NATIONAAL INSTITUUT VOOR KERNFYSICA EN HOGE-ENERGIEFYSICA

February 1890 NIKHEF-H/90-8

The BRST compiex and the cohomology

of compact Lie algebras

J.W. van Holten *
MIKHEF-H, P.O. Box 41882
1009 DB Amsterdam NL

February, 1990

Abstract

We consiruct the BRST and anti-BRST operator for a compact Lie algebra which is a direct
sum of abelian and simple ideals. Two different inner products are defined on the ghost space and
the hermiticity propeties of the ghost and BRST operators with respect to these inner products are
discussed. A decompasition theorem for ghost states is derived and the cohomology of the BRST
complex is shown to reduce to the standard Lie-aigebra cohomology. We show that the cohomology
classes of the Lie algebra are given by all invariant anti-symmatric tensors and explain how these
can be obtained as zero-modes of an invariant operator in the representation space of the ghosts.

Explicit examples are given.

* Fesearch supported by the Stichting F.O.M.




NATIONAAL INSTITUUT VOOR KERNFYSICA EN HOGE-ENERGIEFYSICA

February 1990 NIKHEF-H/90-6

The BRST complex and the cohomology

of compact Lie algebras

J.W. van Holten "
NIKHEF-H. P.O. Box 41882
1009 DB Amsterdam NL

February, 1990

Abstract

We construct the BRST and anti-BRST operator for a compact Lie algebra which is a direct
sum of abelian and simple ideals. Two different inner products are defined on the ghost space and
the hermiticity propeties of the ghost and BRST operators with respect to these inner products are
discussed. A decomposition theorem for ghost states is derived and the cohomology of the BRST
complex is shown to reduce to the standard Lie-algebra cohomology. We show that the cohomology
classes of the Lie aigebra are given by all invariant anti-symmetric tensors and explain how these
can be obtained as zero-modes of an invariant operator in the representation space of the ghosts.
Explicit examples are given.

* Research supported by the Stichting F.O.M.

NIKHEF SECTIE-H POSTBUS 41 aaz, 7000 DB AMSTERDAM



1 Preliminaries

1.1 Lie algebras

In this paper we consider compact Lie algebras® G which are direct sums of
a finite number of simple Lie algebras (i.e. a semi-simple algebra), and one

or more abelian u(1) algebras:

G =P, (1.1)

a=1
Thus each of these algebras G, is an ideal of G. We assume there is a repre-
sentation of the algebra in which the generators G, of G are hermitean, with
the Lie bracket
[GasGg] =i f,5 Gy (1.2)

Then the structure constants f,; are real and anti-symmetric in (e, 8).
When necessary we take an orthonormal basis for the semi-simple subal-
gebra:

1
9o = =5 Fus 5 = bap. (1.3)

For a semi-simple algebra the inverse ¢g*# exists and the two forms can be
used to raise and lower indices. This leads to a completely anti-symmetric
form for the structure constants:

fﬂﬁ‘T = fyap = faﬂago"r- (1.4)

1.2 Clifford algebras

In the following we also encounter 2n-dimensional Clifford algebras? with
generators ., k= 1,...,2n:

{vm} = wn + wne = 26u. (1.5)

1See for example refs.[1, 2]
2Qur treatment largely follows ref.[3].



The irreducible representation of this algebra is defined by 2n bermitean

Dirac-matrices of dimension 2" x 2". Qut of these we can construct a 2"-

dimensional spinor representation of the so(2n) Lie algebra with generators:
i

O =7 [: 1] - (1.6)

The 2n-dimensional Clifford algebra naturally splits into two anti-commuting

n-dimensional Clifford algebras, generated by elements I'; and I, with a =
1,..,n

Fa = Yay fa = Yotn (1-7)
satisfying the anti-commutation relations
{Ta,Tg} = 2605 {P0: T} = 26ap,

(1.8)
{Ta,T5} =0

Under this decomposition the so(2n)-spinor representation splits into two
commuting so(n) algebras generated by

i . i[n =
Bap = 7 TarTe), Bap = 7 [T (1.9)
From the last of egs.(1.8) it follows directly that

[Zas, ] = 0. (1.10)

We can pow construct an alternative form of the original 2n-dimensional
Clifford algebra in terms of operators (¢4, 7,) defined by

1 " 1 >
Ca = 5‘ (ra - ﬂr‘a) ’ g = 5 (ra + 'ira) ' (1.11)
These operators satisfy the anti-commutation relation

{ca, ®p} = bap, (1.12)
which defines an algebra of n fermionic co-ordinates and their conjugate mo-
‘menta. In this form, the 2n-dimensional Clifford algebra is decomposed into
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two n-dimensional Grassmann algebras, which are conjugate {o each other
in the sense of the anti-commutation relation (1.12). In the Berezin repre-
sentation [4] they correspond to anti-commuting c-numbers and derivatives,
respectively.

