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Abstract
We introduce a geometric framework needed for a mathematical

understanding of the BRST symmetries and chiral anomalies in gauge
field theories. We define the BRST bicomplex in terms of local coho-
mology using differential forms on the infinite jet bundle and consider
variational aspects of the problem in this cohomological context. The
adjoint representation of the structure group induces a representation
of the infinite dimensional Lie algebra g of infinitesimal gauge trans-
formations on the space of local differential forms, with respect to
which the BRST bicomplex is defined using the Chevalley-Eilenberg
construction. The induced coboundary operator of the associated
cohomology H∗

loc(g) is the BRST operator s . With this we derive
the classical BRST transformations of the vector potential A and the
ghost field η as sA = dη + [A, η], and sη = −1/2[η, η] . Moreover the
ghost field η is identified with the canonical Maurer- Cartan form of
the infinite dimensional Lie group G of gauge transformations. We
give a homotopy formula on the BRST bicomplex and with the intro-
duction of Chern-Simon type forms we derive the associated descent
equations and show that the non-Abelian anomalies, which satisfy the
Wess-Zumino consistency condition, represent cohomology classes in
H1

loc(g) .
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1 Introduction

In recent years various cohomological ideas have been introduced in quan-
tum field theories and string theories to explain BRST transformations and
anomalies from a purely algebraic or differential geometric point of view [3],
[6], [8], [11], [12], [17]. It was first noticed by Becchi, Rouet and Stora [2] and
Tyutin [22] (unpublished) that in gauge field theories the effective action,
which is no longer gauge invariant, has a new global symmetry , now called
BRST symmetry. This BRST transformation s mixes the ghost fields with
the other fields and has proved to be a very important tool in the quanti-
zation of gauge theories. The classical BRST transformations of a vector
potential A and a ghost field η are given by [2],[13]:

sA = dη + [A, η] , sη = −1

2
[η, η] .

The main property of the BRST transformation is its nilpotency s2 = 0 which
is the key for unitarity of the S-matrix. Anomalies were first discovered by
Adler, Bardeen, Bell, Jackiw and Schwinger as quantum effects of conserva-
tion laws; e.g. in QED the Noether current associated to the chiral symmetry
is conserved at the classical level but is not conserved after quantizing the
theory. There are many different descriptions to find these anomalies, the
original one was by perturbation theory using Feynman diagrams. Later one
noticed that the Adler - Bardeen anomaly is related to the index of the Dirac
operator and that it has a topological interpretation; namely, the anomaly is
a reflection of the non vanishing of a certain cohomology of the gauge group.
A representation of the anomaly can be obtained by applying the BRST
operator s to the vacuum functional. If the difference of two anomalies is
the variation of a local functional then the two anomalies have to be consid-
ered as physically equivalent. The anomaly ω must satisfy certain properties
which follow from the structure relations of the gauge group, called the Wess
- Zumino consistency condition s(η · ω) = 0 . This and the nilpotency of the
BRST operator s2 = 0 lead to the consideration of local cohomologies of the
group of gauge transformations.

Our construction is more general than the more algebraic ones given by
Bonora and Cotta-Ramusino [5], Kastler and Stora [11], Dubois-Violette [6]
in the sense that in our local cohomology the functionals Φ(ξ1, · · · , ξq) need
not be polynomials in derivatives of the fields ξi but they can be differ-

1



ential or pseudodifferential operators. They are local in the physical sense
[13],[20],[24], i.e. they can be any functional of the ξis and of finitely many
derivatives of them, which is the way they occur in physical examples. This
notion of locality is defined in terms of infinite jet bundles. Moreover, the
more general definition of the BRST cohomology with respect to arbitrary
representations (not just the adjoint) of the gauge algebra allows new, dif-
ferent kinds of anomalies which might be of physical interest in the future.
These are currently under investigation.

2 Local Cohomology

Let π : B → M be a fixed smooth fiber bundle and let Γ∞(π) denote the
manifold of smooth sections of π . The spaces Jk(π) of k - jets , 0 ≤ k ≤ ∞
, of local sections of π are smooth manifolds and we have the canonical
projections πl

k : Jk(π) → J l(π) , 0 ≤ l ≤ k, and πk : Jk(π) → M , as well as
the k-jet extension maps jk : M ×Γ∞(π) → Jk(π); jk(x, s) = [x, s]k the k-jet
equivalence class of (x, s). Note that J0(π) = B and π0 = π .

