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• Introduction

Rough overview of how one makes the transition from topological concepts
to differential concepts. The strategy is to explain the functorial aspects
of the theory. Then I will indicate how to transition from the topological
perspective to the geometric perspective, reviewing the Chern-Weil theory
of characteristic classes along the way. Will use poetic license to convey
general idea. I roughly follow Guillemin, but try to give a complementary
persepctive whenever possible.

Let G be a compact, connected Lie group with Lie algebra g. (Think U(n).)
We want to define“equivariant cohomology” for the category of G-manifolds.
Should be a functorial construction.

• Review of ordinary (complex) deRham cohomology:

It’s a composition of functors

M ⇒ Ω•(M ;C) ⇒ H•(Ω•(M ;C))

differential manifolds⇒differential Z-graded superalgebras over C⇒graded
C-algebras

Where does the C come from? In the category of differential manifolds,
the point is the terminal object : M → pt. This induces a map H•

dR(pt) →
H•

dR(M). This gives M an C-module structure.

Let M be a G-manifold, i.e. a manifold with a smooth left action G →
Diffeo(M). In the category of G-manifolds, morphisms are smooth G-
equivariant maps:

M → M
↓ ↓

M ′ → M ′
1
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x → gx
↓ ↓

f(x) → gf(x) = f(gx)
Now we can apply a bunch of functors that we define to be the equivariant
cohomology:

M ⇒ PM ⇒ PM/G ⇒ H•
sing(PM/G;C)

G-manifolds⇒Topological principal G-bundles⇒Topological spaces⇒Graded
C-algebras

• Explanation of topological background

By a topological principal G-bundle, I mean a G-space where the G-action
is free. It’s essentially (the total space of) a principal bundle, but it’s not
generally a finite-dimensional manifold.

Given a Lie group G, there’s a construction due to topologists called the
universal bundle EG, which is a contractible free G-space. (Can’t ever be
finite-dimensional manifold if G is non-contractible.) It follows from the
theory that the base space BG := EG/G is a classifying space for principal
G-bundles.

Given a topological principal G-bundle P , there exists a unique homotopy
class of maps f : P/G → BG such that P is the pullback of EG along f .

P ∼= f∗(EG) → EG
↓ ↓

P/G → BG

Examples: If G is discrete, BG = K(G, 1). If G = U(n) (resp. O(n)), then
BG = Grn(C∞) (resp. Grn(R∞)). In the case G = S1, BG = Gr1(C∞) =
CP∞.

• Explanation of the functors

The first step is to take the G-bundle and turn it into a topological principal
G-bundle. This is accomplished by multiplying by EG:

M ⇒ M × EG. This is a G-space with the product action g(m, e) :=
(gm, ge). Clearly G acts freely on the product since G acts freely on EG.
One should view this process as “stabilizing” a G-space to a principal G-
space.

Next we pass to the base space
M ×EG

G
.

One might worry the homotopy type of this depends on the choice of EG.
To see that it doesn’t, we can use the following handy formula:
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If P is principal and E is contractible, then
P × E

G
∼= P

G
.

(One sees this as a weak homotopy equivalence by analyzing the long exact
homotopy sequence of the fibration E → (P ×E)/G → P/G.) Thus if M is
already principal,

M × E

G
∼= M

G
.

Moreover, if (EG)1 and (EG)2 are two different classifying space represen-
tatives, then

M × (EG)1
G

∼= M × (EG)1 × (EG)2
G

∼= M × (EG)2
G

.

Therefore, the resulting space is independent of choices.

Now we apply singular cohomology with C coefficients to the resulting space.
(Topologically, it makes sense to use Z coefficients, or whatever else. Our
choice of C allows us connect with deRham theory later on.) Thus we define
the equivariant cohomology

H•
G(M) := H•

sing

(
M ×EG

G
;C

)
.

Any equivariant map f : M → M ′ induces a map f∗ : H∗
G(M ′) → H∗

G(M).

• Cohomology of a point

Just as in the case of the category of differentiable manifolds, the point is
a terminal object in the category of G-manifolds. Thus we have an induced
map

H•
G(pt) → H•

G(M)
that turns H•

G(M) into a H•
G(pt)-module. But

H•
G(pt) = H•

sing

(
pt× EG

G
;C

)
= H•

sing(BG;C).