1.3 Spinor representation of semi-simple Lie algebras

In the previous section we saw that a Clifford algebra can be used to construct
representations of so(n) on spinors. This construction can be generalized to
any semi-simple Lie algebra, as we now show. We start from the adjoint
representation defined in terms of the structure constants:

(Ga)g = —i fug- (1.13)

If the Lie algebra has n dimensions, the adjoint representation acts on an n-
dimensional vector space. We obtain a representation on a 2[*/2l-dimensional
spinor space by defining

1
Zo=—3 .7 Ty (1.14)

Like for the adjoint representation, the proof that these operators define a
representation of the Lie algebra (1.2) is a direct consequence of the Jacobi
identity. This embedding of an n-dimensional Lie algebra in the spinor rep-
resentation of so(n) can be used for example to define a Dirac operator on
the group manifold.

In the BRST cohomology theory we encounter realizations of the Lie
algebra in the spinor representation of so(2r), using its decomposition into
so(n) @ so(n), eq.(1.9). This implies a trivial doubling of the algebra, with
two commuting sets of generators {Z,} and {£,}. The result can be written
conveniently in terms of the operators (¢*,7,) defined above, as follows:

Za + Eo = —icf fo i 7. (1.15)

This expression defines the image of the semi-simple Lie algebra in the spinor
representation of so(2n).



2 The BRST operator

As in sect.(1), G denotes a compact n-dimensional Lie algebra which is a
direct sum of a semi-simple Lie algebra and a finite number of abelian u(1)
algebras with generators G,:

(G Gs] = if Gr. (2.1)

In addition consider a 2n-dimensional Clifford algebra:

{c®,mp} = &5. (2.2)
The BRST operator Q [5, 6] corresponding to G is defined by3

Q= Gy + %c"'cﬁ f5.2 e (2.3)

By construction, the BRST operator is nilpotent:

0% = 0. (2.4)

We observe that the definition of £ is unambiguous, since a change in the
ordering of the operators (c*, 7o) leads to terms proportional to faﬁﬂ, and this
vanishes for compact semi-simple and abelian Lie algebras. The operators
¢ define a Grassmann algebra and are referred to as ghosts [12], whilst the
conjugate operators m,, which define an isomorphic Grassmann algebra, are
called the ghost momenta.

The generators of the Lie algebra G, being hermitean by assumption,
the BRST operator Q is self-adjoint with respect to any inner product such
that the ghosts and ghost momenta are self-adjoint. Consider the space of
polynomials in the ghost variables, with complex co-efficients:

Ple=3" -E-!-c‘"...c“"ll)g:)_“ak. (2.5)

k=0
Modulo non-singular redefinitions of the ghost variables there is only one
such inner product on this space, which is defined by the Berezin integral [4]
over the anti-commuting ghosts ¢*:

3For some reviews, consult refs.[7, 8, 9, 10, 11]



(#9) = [ dem..de! ¢'. (2.6)

In terms of the components, eq.(2.5), this expression reads

1 n _ |
<¢’ 1![)) = E Eal o Z ( ) ¢l(:._kk)0’] (E!l’:)..k+1...an' (2‘7)

k=0
The action of the ghosts and their momenta on the components is given by

(Ca’d})g;).“ak = 6a d’g;a:) O 622 d)t(l]:;:.)..ak + " + (_l)k-lagk ¢£ﬁ;:?..ak_1 ? (2'8)

for k =1,...,n, and

k
(Wad’)f(xl)...a,, = %b&it:}.).ap (29)

for £k = 0,...,n — 1. It may now be checked directly from the component
expression (2.7), that

($, ) = (c*$,9), (2.10)

and similarly

(&, 7o) = (mad, ¥). (2.11)
Therefore the BRST operator is self-adjoint as well:

