational bicomplex [1]:

The *local* cohomologies $H^p(\pi) = \ker d / im d$ can be computed explicitly using spectral sequences [1]. These are *local* cohomologies because for any $\omega \in \Omega^{r,s}(J^{\infty}(\pi))$ we have $\omega(j, X_1, \dots, X_s) \in \Omega^r(M)$, for any jet $j \in J^{\infty}(\pi)$ and vector fields X_i on $J^{\infty}(\pi)$.

2 BRST bicomplex

The BRST bicomplex described in [2],[9],[10] is related to the variational bicomplex as follows: Let $\pi : P \to M$ be a principal G-bundle and $\pi^p : \Omega^p(P, LieG) \to M$ Lie algebra valued equivariant p-forms. Let \mathcal{G} denote the Lie group of gauge transformations and $Lie\mathcal{G}$ its Lie algebra. Set $\mathbf{C}_{loc}^{q,p} =$

 $\Lambda^q(Lie\mathcal{G}, \Omega^{p,0}(J^{\infty}(\pi^p)))$ (local q - cochains) and define $\delta_{loc} : \mathbf{C}_{loc}^{q,p} \to \mathbf{C}_{loc}^{q+1,p}$ to be the Chevalley-Eilenberg coboundary operator with respect to a representation ρ :

$$(\delta_{loc}\phi)(\xi_0,\cdots,\xi_q) = \sum_{i=0}^q (-1)^i \rho'(\xi_i) \phi(\xi_0,\cdots,\hat{\xi}_i,\cdots,\xi_q)$$

+
$$\sum_{i$$

where ρ' is the derived representation of $Lie\mathcal{G}$ on $\Omega(P, LieG)$ induced by a representation ρ of G. We have $\delta_{loc}^2 = 0$. Then we define the BRST operator $\mathbf{s}: \mathbf{C}_{loc}^{q,p} \to \mathbf{C}_{loc}^{q+1,p}$ as

$$\mathbf{s} \equiv \frac{(-1)^{p+1}}{q+1} \delta_{loc} \; .$$

It is clear that **s** is nilpotent, $\mathbf{s}^2 = 0$. We call the associated *local* cohomology of this bicomplex $\{\mathbf{C}_{loc}^{q,p}, \mathbf{s}\}$ the *BRST cohomology* of the gauge algebra $Lie\mathcal{G}$, denoted by $H_{BRST}^*(Lie\mathcal{G})$. In [9],[10] we derived the classical BRST transformations using the Chevalley-Eilenberg constriction for the *adjoint* representation:

$$sA = d\eta + [A, \eta]$$
, $s\eta = -\frac{1}{2}[\eta, \eta]$, $s\bar{\eta} = b$, $sb = 0$,

where the vector potential $A \in \mathbf{C}_{loc}^{0,1}$ and the ghost field $\eta \in \mathbf{C}_{loc}^{1,0}$ is the Maurer Cartan form on \mathcal{G} . We derive a homotopy formula on this bicomplex and with the introduction of Chern-Simons type forms $\omega_{2q-i}^{i-1} = a_i p(A, [A, A]^{i-1}, F_A^{q-1})$ we obtain the associated descent equations $\delta \omega_{2q-1}^0 = -d\omega_{2q-2}^1$, $\delta \omega_{2q-2}^1 = -d\omega_{2q-3}^2$, . . . , $\delta \omega_0^{2q-1} = 0$. We identify the non-Abelian anomaly, which automatically satisfies the Wess-Zumino consistency condition, as a cohomology class in $H^1_{loc}(Lie\mathcal{G})$ represented by ω_{2q-2}^1 in n = 2q-2 dimensions.

For example, for q = 2, q = 3 we get the 2- and 4-dimensional non-Abelian anomaly respectively, represented by $\omega_2^1 = Tr(\eta \delta_{loc} \tilde{A})$, and $\omega_4^1 = Tr(\eta \delta_{loc} (\tilde{A} \delta_{loc} \tilde{A} + \frac{2}{3} \tilde{A}^3))$ resp., where $\tilde{A} = A + \eta$.