For example, when G = S1, we have H•(BG;C) = H•(CP∞;C) = C[x],
deg x = 2. More generally, if G = U(n), then H•(BG;C) = C[x1, . . . , xn],
deg xi = 2i.

In the case G = U(n), the image of the generator xi in H•
G(M) is the i-th

equivariant Chern class of M .

For general G, an equivariant characteristic class is the image of a particular
element of H•

G(pt).

This includes the traditional notion of a characteristic class for a fiber bun-
dle. (e.g. vector bundle or principal bundle) A characteristic class is thus
a cohomology class on the base coming from the twisting of the fiber. The
recipe is as follows:

Take the associated principal bundle P , which is a G-space.
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The associated equivariant characteristic classes live in H•
G(P ).

Since the action on P is free, we identify this with the ordinary cohomology
of the base H•(P/G).

• The geometric point of view: Cartan’s model

The Cartan model is a completely different construction of a cohomology
theory, this time geometric rather than topological. We will see why (at
least in principle) these two different models produce the same result.

Suppose M is a manifold with a smooth G-action. Consider a polynomial
ω on g with coefficients in Ω•(M).

More concretely, elements of g∗ are linear functions on g. General polyno-
mials on g are given by elements of Sym(g∗), the symmetric algebra. For
example, to evaluate a monomial ν1 · · · νk at a point ξ ∈ g, we compute
ν1(ξ) · · · νk(ξ).

It follows that any polynomial ω on g with coefficients in Ω•(M) can be
viewed as an element of S(g∗)⊗ Ω•(M).

There is a natural G-action on S(g∗)⊗ Ω•(M). On the Ω•(M) component,
one acts by “translation,” or pulling back the forms via the multiplication
map on M . On the S(g∗) component, one acts by the “coadjoint action.”
When an element of S(g∗) is viewed as a function, this simply means “trans-
lation” of the function via the adjoint action on its domain. I’ll explain this
total action in more detail later on.

Given the G-action we just defined, we can ask what are the G-invariant ele-
ments (S(g∗)⊗ Ω•(M))G? When viewed as polynomial functions, invariant
elements correspond to equivariant polynomials, i.e. ω(g · ξ) = g · ω(ξ).

We now have an algebra. We want a cohomology theory. Thus we seek to
make this algebra graded with a differential.

Define a grading on equivariant polynomials by

degtot ω = 2degpoly ω + degform ω.

For example, if θ ∈ g∗ and α ∈ Ω3(M), then degtot(θ2 ⊗ α) = 2 · 2 + 3 = 7.

We can define a differential dG on (S(g∗)⊗ Ω•(M))G that increases the total
degree by one. At the level of functions on g, it’s defined as

(dGω)(ξ) := d(ω(ξ))− ιξ(ω(ξ)).

The first term leaves the polynomial degree unchanged, but increases the
form degree by one. The second term decreases the form degree by one,
but increases the polynomial degree by one. (If degpoly ω = k, then ω(ξ) is
homogeneous of degree k in ξ. Ignoring what happens on the forms level,
ιξ(ω(ξ)) is homogeneous of degree k + 1 in ξ.)
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In addition to the function-level description, it’s also useful to know how dG

acts on expressions in (S(g∗)⊗ Ω•(M))G. It’s easy to verify that

dG = 1⊗ d +
∑

a

multνa ⊗ ιξa ,

for any basis {ξa} of g with corresponding dual basis {νa}.
Now that we have a differential graded algebra, we define the equivariant de
Rham cohomology

H•
G,dR(M) := H•

(
(S(g∗)⊗ Ω•(M))G , dG

)
.

This is the Cartan model.

• From topology to geometry

The goal is to convince everyone that it’s plausible) that the Cartan model
and the topological equivariant cohomology are equivalent. Thus we want
to understand how the Cartan model expresses all the previous topological
nonsense in differential geometric terms. The answer is provided by the
Chern-Weil theory of connections and curvature.

• Connections

There are many different, but compatible, definitions of a connection.

(1) For a vector bundle E → B, it’s a map ∇ : Γ(E) → Ω1(B)⊗ Γ(E),
satisfying ∇(fs) = df ⊗ s + f∇s for all f ∈ C∞(B), s ∈ Γ(E).