(4,99) = (Q4,9). (2.19)

3 The anti-BRST operator

From the symmetry between the ghosts ¢* and the ghost momenta r, in the
Clifford algebra (2.2) we infer the existence of a second BRST operator *
defined by

N =G%, + %ﬂ.,wﬁfﬁ"’ac". (3.1)

It is nilpotent as well:



“0% = 0. (3.2)

In the following it is referred to as the anti-BRST operator®. Where ap-
propriate, we have raised and lowered indices on the Lie algebra using the
Killing-Cartan form of the semi-simple Lie subalgebra, whilst there is no dis-
tinction between upper and lower indices for the generators of abelian ideals,
since the the structure constants involving these vanish identically.
Obviously, the anti-BRST operator *§2 is self-adjoint with respect to the
inner product { , ) defined in egs. (2.6), (2.7). We note in passing that
the BRST operator { and the anti-BRST operator *{2 are both self-adjoint
also with respect to the analogous inner product defined in the space of
polynomials of the ghost momenta, [x], by the Berezin integral over this
conjugate Grassmann algebra. These two spaces of polynomials in ¢* and
7. are isomorphic by a generalization of the Fourier transformation to anti-
commuting variables and are referred to as the co-ordinate and momentum
pictures of the state space associated with the Clifford algebra of the ghosts.
Taking the anti-commutator of the BRST and anti-BRST operator we
obtain a new operator W which is even in the number of Clifford generators:

W= {"0,0} = GoG* + ..., (3.3)

where the dots denote terms involving the ghosts. Since {2 and *{} are nilpo-
tent, the graded Jacobi identity for three such operators implies that W is
both BRST and anti-BRST invariant:

[Q,W]=0, [0, W] = 0. (3.4)

Therefore W is the BRST and anti-BRST invariant generalization of the
quadratic Casimir of the Lie algebra. We return to a more detailed discussion
of this operator in a later section.

4Note that this definition of the anti-BRST operator differs in important respects from
the one in ref.[13]



4 Duality and the scalar product

The co-efficients 1{ , in the expansion of the ghost polynomial ¥[c] are
completely anti-symmetric in the indices i, ..., ax. Therefore they may be

regarded as k-forms on the Lie algebra [14]. We introduce the usual Hodge
star operation:

1

a-,d)(k)al...ak = PR T TRS BT ¢(n~k) , (41)
(n — k)' Ofkt1e.Qin
with the property
“(P)E o = (DHE Y L, (4.2)

Using these definitions we now introduce a second inner product on the space
of ghost polynomials, which we will refer to as the scalar product in order to
distinguish it from the product (2.6). The scalar product is defined by

(¢, %) = (P"¢, ¥) = (—1)"/A (¢, P*¢), (4.3)

where the operator P denotes multiplication of each k-form by a k-dependent
sign, as follows:

(P o = (1) o =) o (4.4)
In components the scalar product is
= 1 o &
(@8 = 3 7 6" (4:5)
=0 *

Contrary to the inner product (2.6), the scalar product (4.3), (4.5) is positive
definite. However, with respect to the scalar product the ghost operators
(e*,7,) are no longer self-adjoint. In stead, they are adjoint to each other:

CL = Ta, (4'6)

or

(#,°%) = (1°6,9). (4.7)



As a result, the BRST operator {2 and the anti-BRST operator *{1 are adjoint
under the scalar product as well:

(¢, %) = ("0, ). (4.8)

This result has important implications for the zero modes of the operator W
introduced in eq.(3.3), to wit we can prove the following theorem:

Every solution of the equation Wy = 0 is BRST- and anti-BRST invariant:
QY = 0 and *Qy = 0.

Proof: recall that W = *2 Q 4+ Q*Q); therefore

(¥, W) = (W, Q9) + (")," Q) . (4.9)

Since all terms on the right-hand side are manifestly positive definite, the
left-hand side can equal zero only if these terms vanish separately:

0y =0, Qg = 0, (4.10)

This proves the theorem. Note, that the positivity of W follows from eq.(4.9)
as a corrollary.