3 Faddeev's bicomplex

Let $\pi : (P,G) \to M$ be a principal bundle and consider $G^p = \{f : S^p \to G | \infty \to 1\}$, the space of *p*-loops. We have the exterior derivative $d : \Omega^q (P \times G^p) \to \Omega^{q+1}(P \times G^p)$ and the simplicial group coboundary operator $\Delta : \Omega^{q-p}(P \times G^p) \to \Omega^{q-p}(P \times G^{p+1})$ induced by $\Delta_i : P \times G^{p+1} \to P \times G^p : (x, g_1, \cdots, g_{p+1}) \mapsto (x, g_1, \cdots, g_i g_{i+1}, \cdots, g_{p+1}).$

 $(x, g_1, \dots, g_{p+1}) \mapsto (x, g_1, \dots, g_i g_{i+1}, \dots, g_{p+1}).$ For example for S^3 the Chern-Simon form is $\omega_5^0 = Tp(A)$, where $dTp(A) = p(F) = Trace \ F^3$ (p=invar. polynomial, T = transgression). We get the stair case equations [12]:

 ω_3^2 represents the anomaly.

4 Koszul-Tate complex

Let M be a Poisson manifold with a Hamiltonian G action. Extend the momentum map $J : LieG \to C^{\infty}(M)$ to a super derivative δ and extend the Lie algebra $d, d : \Lambda LieG \otimes C^{\infty}(M) \to Lie^*G \otimes (\Lambda LieG \otimes C^{\infty}(M))$ defined by $dk(\xi) = \xi \cdot k$, (\cdot = repres. of LieG on $\Lambda LieG \otimes C^{\infty}(M)$) to \tilde{d} such that we have

$$\begin{array}{ccc} \Lambda^p Lie^*G \otimes \Lambda^q LieG \otimes C^{\infty}(M) & \stackrel{\delta}{\longrightarrow} & \Lambda^p Lie^*G \otimes \Lambda^{q-1} LieG \otimes C^{\infty}(M) \\ & \tilde{d} \\ & & \\ \Lambda^{p+1} Lie^*G \otimes \Lambda^q LieG \otimes C^{\infty}(M) \end{array}$$

 δ and d being defined by

$$\delta(\omega \otimes \xi \otimes 1) = \omega \otimes 1 \otimes J(\xi) , \ \delta(\omega \otimes 1 \otimes f) = \omega \otimes 0 , \ \tilde{d}(\omega \otimes k) = d\omega \otimes k + (-1)^p \wedge dk.$$

We have $\delta^2 = 0$, $\tilde{d}^2 = 0$ and $\tilde{d}\delta = \delta \tilde{d}$. The total differential defines the BRST operator $D = \tilde{d} + (-1)^p 2\delta : \mathcal{C}^k \to \mathcal{C}^{k+1}$, satisfying nilpotency $D^2 = 0$, where $\mathcal{C}^k = \sum_{p-q=k} \Lambda^p Lie^* G \otimes \Lambda^q Lie G \otimes C^{\infty}(M)$.

The functions on the reduced phace space are given by the cohomology [8]

$$C^{\infty}(J^{-1}(0)/G) = H_D(\Lambda Lie^*G \otimes \Lambda LieG \otimes C^{\infty}(M))$$
.

which equals the space $E_2^{0,0}$ of the associated spectral sequence.

5 Weil complex

Let $\Lambda(Lie^*\mathcal{G})$ be the exterior algebra and $\mathbf{S}(Lie^*\mathcal{G})$ the symmetric algebra of $Lie\mathcal{G}$, the Lie algebra of infinitesimal gauge transformations. The Weil algebra $W(Lie\mathcal{G}) \equiv \Lambda(Lie^*\mathcal{G}) \otimes \mathbf{S}(Lie^*\mathcal{G})$ is a graded differential \mathcal{G} algebra

$$W(Lie\mathcal{G}) = \sum_{r} W^{r}$$
, $W^{r} = \sum_{p+2q=r} \Lambda^{p}(Lie^{*}\mathcal{G}) \otimes S^{q}(Lie^{*}\mathcal{G}).$

