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fibstract,

. In the framework of Yang-Mills gauge theories, we describe the main features of:
constrained systems, and the geometry introduced by their symmetries

The structures we describe exist in all kinds of such systems, having an infinite
number of degrees of freedom or not. _

-Among the features which these lectures explain: B

~The group of -gauge transformations arises from the analysis of constramts in the
defmttlon of the hamiltoninan a 1a Dirac.

-The space of gauge potentials ts a (infinite dimensional) principal flbre bundle
with group the (infinite dimensional) group of gauge transformations and base space
the "true” configuration space of the theory (orbit space).

. ~There is_a deep -link between the Faddeev-Popov determmant and the naturat
. riemannian metric on the orbit space.

~The origin of the Gribov ambiguity is a property of the geodesics on the orbit space
(existence of focal points) .

- ~The Becchi-Rouet-+Stora operator is 2 part of the exterior d1f ferential on the space
of. connectlons, and the ghost field lives naturally on.this space. L

~The consistency equation for anomalies is a cohomologlcal problers on the space of
flelds.



It has been realized for a long time that any proper descriplion of gauge fields
{1} requires some basic notions of differential geometry (iike princinal fibre bundles,

connections,etc..),and that these concepts flourished both in mathematics and
physics [2)

it will pot be my purpose to explain why 2 gauge potential A’(x) is a component

6f a connection in some finite dimensional principal bundle, why the notion of a bundle
is just the right one to accommodate fancy boundary conditions on the fields, or things
of the sort. There is a number of references on that {3] to [18]. See also [19).

My purpose is fo describe the geometry of the entire space of -atl gauge fields

(an infinite dimensionat Space, since we are dealing with field theory).

The lectures are organized as follows:

1. Notations and basic ob jects.

2. The space of connections and the action of the group of gauge
transformations @.

3. The metric on e, the gauge fixing problem, and € as a G-bundie. The
connection on the space of connections.

4. The metric on the orbit space =0/

3. Dirac’s analysis of the lagrangian,

6. The riemannian geometry of n.

?. Functional measures on the orbit space: the origin of the Dirac-Faddeev
determinant, and the geometrical meaning of the Faddeev-Popov determinant.

8. More on the geometry of the orbit space,

9. The Gribov ambiguity In gauge fixing.

10. The Becchi-Rouet-Stora operator and the ghost fleid.

T11. The anomaly problem as a cohomological problem on e.
12. Conclusion, :



1. Notations and basic objects [11),

We deal with gauge theory over space-time M Space-time will be of any
dimension, especially 4-dim euclidean space-time in the covariant case, and M=RxV with
V=3-dim euclidean space in the hamiltonian formalism (resp. M or V will be supposed
compact and without boundary, which is a way of introducing a volume cut-off into the
theory). |

It s important to notice that the geometry of the space of fields is essentially
not sensitive to the dimension of M, except in 1+1 dimensions where it somewhat
degenerates.

The structure group G will be a compact Lie group. Its Lie algebra is denoted
by g.

Gauge potentials are connections on a principal fibre bund'le_ P(1,6).

We use two interesting associated bundles, constructed from -

E=Px, 48
(vector bundle with fibre g, with the adjoint action of G on g),and
F=Px,40.
(bundle with fibre the group G, with the adjoint action).
We also introduce spaces of forms on M with values in E:
AP=r(E®AP(M)), R=0NP.

If w is a connection on P, we have a corresponding covariant der ivative v acting

onf.
VWP o et
With the metric on M and a biinvariant metric on G (denoted tr), we may define a

scalar product in A, using the Hodge * operator:

vae fi°, vBe AP (Q’B)=‘[r1 triocasd).

The covariant derivative v has an adjoint with respect to the scalar product
(, ), the covariant divergence v*: AP*' —» AP, such that

ViR, Ve’ (1 ve)=(vrut),



We will use the covariant laplacian on A°
Dﬂ=Vﬂ*V“: f° > R°,
when the iapiacian is invertible, we denote its Inverse by G,

6,.0,=0,6,= 1.

2. The space C of connections and the group i of gauge transformations.

The ]_o_cal expression of gauge transformations is very well known: the
transtormation is given by a G-valued function g onl, and the action on the components
A IS AX) o gHOOAKIIG 0. |

The correct Way of describing such a transformation on a connection @ on P is
the following:

Strictly speaking, a gauge transformation is an automorphism of P, which
induces the identity mapping on the base space.