(2) For a fiber bundle with fiber F , structure group G, and a collection
of trivializations {Uα} with transition maps φβα(x, f)α = (x, gβαf)β,
it’s a collection of “g-valued one-forms” {Aα ∈ Γ(T ∗M)⊗ g} satisfy-
ing

(d + Aβ)gβα = gβα(d + Aα)
as operators on C∞(Uα)⊗ g. This is equivalent to the gauge trans-
formation formula

Aβ = gβαAαg−1
βα − d(gβα)g−1

βα .

(3) For a principal bundle P , there is a distinguished vertical subbundle
V P ⊂ TP . (It is the kernel of dπ where π : P → B := P/G.) A
connection on P is a smooth G-invariant projection t : TP → V P .
I claim that any such projection can be represented uniquely by a
differential form θ ∈ Ω1(P ) ⊗ g. Given certain hypotheses, such a
form also corresponds to a connection.

(In what follows, there may be a few minus signs missing. In large part, this
is because I can’t decide whether the action on a principal bundle should be
on the right or left. See Guillemin’s book for the more careful treatment.)

To realize this third construction, we must consider the action G → Diffeo(P ).
The differential of this action gives a map g → Vect(P ). We denote this map
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by g 3 ξ 7→ ξP ∈ Vect(P ). Because the group action preserves fibers, the
ξP are actually vertical, that is sections of V P . Because the action of G is
free, the vector fields ξP are nonzero for every nonzero ξ ∈ g. Thus the map
P × g → V P determined by (p, ξ) 7→ ξP |p is a global trivialization of V P .

Since the vertical bundle is trivial with fiber g, any fiberwise-linear map
TP → V P is equivalent to a map TP → g. Furthermore, any such map
TP → g is equivalent to an element θ ∈ Ω1(P )⊗ g.

This map/element is assumed to have two properties: projection, and G-
invariance. Being a projection simply means that θ(ξP ) = ξ for all ξ ∈ g.
G-invariance is much more subtle. The group G acts on Ω• in the obvious
way of “translation”. (Pulling back by group multiplication). Explicitly,
ω · g = ρ∗g−1(ω), where ρg : P → P is right-multiplication by g ∈ G. One
might think that in our identification V P ∼= P × g, since we have a trivial
g-bundle, the G-action on g should be trivial. This is not the case.

To understand what’s going on, observe that we have the following expres-
sion for the vector field ξP at a point:

ξP |p∈P =
d

dt
|t=0p · exp(tξ).

Thus the vector field is left-invariant. However, when we act on the right
by g ∈ G, we get

ξP |p∈P · g =
d

dt
|t=0p · exp(tξ)g

=
d

dt
|t=0pg · g−1 exp(tξ)g

=
d

dt
|t=0pg · exp(tg−1ξg)

= (Adg−1ξ)p·g∈P .

Therefore, whenever we act by G on the manifold, we need to act by the
adjoint representation on the g in our trivialization.

Our current example of θ ∈ Ω1(P )⊗ g transforms as follows. Suppose g is a
matrix algebra, which is of course always a valid assumption. Then we may
write θ as a “matrix of one-forms”

θ =




θ11 θ12 · · ·
θ21

. . .
...


 .
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Suppose g = M ∈ G is a matrix, and we want to compute the action of M
on θ. We have

θ ·M = M−1




ρ∗M−1(θ11) ρ∗M−1(θ12) · · ·
ρ∗M−1(θ21)

. . .
...


M.

Thus the components of the connection do not transform individually: they
are mixed by the adjoint action. More precisely, we have the following
natural-looking identity for infinitesimal invariance, where Lη is the Lie de-
rivative by the vector field ηP for η ∈ g:

0 = Lη(θa ⊗ ξa) = (Lηθ
a)⊗ ξa + θa ⊗ [η, ξa]

=⇒ (Lηθ
a)⊗ ξa = −θa ⊗ [η, ξa] .

• Basic forms

Since the projection π : P → B := P/G is a submersion, we have

π∗ : TP ³ TB =⇒ π∗ : T ∗B ↪→ T ∗P =⇒ Ω∗(B) ↪→ Ω∗(P ).