There is a natural splitting of the tangent space TsJ∞(π) = Hs ⊕ Vs at
each s ∈ J∞(π) and hence of the space X(J∞(π)) of vector fields on J∞(π)
: X(J∞(π)) = H ⊕V as follows: H is the space of horizontal vector fields,
i.e. lifts of vector fields X̄ on M ; X̄ ∈ X(M) (→ X ∈ X(J∞(π)) defined by
X(f)(s) = X̄(f ◦ S)(π∞(s)) where f ∈ C∞(J∞(π)) , s ∈ J∞(π) and S is a
local section at π∞(s) . The subspace V is the space of vertical vector fields
on J∞(π) ; i.e. Y ∈ V if and only if Y (f ◦ π∞) = 0 for all f ∈ C∞(M) . It
should be remarked that such a canonical splitting of X(J∞(π)) = H ⊕ V
cannot be constructed for Jk(π) if k < ∞ .

We denote by Ωq
p(π) the vector space of those (q + p)-forms ω on J∞(π)

with ω(X1, · · · , Xq+p) = 0 if more than q of the vector fields Xi , 1 ≤ i ≤ q+p
, are vertical or more than p of them are horizontal. Elements of Ωq

p(π) are
called local forms on J∞(π) . If ω ∈ Ωq

p(π) then dω ∈ Ωq+1
p (π) ⊕ Ωq

p+1(π) ,
i.e. d : Ωq

p(π) → Ωq+1
p (π) ⊕ Ωq

p+1(π) and we can define the vertical exterior
derivative ∂ : Ωq

p(π) → Ωq+1
p (π) and the horizontal exterior derivative D :

Ωq
p(π) → Ωq

p+1(π) by d = ∂ + D . Then d2 = D2 = ∂2 = D∂ + ∂D = 0 .
This bicomplex of local forms is often called the variational bicomplex, (see
eg. Anderson [1], Saunders [16]).

There is another characterization of local forms, which justifies their
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names. Consider the de Rham complex Ω(M × Γ∞(π)) of smooth differ-
ential forms on M × Γ∞(π) with exterior derivative d . From the product
structure of M × Γ∞(π) the space Ω(M × Γ∞(π) inherits a bigradation and
we can write

Ω(M × Γ∞(π)) =
∐

p,q

Ωp,q(M × Γ∞(π)).

Corresponding to this bigradation the exterior derivative d on M × Γ∞(π)
breaks into two operators; D of type (1, 0) , D : Ωp,q(M × Γ∞(π)) →
Ωp+1,q(M×Γ∞(π)) , and ∂ of type (0, 1) , ∂ : Ωp,q(M×Γ∞(π)) → Ωp,q+1(M×
Γ∞(π)) . With these we have d = D + ∂ and d2 = D2 = ∂2 = D∂ + ∂D = 0 .

If A ∈ Ωp,0(M × Γ∞(π)) and s ∈ Γ∞(π) , define a p-form A(s) on M
by A(s)(x) = A(x, s) , x ∈ M . Then DA ∈ Ωp+1,0(M × Γ∞(π)) and we
have (DA)(s) = dM(A(s)) where dM is the exterior derivative on M . More
generally, if A ∈ Ωp,q(M × Γ∞(π)) , s ∈ Γ∞(π) and X1, · · · , Xq ∈ X(J∞(π))
we can define a p-form A(s, X1, · · · , Xq) on M by A(s, X1, · · · , Xq)(x) =
(iX1(s) · · · iXq(s)A)(x, s). Again DA ∈ Ωp+1,q(M × Γ∞(π)) is given by
(DA)(s, X1(s), · · · , Xq(s)) = dM(A(s, X1, · · · , Xq)) .

The bicomplex Ω(M × Γ∞(π)) has a canonical sub-bicomplex Ωloc(M ×
Γ∞(π)) defined as follows: The ∞ - jet extension map j∞ : M × Γ∞(π) →
J∞(π) induces a map of the de Rham complexes j∗∞ : Ω(J∞(π)) → Ω(M ×
Γ∞(π)) . The image j∗∞Ω(J∞(π)) in Ω(M × Γ∞(π)) is stable under both D
and ∂ , and hence is a sub-bicomplex which we denote by Ωloc(M × Γ∞(π))
. We write

Ωloc(M × Γ∞(π)) =
∐

p,q

Ωp,q
loc(M × Γ∞(π)).