Phrased differently, it is a mapping f of P into itself, which moves the points of
P along fibres, and commutes with the group action on P: vpeP, f(p) belongs to the same
fibre as p, and vaeG, vpeP, f(p.a)=f(p).a {where p.a denotes the right action of aeG on
peP}.

A gauge transformation may equivatently be described by a G-valued function 9
on P,since we can always write f(p)=p.g(p).

The equivariance property of f reads
p(p.a)=a""g(p)a=ad,_, (g(p)}.

This 1ast relation shows that we may consider gauge transformations as defined
on M, provided their values are taken not in G, but in the bundle F introduced above.

The product of gauge transformations is just the composition of mapping on P,
and gives the pointwise product in G.



We denote by @ the group of gauge transformations.
@ acts naturally on any connectfon on P by pull-back.

Clearly, we recover that an element of @ is, jocally, a G-valued function on M,
and that the usual gauge transformation formula is a change of coordinates under a
Change of sections of P.

It is possible to show that @ ( = space of sections of F = I'(F) ) is a true Lie
group (although infinite dimensional).

its Lie algebra is the space of sections of £ { =I'(E)=R° ).

The actionofBonCis: @ -» w9=w+ g 'vg. (eq. 1)

What is noticeable in this transformation law is that € is not a vector space. It

is an affine space, since the difference t of any two connections transforms covariantly.

Actually 1€ R, and thus the tangent space to € is canonically A,

We shall denote by T,(€) the tangent space to € at o

The gauge transformation formula (eq. 1) reduces, for an infinitesimal gauge

transformation & € R°, to
W— W+VE

This gives the form of the elements of T,({€) which are tangent to the fibre

through w. These are the vertical vectors at w We denote by b,(€) the vector space of

vertical vectors at .

From the expression of vertical vectors, it easy to see that the action of & on £
has no fixed point, if for example we tmpose some normatization to the gauge
transformations. It is sufficient to suppose that gauge transformations are normalized
to unity at some point,or equivalently that infinitesimal transformations vanish at this

point. For @ to be a fixed point of the infinitesimal transformation ¢, we have to have

@ = w+v, or 0 k=0, which fmplies, with our hypothesis, £=0.



3. The metric onc, the gauge fising problem, and C as a (big) fibre bundie.

The connection on the space of connections,

The scalar product (, ) on A"~ (€) is a metric on e,

With that metric, €is flat, since ( , ) does not depend on w.

Moreover the metric on € is gauge invariant.

This is the basic point for what we will say In these lectures.

It is a fundamental principle of the theory that two gauge potentials related by
a gauge transformation are equivalent and describe the same physical reality [1] This

will also appear in the analysis of the lagrangian (see § 5.).

The gauge fixing is just the choice of one representative in each equivalence
class {orbit). We want to draw a surface in € which cuts all orbits once (defihe a section
of the &-bundie ).

We may do this locally around an origin w, (reference connection) as follows:
Define the affine subspace s, 0rC
8,=(wet s.t. 1=0-w, is orthogonal to the orbit through o).

8, is made out of points which depart from @, perpendicularly to the orbit. These

points verify
(1,75)=0  wtel® or
€,v,*1)=0  vteh’ or equivalently
v, %1=0. (eq. 2)
This is a linear condition on 1, and defines what we call horizontal vectors at Wy

We denote by B the space of solutions of equation 2: 8  is the affine space generated
Y B 0 g

by Mg, when @ is taken as origin.
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Claim: 8, is a good gauge sectfon around w,(covariant background gauge condition

around © )(20}(21][22](23])
It was shown by topological methods [23)[24] that there is no global section: if

one goes sufficiently far away from @, (within 8 ) one has to meet a point gauge related
to @, Our claim is that there is a region of finite radius around o, in 8, where no two
gauge related point exist, and that all orbits in the vicinity of the orbit through w, cut

_‘ 8,Inside that region.

We wiil return to the problem of gauge fixing later.

The previous result is the property of tocal triviality, basis of the stucture of
fibre bundle of C. '

Actually, with some care taken of the spaces of functions we work with
(Sobolev spaces), one can show that the action of @ on € does define a nice fibre bundle,
and that the orbit space is modelled on 8, [see [23] (23] [26] [27], especially for the more
dettcate points of the definition of normalized group and of the restriction to irreducible
- connections).