5 BRST cohomology

The single most important property of the BRST operators is their nilpo-
tence:

02 =0, 02 =0. (5.1)

Therefore these operators formally behave like exterior derivatives® {14], with
the generalized Casimir operator W playing the role of the Laplacian:

W= {*Q,0} = (2 + *0)%. (5.2)

5The structure of Lie algebra cohomology has been discussed in the mathematics lit-
erature using methods similar to the BRST approach in ref.{16); I am indebted to J.
Kowalski-Glikman for bringing this to my attention



As a result, one can define a BRST cohomology in the space of ghost states
¥[c] (or ¥[r] in the momentum picture).
First we introduce some terminology. A state which is BRST invariant:

Q= 0, (5.3)
is called BRST closed. Similarly, a state which is anti-BRST invariant:

*Ny =0, (5.4)
is called co-closed. A state which is the BRST-transform of another state:

Pp=0g, (5.5)

is called BRST eract, and a state which is the anti-BRST transform of an-
other state:

v="0yx, (5.6)

is called co-ezact. Any BRST-exact state is BRST closed, and any co-exact
state is co-closed, but the inverse is not necessarily true. The BRST coho-
mology is the set of states which are BRST closed, but not exact:

H(Q)) = KerQl/ImAQ. (5.7)
Similarly we define the anti-BRST cohomology by

H(*Q) = Ker*Q/Im*Q. (5.8)

Note that as regards BRST-cohomology all states which differ by a BRST-
exact state are considered equivalent:

v~ oY =9+ Qx, (5.9)

since 9’ is closed whenever ¥ is. A similar statement holds for co-closed
states. Therefore BRST cohomology deals only with equivalence classes of
states. In the language of quantum field theory, the BRST operator generates
a kind of gauge transformations on the space of states (as opposed to, say,
the configuration space), and the cohomology classes (5.9) identify all states
which differ by a gauge transformation.
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In addition to BRST exact and co-exact states, we distinguish also BRST
harmonic states. These are the zero modes of the operator W:

W = 0. (5.10)

In the previous section it has already been proven, that such states are both
closed and co-closed.

With the above definitions it is now straightforward to prove the follow-
ing decomposition theorem:

Any state 1[c] can be decomposed into a BRST-ezact, a co-ezact and o har-
monic state:

Y =w+ Qx + N, (5.11)

where

Ww=0. (5.12)

To prove this theorem, one shows that the graded Lie algebra defined by
eqs.(5.1),(5.2) only has the following irreducible representations®:

(1) Singlets; these are harmonic forms w such that Qw =0 and *Qw =0.

(i1) Doublets; pairs of states which have positive eigenvalues under W and
which are the BRST/anti-BRST transform of each other.

(4i1) Quartets; sets of four states with positive eigenvalues under W, which
are linear combinations of BRST-exact and co-exact states, and which trans-
form into each other under BRST/anti-BRST transformations.

The details of the proof are given in appendix A.

From the theorem (5.11) it follows, that any BRST-closed state differs
from a harmonic state by at most an exact state. In field theory language:

8The representation theory of {2 itself has been discussed in ref.[8]
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any BRST-invariant state is gauge equivalent to a harmonic state. The proof
goes as follows: decompose 1 as in eq.(5.11); then

Q=070 ¢, (5.13)

because the harmonic state and the BRST-exact state are closed. Now if %
is closed, this implies in particular that

(¢, 92¢) = 0. (5.14)
Inserting eq. (5.13) gives

(¢,27Q9) = ("¢, Q) =0, {(5.15)
which is true if and only if "¢ = 0. Hence we establish the resuit that

Q=0 ¢ =w+ Qx. (5.16)

This result may also be stated as follows: any non-trivial solution of the
equation

Qyp =0, (5.17)

can be transformed into a non-trivial solution of

Wy =0, (5.18)
by addition of a BRST-exact state; in addition it then satisfies the condition

Qe = 0. (5.19)

6 Harmonic states
Having established the result (5.16), it follows that the BRST cohomology

can be found by solving for all harmonic states. Therefore we now turn to
study the solutions of equation {5.10):

Wy =0.
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The complete solution of this equation is characterized by the following two
conditions: ;

Gap =0 and ¢ fog T4t = 0. (6.1)

Therefore harmonic states are singlets of the Lie algebra and of its image in
the spinor representation of so(2n) defined by the ghosts, cf. eq.(1.15).