The map j∗∞ induces an isomorphism of bicomplexes between local forms in
Ω(J∞(π)) and Ωloc(M × Γ∞(π)) , i.e. Ωq

p(π) ∼= Ωp,q
loc(M × Γ∞(π)) .

We call a form A on M×Γ∞(π) local if A lies in Ωloc(M×Γ∞(π)) . Thus if
A ∈ Ωp,q

loc(M×Γ∞(π)) , then for s ∈ Γ∞(π) and X1, · · · , Xq ∈ X(J∞(π)) the p-
form A(s, X1, · · · , Xq) on M depends on s, X1(s), · · · , Xq(s) in a local fashion,
that means A(s, X1, · · · , Xq)(x) depends only on finite jets (i.e. finitely many
derivatives) of s, X1(s), · · · , Xq(s) at x . In local coordinates of M , a local
form A can be written as follows:

A =
∑

i,j

Ai1···ip,j1···jqdxi1 ∧ · · · ∧ dxip ∧ ∂uj1 ∧ · · · ∧ ∂ujq
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where the coordinates Ai1,···,ip,j1,···,jq are local (0, 0)-forms, the dxis are local
(1, 0)-forms and the ujs are local (0, 1)-forms. This justifies the terminology
of local forms.

For the bicomplex of local forms Ωp,q
loc(M × Γ∞(π)) ∼= Ωq

p(π) we have
the following exactness theorems [20]: We write in short Ωp,q

loc for Ωp,q
loc(M ×

Γ∞(π)) ∼= Ωq
p(π) , and let n = dimM . One sets Ωp,q

loc = 0 whenever p >

n, p < 0 or q < 0 . For each Ωp,q
loc we denote by Ω̃p,q

loc its sheaf of germs of
sections.

Poincare Lemma: If α0 ∈ Ω̃m,0
loc , α1 ∈ Ω̃m−1,1

loc , · · ·, αm ∈ Ω̃0,m
loc , m ≥ 1

, and Dα0 = 0 , ∂α0 + Dα1 = 0, · · · , ∂αm−1 + Dαm = 0 and ∂αm = 0 ; then
there exist β0 ∈ Ω̃m−1,0

loc , β1 ∈ Ω̃m−2,1
loc , · · · , βm−1 ∈ Ω̃0,m−1

loc such that Dβ0 = α0

, ∂β0 + Dβ1 = α1, · · · , ∂βm−2 + Dβm−1 = αm−1 , and ∂βm−1 = αm .

D - Exactness Theorem: Let ω ∈ Ω̃p,q
loc , 0 < p < n = dimM ,

and Dω = 0 ∈ Ω̃p+1,q
loc . Then there exists an η ∈ Ω̃p−1,q

loc such that Dη = ω .
However D-closed (0, q)-forms need not be D-exact ; moreover, (n, q)- forms,
which are always D-closed , need not be D-exact. D : Ω0,q

loc → Ω1,q
loc is injective

for q > 0 , the kernel of D : Ω0,0
loc → Ω1,0

loc consists of locally constant functions
in Ω0,0

loc .

∂ - Exactness Theorem: Let ω ∈ Ω̃p,q
loc , q > 0 , and ∂ω = 0 . Then

there exists an η ∈ Ω̃p,q−1
loc such that ∂η = ω . Moreover ∂ : Ω̃n,0

loc /DΩ̃n−1,0
loc →

Ω̃n,1
loc /DΩ̃n−1,1

loc is injective.
We have the following useful cohomology result for the (p, q)-th D-

cohomology groups [20]:

Hp,q
D =

Ker(D : Ωp,q
loc → Ωp+1,q

loc )

Im(D : Ωp−1,q
loc → Ωp,q

loc)
∼=

{
0 , if q -= 0, 0 < p ≤ n
Hp(B,R) , if q = 0, 0 ≤ p ≤ n .

Remark 1: Classical field theories can be formulated in terms of local
forms as follows [20]: A variational problem or Lagrangian on the fiber
bundle π : B → M is an operator L which assigns to each smooth local
section s : M → B an n-form L(s) on the domain of s , such that L(s)(x) only
depends smoothly on the value of s(x) and on a finite number of derivatives
Djs(x) , 0 ≤ j ≤ k < ∞ . In our formulation a Lagrangian L on π therefore
is an element of Ωn,0

loc . Indeed, any L ∈ Ωn,0
loc defines an n-form L(s) on M by
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L(s)(x) = L(s, x) which is local in the sense above. Interpreting this n-form
L(s) as Lagrangian density (we fix a volume form on M) the action L(s) in
any domain U ⊂ M is defined as the integral

L(s) =
∫

U
L(s).