Notice that a similar structure exists on the space of metrics on a rifemannian
manifold [28][29} gauge transformations are replaced by diffeomorphisms, irreducible
connections are replaced by metrics without 1sometries, and the same kind of ob]ect‘ién
the spaces of metrics have exactly the same kind of structure. This is used in gravity
theory and in string theory.

We denote by o the projection:€ - £/G.

We have already defined a connection on €, with our horizontalily condition:

Indeed if we define the 1-form x on € with values in the Lie algebra of @



(i.e. A°) by:
X = GyVe*
then:

~the kernel B, of y at each point @ in & defines a distribution of horizontat

spaces invartant by .

—the value of x on a fundamental vector field £* (vertical vector field on €

generated by the Infinitesimal action of & € R°) is & itself.

- % transforms with the adjoint representation of @,

~some regularity properties are required,which are satisfied

We define the horizontal projection operator Iy, T,(€) - By, by:
My =1 - V6uVa™ = | = Ve
(or the vertical projection operator Ve Te©) — D).
The operator I, verifies:
M, =N % =01, .

Xl =0.

4. The metric on the orbit space 4=C/G.

We define a scalar product in the tangent space T,(n) at any point aen as the one

induced by (, ).
ITX, Y € T5(n), choose any point @ in the fibre o~'(a) above a. The vectors X and Y
have horizontal lifts Ty and ¥y at @, By definition the scalar product (metric on n) is:

gXY) = (1y,3).
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The gauge tnvariance of (, ) ensures the independence of ¢ on the cholce of & in

o).
We can now compute the metric ¢ in the local coordinate system centered at @y
and defined by 8
ptia) pa)
@, /
' W/ Fy
E
The vectors X, Y € T(n) have coordinates ay and ¢ such that:
Vooy = VoXay = 0 (or Iy =ay, I ay=ay).
Clearly ay Is not the horizontal lirt 1y of X at we§ (resp. ay...). These horfzontal
lifts are: ‘ l
Ty = [fey).

Thus g(X,Y) = (I ay, T o), or

giX, Y) = (ay , MG I, ay).
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3. Dirac analysis of the lagrangian.

This analysis of the lagrangian leads to the construction of the hamiltonian of
the theory. We thus use the canonical formalism (non covariant) where time is separated
from space [30] (31} {32] [33][34] [35]. Gauge potentials are time dependent connections
on a bundle over 3-dimensiona) space V.

The action is:

5=/, ] dt Iv dv tr(F F®), with

Fa = QAA *+ [AA] (1,v0,1,2.3)
With our notations, the Jagrangian fis: |

L= 'y (A-VALA-VA) - U
where
A = oA/ dt, and

u='r, (0,0,
with 0 the curvature 2-form of A (0 € A2).
The conjugate momenta are:

P = AVA,

p,=O.
The last equation is the primary constraint and leads to the hamiltonian

Hy = 7 (@) + U+ (pVA) + Gp),
where A is a lagrange muitiplier. A e A°),
We get as a secondary constraint:
H,.p,) = v*p = 0. (Gauss condition)
The hamiltonian becomes by incorporating Gauss condition:
Hr = Hy + (u,v*p),

yielding as equations of motion:

p, = O.
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Ay = A
A, @ppears as an unphysical degree of freedom, which we have to discard. The
true hamiltonian is thus:.
H =1, (pp) + U+(t,v%p),
with § a lagrange muttiplier. (¢ € 8°).
The equation of motion is
A= (HA = p+ ¥t
The time evolution of A contains an horizontal bart p (p 1s horizontal from
Gauss condition) and a vertical part Vt (pure gauge variation induced by the Lagrange
multiplier). From Gauss condition we may express p in terms of A
p = (1-V6V¥)A = 1A
and the true 1agrangian is:
L= ‘7, (LATLA) -U.
The lagrangian L is naturally defined on the orbit space. Both parts of L are
gauge invariant, and the true configuration space appears to be the orbit space. The first

term is a kinetic energy term constructed with the metric g onn. The second term is a
potential part (magnetic part).

On the true configuration space, the lagrangian is of course non singular and of
the typical form:;

where g denotes a generic point of 4, and g denotes its vetocity.