The result (6.1) is most conveniently derived in the representation of the
ghost algebra defined by (Ta,Ta), €gs.(1.11). In this representation we have

Q4+ =T-(G+T/2+%/2), (6.2)

where the dot denotes contraction over the Lie algebra index a. Squaring
this operator and using the result

~

52§52 = %1, (6.3)

which expresses the fact that both X2 and $2 are the quadratic Casimir
operators of the image of the Lie algebra G in the spinor representation of
so(n), we obtain

w Q + *Q)?

2 (6.4)

= 162 +L1(G+32+15)

Again we find that W, being a sum of squares, is non-negative. Moreover,
harmonic states correspond to zero-modes and hence must satisfy

Ga¥ =0, (Za + La)¥ =0. . (6.5)
Using eq.(1.15) the result (6.1) then follows.

Below we refer to states satisfying the first condition (6.1) as G-singlets.
The second condition, written in components, bacomes:

k :

fa[;r; ‘/’S:,)...a,‘h = 0? (66)
where the square brackets denote complete anti-symmetrization of all indices
enclosed with unit total weight. We conclude,that the BRST harmonic states
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are all completely anti-symmetric invariant tensors of rank k which are also
G-singlets.

Eq.(6.6) is always satisfied trivially for ¥ = 0 and k¥ = n, which are
singlets under the adjoint representation of the Lie group. It is known, that
no solutions exist for ¥ = 1 and, by duality, for k =n —1 7. A simple proof
of this statement can be given in our formalism by observing, that the n
conditions (6.6) in the form:

(s + i]a) % = —icf fcxﬁ‘y Ty Yfe] =0, (6.7)
can be summarized by the single equation
(Z+5)w=0, (6.8)
or
(c“ Ty — ifag.,, feor Ber 1r,1r.,) Plc] = 0. (6.9)
This last equation reads in components:
(k - 1) or
P = I fotonar B sl (6.10)

Obviously, the right-hand side of this equation vanishes for k¥ = 1. However,
it, also vanishes for £ = n — 1 because the right-hand side is equal to

E+2)(k+1
( I(R)EI;; )f"""’famq ¢g?...a,=p (6.11)

and for k = n — 1 this involves an anti-symmetrization over (n 4 1) indices
taking only n values.

One consequence of these results is, that for semi-simple algebras of di-
mension n < 3 there are no BRST-harmonic states other than the singlets
with k& = (0,n), just because there are no antisymmetric tensors of rank
2 < k < n —2. This applies to the algebra su(2) = so(3), and the result is
confirmed by an explicit calculation in the next section.

Similarly, there are no solutions with & = 2 [15], but for k¥ = 3 there is
always a solution defined by the structure constants themselves:

7See for example ref.[15], ch.5
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P80, = fapy X (6.12)

where y is a G-singlet. This follows directly from the Jacobi identity.

A useful result in looking for non-trivial solutions of the BRST-cohomology
is the following lemma.:
Let the compact Lie algebra G be a direct sum of r simple and/or abelian
ideals:

G =6 G. (6.13)
a=1

Then the only BRST-harmonic states of G are the direct products of the
BRST-harmonic states of each ideal G,.

To prove this assertion, note that for the abelian part of the algebra (i.e.
the maximal abelian ideal) eq.(6.6) is satisfied triviaily, because all structure
constants pertaining to this part of the algebra vanish. Hence we only have to
consider the semi-simple part of the algebra. We show, that the solutions of
eq.(6.6) reduce to solutions of the same equation for each simple Lie algebra
(i.e. each non-abelian ideal) separately. This results immediately from the
property of a semi-simple Lie algebra that it can be decomposed into a direct
sum of simple ideals, hence the structure constants vanish whenever two of
their indices take values in different subalgebras. Then for « having a value
in ., €q.(6.6) gets contributions only from terms with the other index a; of
fadl in the same G, Define the subset (Qtiy y +ory @iy ) Of the indices on P ,, as
those indices which take values in the same ideal as o ; then eq.(6.6) reduces
to

fu ) (6.14)

ajoi; Ty ...a.-m]a.-m“ eliy '
This is just eq.(6.6) restricted to a single simple ideal G,. Taking all possible
values of & in all ideals, the solutions of (6.6) reduce to a direct product of
those for the simple algebras G,. Therefore our lemma is proven.