The space Ωn,1
loc has a distinguished subspace Ωn,1

source : we call A ∈ Ωn,1
loc a source

form if for any s ∈ Γ∞(π) and X ∈ X(J∞(π)) the n-form A(s, X(s))(x)
depends only on a finite jet of s and the zero-jet of X(s) at x . We have a
direct sum of vector spaces

Ωn,1
loc = Ωn,1

source ⊕DΩn−1,1
loc .

If L ∈ Ωn,0
loc then ∂L ∈ Ωn,1

loc and we can write

∂L = E + DH.

A section s ∈ Γ∞(π) is an extremal for the Lagrangian field theory deter-
mined by L if the variation of the action δ

∫
U L(s) = 0 for all domains U in

M and all variations X(s) ∈ TsΓ∞(π) of s which vanish on the boundary of
U ; hence

δ
∫

U
L(s) =

∫

U
∂L(s, X(s)) =

∫

U
E(s, X(s)) = 0

which is satisfied if and only if s satisfies the Euler-Lagrange equations

E(s, X(s)) = 0

for all variations X(s) , [20], [24]. (In local coordinates the system
E(s, X(s)) = 0 is equivalent to the standard Euler-Lagrange equations).

It follows from the ∂-cohomology theorem that each locally variational
source equation E is globally variational provided that Hn+1(B,R) = 0 .

Remark 2: A new universal conserved current for Lagrangian field the-
ories has been defined by Zuckerman [25]: Let L ∈ Ωn,0

loc be a Lagrangian and
write ∂L = E + DH . Then the local form U = ∂H ∈ Ωn−1,2

loc is a conserved
current for L (called the universal conserved current [25]). We have ∂U = 0
and DU = D∂H = −∂DH = −∂(∂L − E) = ∂E. So if s ∈ Γ∞(π) is an
extremal of L ( i.e. s satisfies the Euler-Lagrange equations E(s, X) = 0 for
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all X ∈ X(J∞(π)) and hence the Jacobi equations ∂E(s, X1, X2) = 0 are
satisfied for all Jacobi fields X1, X2 ) then U(s) defines a closed (n−1)- form
on M by U(s, X1, X2)(x) = (iX1(s), iX2(s)U)(x, s) = (iX1(s), iX2(s)∂H)(x, s) ,
and dU(s, X1, X2) = (∂U + DU)(s, X1, X2) = ∂E(s, X1, X2) = 0 .

Example: For the Yang-Mills action on any space-time the universal
current U is given by U(A, X1(A), X2(A)) = Tr(X1(A)∧∗X2(FA)−X2(A)∧
∗X1(FA)) , [24].

3 BRST Transformations and Anomalies

The BRST transformation s on a vector potential A and a ghost field η are
given by [2], [13] :

sA = dη + [A, η] , sη = −1

2
[η, η] .

Moreover s satisfies the nilpotency condition s2 = 0 .
In [18] we derived these equations as the coboundary operator of the

Chevalley-Eilenberg cohomology of the Lie algebra of infinitesimal gauge
transformations with respect to the adjoint representation. The ghost field η
was identified with the canonical Maurer-Cartan form on the infinite dimen-
sional Lie group of gauge transformations.

We summarize these results: The construction is more general than pre-
sented here, i.e. the Chevalley-Eilenberg cohomology can be defined with
respect to any representation of the Lie algebra [18], but we restrict our-
selves to the adjoint representation because that’s the one relevant for the
BRST cohomology and the anomalies. In a future paper we will investigate
to what physical interpretations the corresponding cohomologies with respect
to other representations of the gauge algebra will lead to.

We consider a principal fiber bundle π : P → M with structure group G
. Denote by G the infinite dimensional Lie group of gauge transformations
on P called the gauge group

G = {ϕ : P → G | ϕ(p · a) = a−1ϕ(p)a, p ∈ P, a ∈ G} .

Its Lie algebra g called the gauge algebra is the infinite dimensional Lie
algebra of infinitesimal gauge transformations on P

g = {ξ : P → g | ξ(p · a) = Ada−1ξ(p), p ∈ P, a ∈ G}
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where g is the Lie algebra of the structure group G . Denote by A the space
of connection one-forms (or gauge potentials) on P , and let Λk(P, g) be the
space of g-valued, Ad-equivariant k-forms Φ on P , and Λ(P, g) =

∑
k Λk(P, g)

. We complete these spaces with respect to suitable Sobolev Hs-topologies
so that Λk(P, g) and Λ(P, g) are Hilbert spaces and G becomes a smooth
infinite dimensional Hilbert Lie group with Lie algebra g , [15], [18].