6. The riemannian geometry of v,

The previous paragraph shows that the classical evolution of the Yang-Mills
flelds Is a motion on a non flat configuration space with a potential term ¥,

This motivates a detailed study [35] of the riemannian geometry of n.
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We will perform our computaticns in the local coordinate system given by the

~ covarfant background gauge condition around a reference connection o

We define the following operators, associated to a generic point w (w € §,).
YR’ RA° Y=V ¥V =V XV,

yis the Faddee\}-Popov operator in the coordinate system we consider.

Y is invertible if o is sufficiently close to 0

P-A' - A P=1-vy'v *

P is the projection on H, along U, and reduces to 0, if oo,

We have a number of refations between I and P, especially:

1T, P*P =P*P 01 0 = 10,

meaning that P*P Is the inverse of the metric n our coordinate system.

Finally define, forany 1t e A
Ky P > @t K, (%)=t
K B! P its adjoint.

The riemannian connection D on n may easily be written for vector fields having

constant coordinates X, Z (and thus commuting).
DyZ="/ PHPOR R 2T Kyt 21, Ky X1 K X0 I, A1 204 2,0 XD,
The riemannian curvature tensor is
RIXVIZ = 1, (-2K;0K\Z)-K 6Ky *(2)+ K, GK, (7)),

(nb: this expression is valid at the center of coordinates).
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The sectional curvature in the 2-plane generated by the two orthogonal vectors
Xandy is:

KXY) = 3 (Kx*(Y),GKx*(Y)).
We see that § is of positive sectional curvature. However there is no strictly

~ positive lower bound for X,

?. Functional measures on the orbit space: the origin of the Dirac-Faddeep
determinant and the geometrical meaning of the Faddeeu-Popor determinant.

When one uses a functfonal integral formaiism to write down rules of
quantization for the Yang-Miils theory, one is lead to a f unctional measure which depends
on the gauge condttion [31]{36]{37] (38} [39].

It s very important to distinguish the hamtltonian formalism and the covariant
formaiism.

As a first step we will compare (formally) the spectra of the operators y (on RY)
and the metric operator g(in the tangent space to n).

The difficulty comes from the fact that y essentially acts on vertical vectors,
while g acts on horizontal vectors, and thus on spaces of different dimensions.

Let us introduce the operator @: A" - A" defined by:
0 = NV,G, Ve = T(1-1,)

Q) sends "m in Ilo.

Its adjoint is 0=V Gy ¥ o *11,~(1 ~M
1’ sends H0 in Ilm.
on 3., the metric can be written g=1-00*.

Let h: 8° —» A°beé the operator:
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There exists an isomorphism between A° and U, given by:
Va A? - Ve
Its “inverse’ fs given by x; u,- f°
Thus b is similar to b Uy U,
W=V oM

It is easy to check that '=1-0*qQ.

From the fact that Q0% and §*Q have the same non zero spectrum, and that

_' dety1g=detg g, we get:

detg, g = dety h' = det,o b,

or, formally, by assuming that the determinant of a product is the product of

determinants, we get the basic identity [39}):

det ¢ . detO, . detD, = ( dety )2 (eq. 3)

We denote by & the metric on the true configuration space, and by g, the metric

on the orbit space of '4-dimensional potentials.

In the canonical formalism, we see that the measure (up to constant factors) is

nlime“v‘ det %

a naive natural volume element for paths over the orbit space.

in the covariant formalism however we have:

S

Faddeev-Popov determinant = { det 4 .\/detum

The factor, /detDm being the scale of the fibre through @, the covariant

functional integral is an integral over the whole space of connect jons_rather than over
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the orbit space,

Notice that the same phenomenon happens when one wants to integrate over the
space of metrics an action which is invariant by diffeomorphisms, in gravity theory {40)
[41)[42] [43] as well as in string theory [44, and L. Alvarez Gaumé's lectures in this
School].

8. More on the riemannian geometry of the orbit space: qgendesics.

The geodesics of € are all straight lines inC.

It is a general property that, for any group action on a riemannian manifold, and
provided the metric is invariant by the group action, if one geodesic cuts one orbit
perpendicularly at some point, then it cuts all orbits it meets perpendictlarly [45). Some
straight lines in € have this property, as we may see directly:

Suppose we consider the line through w of unit vector t:

L@ =@+ A (AeR).