Summarizing, we observe that for any semi-simple Lie algebra a BRST-
harmonic state represents a solution to the equation
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etk
G[al ilbag ak+1] + ( ) f[alcxz 1’[’&3 G‘k+1]ﬁ _ (615)

In field theory, the mﬁmte-dlmensiona,l generalization of these equations are
known for k¥ = 1 as the Wess-Zumino consistency conditions. These equations

admit trivial solutions given by the BRST-exact states of the form

- ?
llbc(!’i)ﬁ'k = G[al ¢(‘i€2llk + ( 1)k ! ( 1) f[al (:3 llk]'gy (6.16)

with ¢(*-1) arbitrary. Non-trivial solutions are provided by all direct products
of all those invariant anti-symmetric tensors of rank 0 < k < n, associated
with the abelian and simple ideals G,, which are G-singlets as well. Exam-
ples are provided by the singlet states with £ = 0 or £ = n,, and states
transforming as the structure constants f, g, themselves.

7 Examples

We now discuss some examples illustrating the general analysis presented in
the earlier sections.

e u(1).

First, let us consider the case of a compact abelian u(l) algebra. There
is only one generator A, trivially commuting with itself, and the structure
constants vanish. Correspondingly, there is only one ghost ¢, with conjugate
momentum 7. The BRST and anti-BRST operator read

N=cA, Q=1 A, (7.1)

and we have

W={"0,0}= A2 (7.2)

In the co-ordinate representation; the state space consists of functions

Yl = 9@ + ey, (7.3)
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with A acting on the components (9,7 = (1,2). The BRST-harmonic states
are simply all A-invariant states:

Adld=0 & Aypl) =0, i = (1,2). (7.4)

Note, that ¥{? corresponds to the state with all ghost levels empty, and ¥
to the state with all ghost levels filled; 1 has no further components.

o su(2) = so(3).
The Lie algebra su(2) = so(3) is given by

[Gi"-‘ GJ] = ésiﬂ‘ Gk, t, Js k = (1s213) (7‘5)
The Killing-Cartan form is

1
9ij = — 5 Eikl Ejlk = bi;- (7.6)

The Lie algebra has dimension n = 3, hence we introduce a 6-dimensional
Clifford algebra

{ciy 75} = &ij. (7.7)
An explicit representation is given in appendix B. Defining

i ; -
Y, = — g Gk I, = —%E;ﬂ, | PSP (7.8)
with (T;,T;) given in terms of (ei,7) as in eq.(1.11), we have

$2=52="1, (7.9)

W

and in the representation of appendix B:
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( 3 - O3 0 -0 — 2'0'2 0 \

2 1 0 3+0’3 0 —a +E.O'2
(z+3%)" = 5 . (1.10)
—0o1 + toy 0 3+ 03 0
\ 0 ‘ —J —2.0'2 0 3'—'0'3 )

Its zero-modes form a 2-dimensional space spanned by

(1) (1)
0 0
0 0
1 1 1 -1
1 1
1 -1
L0 ) \ o)

These are precisely the states annihilated by =; or ¢; as defined in appendix
B:

iy = 0, ;. = 0. (7.12)
The BRST-harmonic states now take the form

Y= fy. + g9y, (7.13)
with
G:f=Gig=0. (7.14)

Again, we find that the only non-trivial solutions of the BRST-cohomology
are the G-invariant states with either all ghost levels empty (3_), or all ghost
levels filled (44 ). :
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¢ s0(4) = so(3) @ so(3).

The Lie algebra so(4) is not simple: so(4) = so(3) & so(3). Here the tilde only
serves to distinguish the two different so(3) algebras. The BRST cohomology
of so(4) is composed directly out of the two so(3) cohomologies. That is, each
non-trivial BRST-harmonic state is a G-singlet under both so(3) algebras:

Giv=Gip =0, (7.15)

and the two ghost states ¥ of the first s0(3) algebra can be combined with
each of the two ghost states 34 of the other s5(3) algebra, giving rise to four

different ghost states which are solutions to the ghost cohomology condition
(6.7).

These examples sufficiently illustrate the power of our approach.
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A Representations of the BRST algebra

In this appendix we study the representations of the BRST algebra

Q2 =0, 02 =0,
{2} =W, (A.1)

W,0]=0, [W,Q]=0.

We show, that these representations consist of singlets, doublets and quar-
tets with the properties used in sect. 5 to prove eq.(5.11).