We define a representation ρ of G on Λ(P, g) by

ρ(ϕ)Φ = (ϕ−1)∗Φ, ϕ ∈ G, Φ ∈ Λ(P, g).

The induced action of G on Λ(P, g) is smooth since inversion ϕ (→ ϕ−1 and
pull back ϕ (→ ϕ∗ are both smooth mappings. The derived representation ρ′

of g on the subspace Λ0(P, g) ∼= g is the adjoint representation of g

ρ′(ξ)η = adξ(η) = [ξ, η], ξ, η ∈ g.

The induced action of ρ′ on A ⊂ Λ1(P, g) is given by

ρ′(ξ)A = DAξ

where ξ is identified with the fundamental vector field Zξ generated by ξ ∈ g
and DA denotes the exterior covariant derivative with respect to A ∈ A .

Recall the Chevalley-Eilenberg cohomology of a Lie algebra with respect
to a representation [4]; in our case of the gauge algebra g with respect to the
representation ρ′ : Let Cq,p = Cq(g, Λp(P, g)) be the space of Λp(P, g)-valued
q-cochains on g , let C0,p = Λp(P, g) and note that C1,0 = C1(g, Λ0(P, g)) ∼=
L(g,g). The Chevalley-Eilenberg coboundary operator δ : Cq,p → Cq+1,p is
given by

(δΦ)(ξ0, · · · , ξq) =
∑q

i=0(−1)iρ
′
(ξi)Φ(ξ0, · · · , ξ̂i, · · · , ξq)

+
∑

i<j(−1)i+jΦ([ξi, ξj], · · · , ξ̂i, · · · , ξ̂j, · · · , ξq) .

For q = 0 and Φ ∈ C0,p , δΦ is defined by (δΦ)(ξ) = ρ′(ξ)Φ . The coboundary
operator δ satisfies δ2 = 0 . We define the BRST transformation s : Cq,p →
Cq+1,p by

s =
(−1)p+1

q + 1
δ .
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Again s satisfies s2 = 0 and we call the cohomology of the complex {Cq,p, s}
the BRST cohomology of the gauge algebra g , denoted by H∗

BRST (g) .

Theorem: Let A be a vector potential and η a ghost field, that means A ∈
A ⊂ Λ1(P, g) ∼= C0(g, Λ1(P, g)) = C0,1 and η ∈ L(g,g) ∼= C1(g, Λ0(P, g)) =
C1,0 is the Maurer-Cartan form on G ; i.e such that η(ξ) = ξ for all ξ ∈ g .
Then the BRST transformations for A and η are

sA = dη + [A, η], sη = −1

2
[η, η].

For the proof we refer to Schmid [18]. These transformations are the classical
BRST transformations for the vector potential A and the ghost field η [2],
[13].

Next we describe the cohomology which accommodates the Adler-
Bardeen anomalies as elements of its first cohomology group. This is an
analogue construction as before but using a different representation of the
gauge algebra g on the space of local forms .

Consider Ωloc(M × Γ∞(π) with Γ∞(π) = Λk(P, g) . We restrict ourselves
to the suspace A ⊂ Λ1(P, g) . Let C be a smooth q-chain on M and ω ∈ Ωq,0

loc

. Consider the functional L on A given by

L(A) =
∫

C
ω(A), A ∈ A,

and denote the space of all such functionals by

Γloc = {L : A → R | L(A) =
∫

C
ω(A), ω ∈ Ωq,0

loc}.

We define the representation ρloc of the gauge group G on the space Γloc by

(ρloc(ϕ)L)(A) = L(ρ(ϕ−1)A), ϕ ∈ G, A ∈ A.

Then the derived representation ρ
′
loc of the gauge algebra g on Γloc is given

by

(ρ
′

loc(ξ)L)(A) =
d

dt |t=0
L(ρ(e−tξ)A) = L(ρ(Zξ)A), ξ ∈ g, A ∈ A.