Thus, we may ask when a form ω on P comes from a form on B. The
necessary and sufficient conditions are

iξω := ω(ξM , ·) = 0 (horizontal),
ω · g = ω (invariant).

Such forms are called basic forms since they come from the base.

Note that θ is not basic because it is not horizontal: iξθ = θ. (Also it is not
invariant unless G is abelian.)

If we consider the chain complex (Ω•(P ), d), the basic forms are a subcom-
plex (Ω•bas(P ), d). Since d commutes with pullbacks, the cohomology of the
base is the same as the cohomology of the basic forms. This allows us in
principle to express everything in terms of P without passing to the quotient.

• Curvature

We define curvature to be µ := dθ + θ ∧ θ.

(Aside:) Shouldn’t θ ∧ θ vanish? Write θ = θidxi, where θi ∈ g. Then

θ∧θ = θiθj dxi∧dxj =
∑

i<j

(θiθj−θjθi) dxi∧dxj =
∑

i<j

[θi, θj ] dxi∧dxj ∈ g⊗Ω2(P ).

Normally, when θi ∈ R, this will vanish. However, for a non-abelian Lie
algebra, it generally will not vanish.

The curvature µ turns out to be horizontal. However, like θ, its components
transform by the adjoint action; generally they’re not invariant.

• Invariant polynomials
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Although the curvature µ is not generally invariant, any adjoint-invariant
combination of components is.

Suppose that G = U(n). As for θ, we may think of µ as a skew-Hermitian
matrix of 2-forms 



µ11 µ12 · · ·
µ21

. . .
...


 .

Then
µ11 + · · ·+ µnn = Tr µ ∈ Ω2(P )

is basic, as is det µ ∈ Ω2n(P ). It also happens that these forms are closed,
and the cohomology classes they represent on the base are (up to a constant)
the Chern classes c1 ∈ H2(B) and cn ∈ H2n(B).

More generally, characteristic classes correspond to adjoint-invariant poly-
nomials in the components of curvature, so we wish to determine all such
polynomials, at least in the case G = U(n).

By diagonalizing this matrix, µ is conjugate to

µ ∼




λ1 0 · · ·
0 λ2
...

. . .


 .

with eigenvalues λ1, . . . , λn ∈ Ω2(P ). µ is also conjugate to

∼




λ2 0 · · ·
0 λ1
...

. . .


 ,

or generally any permutation of the eigenvalues. Thus any Ad-invariant
function must be a symmetric function in the eigenvalues. Conversely, any
symmetric function in the eigenvalues will be Ad-invariant. For example,
Tr(µ) = λ1 + · · ·+ λn is invariant, as is det(µ) = λ1 · · ·λn.

The total Chern class is defined as

det(I+
i

2π
µ) =

n∏

k=1

(1+
i

2π
λk) = 1+

i

2π
(
∑

λk)− 1
4π

n∑

j 6=k=1

λjλk+· · ·+
(

i

2π

)n n∏

k=1

λk.

The k-th Chern class is defined to be the degree 2k homogeneous component
of the total Chern class. (Recall deg λk = 2 since µ is a 2-form.) The
homogeneous components are the elementary symmetric polynomials in the
λi, and these generate the ring of symmetric polynomials in λi. Since Ad-
invariant polynomials in the µij correspond to symmetric polynomials in the
λi, the Chern classes are a basis for the ring of basic forms coming from µ.

The symmetric polynomial ring is isomorphic toC[c0 = 1, c1, . . . , cn], deg ci =
2i. The corresponding topological result is BU(n) = Grn(C∞), and H•

sing(Grn(C∞);C) =
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C[x1, . . . , xn], deg xi = 2i. The topological interpretation is that the Chern
classes are the pullbacks of cohomology classes living in a universal object.

• Abstract Chern-Weil theory

The key ingredient of the prior construction was existence of the connection
form θ ∈ Ω1(P )⊗ g. Similarly, we have µ :∈ Ω2(P )⊗ g. Then, given an Ad-
invariant polynomial P ∈ Sym(g∗), we have the corresponding characteristic
class P (µ) ∈ Ωeven(P ) defined by contracting the g in µ with the g∗ in P .