We begin by noting that W is a hermitean and semi-positive definite
operator with respect to the scalar product (, ) defined in eqs.(4.3), (4.5).
Therefore it has real non-negative eigenvalues w and it can be diagonalized
in the space of ghost states ¢[c]:

W= wi. (A2)

We now distinguish two cases: w = 0 and w > 0. In the first case 7 is BRST
harmonic and we know that it is both BRST and anti-BRST invariant. Hence
we can write

Y =w, Qw ="Qw=0. (A.3)

This is what we call a singlet representation of the algebra (A.1). It trivially
satisfies the decomposition theorem (5.11):

v=w+ 14 + "y, (A.4)
with ¢ = ¥ = 0.
Next we consider the second case, w > 0. Since now Wi # 0, at least
one of the operators ({2, *§1) does not annihilate :

Q9 #£0, or Qi £ 0. (A.5)
Suppose {1y #£ 0. Define

1
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Then ¢ is BRST exact, hence closed:

Qo = 0. (A.7)
Next define

N

Then ' is co-exact. Now there are again two cases to consider. First, let

Qg = 0. (A.9)

In this case

v Llaoony_ Lo
=00 = —Wi=9. (A.10)

As a result there are only two states (¢, ¢) and we obtain a doublet repre-
sentation of the BRST algebra, with

Q¥ = Vg, ‘0o = V. (A1)

Note that both states are eigenstates of W with the same eigenvalue w, as
expected. Of course we could equally well have started the construction of
the doublet with a state ¢ which is BRST-closed but not co-closed. This
leads to the same representation, hence there is only one type of doublet.
The decomposition theorem (5.11) is satisfied for doublets; specifically, ¥ is
co-exact:

1,
Y= e ¢, (A.12)
whilst ¢ is BRST exact:
b= =0y (A13
= =00 13)
The second case we must consider is *(0% # 0. Define
1,
X = —="Q, (A.14)

Vo
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and

p== 10,9 v. (A.15)

The states (1, ¢, x, p) now form a closed representation space for the BRST
algebra (A.1), which is called the quartet representation. To see this, note
that

s _ 1.
Q¢ = 7o Q4
1
= —=({" * A.l6
s (0.0} + [0,0) ¥ (A.16)
1
= FVw(¥+o)
Similarly one derives
1
Qx = svw (¥ —p). (A.17)
These equations can be inverted to give:
1
Y= -\/——5('9615 + Qx), ' (A.18)
and
1
p= -ﬁ(*ﬂqﬁ - Qx). (A.19)

Hence ¢ is BRST exact, x is co-exact, and ) and p are linear combinations of
exact and co-exact states. In addition, all these states are eigenstates of W
with the same eigenvalue w. We conclude, that in the quartet representation
the decomposition theorem (5.11) is also satisfied.

B d=6 Clifford algebra

In this appendix we give an explicit representation of the six-dimensional
Clifford algebra used in the construction of the ghost states for so(3). Let
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{Yor 18} = 260p, (B.1)

where (@, 8) = 1,...,6. We use an irreducible (8 x 8) representation in which

0 4
Yo = ( ), a=1,..,4
7% 0
( 0 11(q)
5 = ) ; (B.2)

1(q) 0
Te = )
0 —1(4)

with the super/subscript (4) denoting the Dirac and unit matrices in four
dimensions. The four-dimensional Dirac matrices we use are

f 0 —iO"'
ORE , i=1,2,3
\ t'O'.' 0
(B.3)
(1 O
7 = ,
\ 0 —1(2)
where the o; are the standard Pauli matrices.
Now define
Fi =% I..11' = Yi+3, 1=1,2, 3, (B4)
and
1 = 1 -
C = -Q-(F.' - lr,')., i = -2-(I‘.- + tr;), (B.5)

as in eq.(1.11). Then we have
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— iE,‘jk CjTE = ¥ + 2,‘, (BG)
with

for 0 -1 0 Y\

0 (el 0 -1
21 + E] = %
-1 0 (1] 0

\ 0 -1 0 o )

fO'g 0 -1 0\

: 0 o2 0 11
22 + 22 - ]5 . (B?)
i1 0 (2] 0
\ 0 —1 0 gg )
f c3—1 0 0 0 \
) 0 os+1 0 0
Y3+ Ta=3
0 0 o3+1 0
\ 0 0 0 os5—1)

Squaring these expressions and summing the results gives eq.(7.10).
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