Such a line is horizontal at o, if v *1=0.
It ts then horizontal at all its points since
Vi b = Vo*t + AKX(1) = v *t = 0

Therefore we have a notion of horizontal line inC.

Claim: Geodesics onn are just the projection of horizontal lines.

The proof is immediate from the geodesics equation [35].

Remark 1:If a, and a, are two points in n, we may evaluate the distance between
a; and a,. Take a generic point @, (resp @,=w,+1) In F'(a,) (resp £'(a,)). The  distance

in € between w, and W, IS a=/(1,1). It is Invariant by a simultaneous gauge transformation
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of @; and w,. To define a distance d“ on n, we may take the minimum of a when o, TUNS

along its fibre a,. When a is minimized, we have V,*1=0 and thus, at least locally,

dﬂ = geodesic distance.

Remark 2: Suppose we start from a point @ in €, along some horizontal straight
line, then the orbits we meet are all perpendicuiar to the tine we follow, but they do not

remain perpendicular to so.

Remark 3: Since the metric ¢ is defined via the connection x (itself issued from

the metric on€), the projection p: € - n of horizontal lines preserves length. Thus nis

geodesically complete, for all straight Hines are of infinite tengfh.

Remark 4 The property of the geodesics shows that the covariant background

gauge around a, yields a normal coordinate system at @,

Remark_S: Similar properties hold true for the space of modulf of metrics.

9. The Gribov ambiguity In gauge fining.

Suppose we use the covariant backgroung gauge around o,

The Faddeev-Popov operator y is Invertible as fong as w is i1 a nefghbourhood of
, (there exists such a neighbourhood); However if we go far enough from e, then at the
point @=w +A1, the operator y(l)=D0+AV9*K1 may become non invertible.

This is where the Gribov ambiguity appears [46} [24]) [35] [47].

It is the point where the coordinate system becomes singuiar. At this point

there exist vectors v, which are vertical, but verify the gauge condition v, *v=0
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(equivalent to saying that y has a kernel: if y(£)=0, then v=v k is such a vector).

The point o is the first focal point of @, in the directiont.

The picture is the following:

The vector v projects to zero on v,
At the point @, the projection o from 8, to n is singular.

The regton of 8, where detg20 is convex and is precisely the region where the

coordinate system is non singular (the riemannian exponential is non singuiar) [48),

To know 1f and how that region coveré the whole orbit space is an open question,

10. The Becchi-Rouet-Stora operator and the ghost fiels.

The behaviour under gauge transformations of any f unctton of the connections is

easy to test: we just have to compute the derivatives of the function along the fibres.
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Notice that this will test infinitesimal gauge transformations. If @ has more
than one connected component, we stay within the component of the identity {49) [50).

For infinitesimal gauge transformations, we may do the foltowing [51] [52} (531
Let dc be the exterior derivative on€. Define the vertical part §of dc by:if ¢ is a
g-form one, then:

)

aq(x,,x2,...,xqﬂ)=dc¢(v‘,v2,...,vq+, ,

where V, is the vertical part of X, (V,-Vxxi).

For a function on & (zero-form), we measure the variation along fibres.

Notice that this definition is simtlar to the definition of the covariant
derivative (one would take horizontal parts and not vertical parts). However, contrarily
‘to what happens for the covariant derivative, we have:

§2=0,

by integrability of the distribution of vertical spaces.

8 is_the Becchi-Rouet ~Stora operator.

Let 0P(P) be the space of p-forms on P with values in the Lie algebra g, which

transform by ad under @

Let SP9 be the space g-forms on € with values in 0°(P), and which are invariant
by . (and S=@5P1).

The exterior differentia) dp of P acts on S, by acting on the values,
But the exterior derivative d[: of € atso acts on S. So does 8 {we shalt take into

account the degree of the value by using (-)pdcon $P49 rather than dp (resp. (-8 rather

than 8) ).

The function @, deftned on €, and which to any connection on P associates its
connection 1-form belongs to 50,

8w is a 1-form on € with values n'(p).

Suw(t) = - vertical partof v = -vy(t).
Thus
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3 = -vy,

which Is the BR.S. transformation of the _Jauge potential.