Let $\{e_{\alpha}\}$ be a basis of $Lie\mathcal{G}$ and $\{\theta^{\alpha}\}$ its dual basis of $Lie^{*}\mathcal{G}$, and let $\{u^{\alpha}\}$ be a basis of $\mathbf{S}(Lie^{*}\mathcal{G})$. The antiderivation δ_{W} of degree 1 on $W(Lie\mathcal{G})$ is given by $\delta_{W} = \delta_{\Lambda} + \delta_{S} + h$, where $\delta_{\Lambda} : W^{p} \to W^{p+1}$ is given by: for $\phi \in \Lambda^{p}(Lie\mathcal{G}), x_{i} \in Lie\mathcal{G}$

$$(\delta_{\Lambda}\phi)(x_0,\dots,x_p) = \sum_{\nu < \mu} (-1)^{\nu+\mu} \phi([x_{\nu},x_{\mu}],x_0,\dots,\hat{x}_{\nu},\dots,\hat{x}_{\mu},\dots,x_p),$$

or $\delta_{\Lambda} = \frac{1}{2} \sum_{\alpha} \mu(\theta^{\alpha}) L_{\Lambda}(e_{\alpha})$, where L_{Λ} is the Lie derivative and $\mu(a)b \equiv a \wedge b$. We have $\delta_{\Lambda}^2 = 0$. Moreover $\delta_S = \sum_{\alpha} \mu(\theta^{\alpha}) L_S(e_{\alpha}) : W^p \to W^{p+1}$. Note that $\delta_s^2 \neq 0$ but $(\delta_{\Lambda} + \delta_S)^2 = 0$, so $\delta_S^2 = -(\delta_{\Lambda}\delta_S + \delta_S\delta_{\Lambda})$. The operator h: $W^p \to W^{p+1}$ is defined by $h = \sum_{\alpha} \mu_S(\theta^{\alpha}) \otimes i_A(e_{\alpha})$ and is an antiderivative of degree 1 (i_A = interior product). The BRST operator is the total differential $\delta_W = \delta_{\Lambda} + \delta_S + h$. The associated anomalies in $H^1(Lie\mathcal{G})$ can be computed explicitly [7].

References

- [1] I.M. Anderson, *The Variational Bicomplex*, preprint, 1991.
- [2] L. Bonora, P. Cotta-Ramusino, Some Remarks on BRS Transformations, Anomalies and the Cohomology of the Lie Group of Gauge Transformations, Comm. Math. Phys. 87 (1983), 589-603.
- J.A. Dixon, Calculations of BRS Cohomology with Spectral Sequences, Comm. Math. Phys. 139 (1991),495-526.
- [4] M. Dubois-Violette, The Weil-B.R.S. Algebra of a Lie Algebra and the Anomalous Term in Gauge Theories, J. Geom. Phys. 3 (1986) 525-565.
- [5] J. Fisch, M. Henneaux, J. Stasheff, C. Teitelboim, Existence, Uniqueness and Cohomology of the Classical BRST Charge with Ghosts of Ghosts, Comm. Math. Phys. 120 (1989), 379-.
- [6] I.B. Frenkel, H. Garland, G.J. Zuckerman, Semi-Infinite Cohomology and String Theory, Proc. Natl. Acad. Sci. USA 83 (1987), 8442-8446.
- [7] J.F. Glazebrook, F.W. Kamber, Chiral Anomalies and Dirac Families in Riemannian Foliations, (1991) preprint.
- [8] B. Kostant, S. Sternberg, Symplectic Reduction, BRS Cohomology, and Infinite Dimensional Clifford Algebras, Ann. Phys. 176 (1987), 49-113.
- [9] R. Schmid, Local Cohomology in Gauge Theories BRST Transformations and Anomalies, Differential Geometry and its Applications, (1992) to appear.
- [10] R. Schmid, BRST Cohomology and Anomalies, Geometrical and Algebraic Aspects of Nonlinear Field Theory, 159-172, S. De Filippo et al (eds.), North - Holland, 1989.

- [11] R. Schmid, BRST Bicomplexes, preprint.
- [12] J. Stasheff, The De Rham Bar Construction as a Setting for the Zumino, Faddee'v, etc. Descent Equations, Proc. Symp. anomalies, Geometry, Topology, Argonne Natl. Lab. 1984. W.E. Bardeen, A. R. White (eds.), World Scientific, Singapore (1985), 220-233. [Related papers can be found in the same proceedings].