Now we consider the Chevalley-Eilenberg complex of g with respect to the
representation ρ

′
loc on Γloc . That means that the coboundary operator δloc :

Cq(g, Γloc) → Cq+1(g, Γloc) is given by
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(δlocω)(ξ0, · · · , ξq) =
∑q

i=0(−1)iρ
′
loc(ξi)ω(ξ0, · · · , ξ̂i, · · · , ξq)

+
∑

i<j(−1)i+jω([ξi, ξj], ξ0, · · · , ξ̂i, · · · , ξ̂j, · · · , ξq).

We have δ2
loc = 0 and a straightforward computation shows that

δlocs + sδloc = 0.

We define the total differential as

∆ = δloc + s.

Then we have δ2
loc = s2 = δlocs + sδloc = 0 which implies ∆2 = 0 . We denote

the induced local cohomology by H∗
BRST (g, Γloc) , called the local BRST

cohomology of g.
Next we show that the Wess-Zumino consistency condition implies that

the anomalies are elements of the first local cohomology group H1
BRST (g, Γloc)

. We define the total differential as

∆ = δloc + s.

Then we have δ2
loc = s2 = δlocs + sδloc = 0 which implies ∆2 = 0 . We derive

the Chern-Weil homotopy formula as follows: Let Ã = A + η ∈ C0,1 ⊕C1,0

and F̃ = ∆Ã + Ã2 . It follows from the BRST transformation theorem that
F̃ = (δloc + s)(A + η) + (A + η)2 = δlocA + A2 = FÃ . For t ∈ [0, 1] let
F̃t = tF̃ + (t2 − t)Ã2 and define the Chern-Simons form

ω2q−1 = q
∫ 1

0
Tr(ÃF̃ q−1

t )dt

and we get
∆ω2q−1 = TrF̃ q . (∗)

We write ω2q−1 as sum of homogeneous terms in the ghost number (upper
index) and the degree (lower index)

ω2q−1 = ω0
2q−1 + ω1

2q−2 + ω2
2q−3 + · · · + ω2q−1

0 .
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Then the relation (∗) yields the descent equations

δlocω0
2q−1 = 0

sω0
2q−1 + δlocω1

2q−2 = 0

sω1
2q−2 + δlocω2

2q−3 = 0

...

sω2q−2
1 + δlocω

2q−1
0 = 0

sω2q−1
0 = 0 .

We are particularly interested in the third relation which will be used to
identify the anomaly. Let q be such that 2q− 2 = n = dimM . Then we get
the n-form on M

(sω1
2q−2)(ξ1, ξ2) + (δlocω

2
2q−3)(ξ1, ξ2) = 0, ξ1, ξ2 ∈ g.

Notice that (δlocω2
2q−3)(ξ1, ξ2) = dM(ω2

2q−3(ξ1, ξ2)) where dM is the exterior
derivative on M . Stoke’s theorem now implies

∫

M
sω1

2q−2(ξ1, ξ2) = 0, ξ1, ξ2 ∈ g ,

or equivalently ∫

M

∫ 1

0
Tr(sF̃ 2q−2

t )dt = 0 . (∗∗)

Let ω(ξ, A) =
∫
M ω1

2q−2(ξ) , or with the Chern-Simon form ω1
2q−2 =

∫ 1
0 ÃF̃ q−1

t dt we get

ω(ξ, A) =
∫

M

∫ 1

0
ÃF̃ q−1

t (ξ)dt .

The relation (∗∗) implies the Wess-Zumino consistency condition

(δlocω)(ξ1, ξ2, A) = 0, ξ1, ξ2 ∈ g, A ∈ A

which implies that the cohomology class [ω] of ω is an element of the first
local cohomology group:

[ω] ∈ H1
BRST (g, Γloc).
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Summarizing we proved the following:
Theorem: The form ω(ξ, A) =

∫
M

∫ 1
0 ÃF̃ q−1

t (ξ)dt satisfies the Wess-
Zumino consistency condition (δlocω)(ξ1, ξ2, A) = 0 and represents the
anomaly [ω] in the local BRST cohomology H1

BRST (g, Γloc).
An explicit form for the anomaly in (2q - 2)-dimensions is given by

ω1
2q−2 = q(q − 1)

∫ 1

0
(1− t)Tr(ηδloc(ÃF̃ q−2

t ))dt.

We obtain for
q = 2 : ω1

2 = Tr(ηδlocÃ) , which is the non-Abelian anomaly in 2-dimensions;
or for
q = 3 : ω1

4 = Tr(ηδloc(ÃδlocÃ + 1
2Ã

3) , which is the non-Abelian anomaly in
4-dimensions [26], [27].
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