Consider the free supercommutative algebra W generated by the compo-
nents of θ and µ. The components of θ are naturally parameterized by
elements of g∗ via the map ν 7→ ν(θ) for any ν ∈ g∗. Since these compo-
nents are of odd degree, the free algebra generated by θ is isomorphic to
Λ∗(g∗), in which elements of g∗ have degree one. Similarly, since the com-
ponents of µ are two-forms, the corresponding algebra is Sym(g∗), where
elements of g∗ have degree two. Thus

W ∼= Λ∗(g∗)⊗ Sym(g∗).

The condition “G acts freely on M” is too unwieldly in de Rham theory.
Much better is the condition “G acts locally freely on M” because this has
an infinitesimal expression: namely that the map g → TpP given by ξ 7→
ξP |p should be injective for all p ∈ P . This is equivalent to “P admits a
connection.” Since W is a universal construction based on the existence
of a connection, this further translates to the condition “Ω•(P ) admits a
W -module structure.”

In addition to being a supercommutative algebra, W has additional struc-
ture. For example, a differential is given by the Cartan equations

dθ = µ− θ ∧ θ,

dµ = µ ∧ θ − θ ∧ µ.

In addition to the differential, one can define on W the notions of Lie deriv-
ative and contraction with respect to the vector fields ξP . An algebra with
these structures is called a G?-algebra in Guillemin & Sternberg’s book.
Implicit in the statement “Ω•(P ) admits a W -module structure” is the re-
quirement that the module structure preserve the differential, Lie algebra,
and contraction. For more details, refer to the book, or my separate notes
on “definitions.”

Since we have a differential on the graded algebra W , we may ask what is
H•(W )? It’s not hard to show that H•(W ) = C in degree zero and is zero
elsewhere. Thus, algebraically, W looks like a point. One can make sense
of the statement that Whor = Sym(g∗) is generated by the components of
curvature (degree 2), and Wbas = Sym(g∗)G, the Ad-invariant polynomials
on g. (All details are carefully done in Guillemin’s book.) One then shows
that when restricted to Wbas, d = 0 so that H•(Wbas) = Sym(g∗)G.
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All this shows that H•(W ) = H•
sing(pt) and H•(Wbas) = Sym(g∗)G =

H•
G(pt), and in this sense, W serves as an algebraic model for EG. The

precise topological analogy is as follows. We have four differential graded
algebras:

Differential: Wbas ⊂ W,
Topological: C•sing(BG;C) ⊂ C•sing(EG;C).

Taking cohomology, we get

Differential: Sym(g∗)G −→ C,
Topological: Sym(g∗)G −→ C,

where the map to C is the restriction to the degree zero constant term. Thus,
cohomologically, W is identical to EG.

• Weil model

We are now in a position to construct the Weil model for equivariant coho-
mology. We have

H•
G(M) = H•

sing

(
M × EG

G
;C

)
.

As algebraic models, we can substitute the deRham model Ω•(M) for M ,
and W for EG. For the quotient, we take the basic subcomplex.

H•
G(M) = H•((Ω•(M)⊗W )bas).

Note that tensoring with W tautologically turns Ω•(M) into a W -module,
and corresponds topologically to multiplying by EG. Taking the basic co-
homology corresponds to taking the quotient by G. Thus our topological
functors have differential geometric analogues.

• Cartan model

Using an algebraic trick called the Mathai-Quillen isomorphism, we can
simplify this further. It allows us to “rotate” so that the notion of horizontal
affects only the W component:

(Ω•(M)⊗W )hor
∼= Ω•(M)⊗Whor = Ω•(M)⊗ S(g∗).

Such an element is a polynomial on g with coefficients in Ω•(M).

Now (Ω•(M) ⊗ W )bas
∼= (Ω•(M) ⊗ S(g∗))G corresponds to the subset of

equivariant polynomials. Furthermore, if ω is a polynomial in the variable
ξ with Ω•(M) coefficients, then the differential turns out to be

(dGω)(ξ) = d(ω(ξ))− iξ(ω(ξ)).

To understand why this particular differential is the correct one, we would
have to go through the Matthai-Quillen isomorphism, which we won’t do.
Anyway, we have arrived at the Cartan model.