The connection 1-form g on € belongs to S%-!.
Since the curvature 2-form R=dpx+ */2[1,11 of the connection x is horizontal ine,
we have
& = -/, [rx)
Lis the ghost field.

11. The anomaiy problem as a ctohomological problem on C.

Quantum anomatlies are the breaking, at the quantum level of the classlical gauge
symmetry: some quantum diagrams, involving fermion loops, generate after
renormalisation, non invariant interactions [S4] to (6 1]

For example, if we denote by I'(A) the quantum effective action of a background
gauge potential in the presence of quantized Weyl fermions, I(A) may not be gauge
invariant . Equivalently

A =8 =0,
A is the anomaly.
From 8%=0, we see immediately that:
=0 (eq.4)

This is the Wess-Zumino consistency condition [62]

From the way the non invariance of T appears at the leve] of Feynman graphs, it
is known that A is an integral over space-time of some polynomial in the fields and their
derivatives. It is always possible to redefine I by such a polynomial: the ansmaly A is

spurious if it is of the form A = &polynomial).

The problem of finding the true anomalies is thus a cohomological problem: we
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have to find A(A) (a vertical 1-form on &) verifying 84=0 modulo the trivial solutions of
the form 8M(A) with Jocal’ functions. [see [53] and R. Stora's lectures in this School].

There is a simple way of producing solutions of eq. 4, from the cohomology of

the.orbit space:

Suppose [9] is in HX(n), i.e. ¢ is @ 2-form on # in the cohomology of n (e.g. de

Rham cohomology although the precise definition of this cohomology needs some detail)
[63)64].

Then the pull-back y=£%¢ s a 2-Torm on B such that:
a) do ¥ = 0.
b} ¥ vanishes on vertical vectors.

Since dp has no cohomology on €, there exists a 1-form 8 on € such that:

¥ =0 8
Restricting 8 to vertical vectors produces a solution of eq. 4. of ghost degree

one.

What is remarkable is that on 5%, we get the usual chiral anomaly [65] [66] [67),
although the condition of locality is absent in this approach.

It is an open problem to define the part of H*(n) which will give the correct
(1ocal) cohomology of 8.

Two different paths have been followed:

-take in H'(y) only the Chern character of the appropriate bundle. This is the
index theorem approach, and in fact it links directly to the original problem of definition
of functional determinant, at least when space-time is compactified to a sphere [65]66]
This approach also applies to gravity [68].

-use a purely algebraic approach and limit oneself to some polynomials in the
fields and their derivatives. This line was taken in [69) [70] [71] [72] , see
M. Dubois-Violette's lectures in this School.

The importance of the consistency equation is revealed not only in the problem
of the usual chiral anomaly (first cohomology group of &), but alse, and with possible
drastic consequences on our understanding of quantum gauge theories, in the study of

Schwinger terms in the commutation of quantum currents {second cohomology group of §)
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173174}, but this is beyond the scope of these lectures,

It is worth noticing that the covariant anomaly also has an interpretation on
e [75].

One should also mention the very nice description of the relevance of the
cohomology of n for the hamiitonian formulation of quantum Yang-tills theory in 3+1

dimension with 8 vacuum term, and 2+1 dimension with Chern-Simons mass term |[76],

See M. Asorey's exposé in this School and [77].
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Conclusion.

We have succintly described various features of the geometry of the space of
fields in Yang-Mills theory, which is one of the best examples of constrained field
theory.

In particular we have shown how the geometry of the classical theory governs _

many of the aspects of guantum theory, aithough a construction of non perturbative

quantum theory (via for example a proper definition of the functional integral {78)), is
still to come.

Rather than concluding, which would be foolhardy on such a vast subject, we
~ can point directions for future developments. They should have non perturbative
quantum theory as a goal, and should include: |

~the continuation of the work of ref. [78], and definition of a Schrodinger
equation on functional space.

-a better understanding of the coordinatization of the orbit space, especially
for the study of the effect of its shape (the two questions are related).

-8 direct computation of the local cohomology suitable for the problem of
anomalies.

-a good control of the functional measures over fermions, especially Weyl
fermions [79] [80].

-an understanding of the recent proposals to quantize anomalous gauge

theories [73] (the two questions are related).

The list of references given below cannot be complete, since the literature on
gauge theories is enormous and apologies are made to the Contributors to the field

whose work remains unguoted here.
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