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ABSTRACT

We review known theorems about the isometry group of a gen-
eral coset space G/H. The Killing vectors on G/H are explicitly
constructed. Rescalings of the coset vielbeins are discussed, and
we give a simple criterion to find which rescalings preserve the
isometry group. We derive a general expression for the Riemann
and Ricci tensors in terms of the rescaled vielbeins and the group
structure constants.

These results have useful applications in Kaluza-Klein theories.
As an example, we discuss the round and the squashed seven-
spheres that have been used to compactity d = 11 supergravity: we
show that they can be identified with two appropriately rescaled
coset spaces SO(5)/50(3).
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1. Introduction

Generalized Kaluza-Klein theories [1] offer a natural formalism for unified
theories of gravity, gauge fields and scalar flelds. One starts from 4 + N-
dimensional gravity and, through the Kaluza-Xlein mechanism, arrives at a 4-
dimensional theory of gravitons, gauge bosons and scalars. The isometry group
of the internal N-dimensional manifold becomes the gauge group of the reduced
4-dimensional Lagrangian. This encourages the study of homogeneous manifolds
G/H: in the present paper G will always be a compact, connected, semisimple Lie
Group, and H a (possibly nonmaximal) Lie subgroup. In general, if G/H is the
space of right cosets gH, the left action of G and the right action of N(H)/H
(N(H) being the normalizer of H in G) generate isometries of G/H. A detailed dis-

cussion is given in Sect. 2.

In pure multidimensional gravity one needs additional matter fields to
trigger the compactification of the theory on the internal N-manifold. Also, the
introduction of spin 1/2 fields in higher dimensions does not lead to massless
fermions in 4-dimensions, the Dirac operator having no zero modes on positively
curved manifolds {Lichnerowicz theorem). The situation is far better in Kaluza-
Klein supergravity [1d, le, 2]; the Rarita-Schwinger operator can have zero
modes, and the extra fields necessary for the spontaneous compactification are
dictated by supersymmetry. In d = 11 supergravity, the nonvanishing fourth-
rank "photon” curl drives the compactification to M, x M, where M, is a 4-
dimensiona] Einstein space-time with negative cosmological constant, and M, a
7-dimensional Finstein space, with positive curvature. The dimension of space-

time is predicted to be four.

Eleven is a kind of magical number for supergravity: it is both the highest

dimension for a consistent supergravity Lagrangian {3] and the minimum
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dimension for the compactification on a SU{3) x SU(2) x U(1) - isometric inter-
pal manifold [4]. The existence of SU(3) x SU(2) x U(1) compactifications has
been proved in ref. [5].

A classification of compactifying solutions for 4 = 11 supergravity in which
M, is a hocmogeneous space is given in [8].

Thus, a crucial question is whether a given coset space G/H can be given an
Einstein metrie, without losing its original symmetry. In Sec. 3 we describe the
most general rescaling, or "squashing,” that one can do to the metric of a homeo-
geneous space and still preserve the symmetry. One finds that if the adjoint
representation of N(H) is block-diagonal, then independent rescalings are
allowed for vielbeins corresponding to different blocks. The general expressions
for the rescaled Riemann and Ricci tensors are derived. The condition that the
metric be Einstein becomes an algebraic constraint on the rescaling parame-
ters. These results are applied in Sec. 4 to the round and squashed S7
compactifications of d = 11 supergravity. We find that the squashed seven-
sphere is a (rescaled) coset space S0(5)/S0(3), with SO(3) embedded as cne of
the factors in the SO(3) x SO(3) subgroup of SO(S’. Another rescaling brings the
squashed S7 to the round S7.

2. The isometries of G/H

We consider the right cosets G/H = {gH{, parameterized by the coordinates

fy]. The left action of g € G on a coset representative I is given by (see e.g..
(1]}

gLy = Lyhk. (.1)

where L, and h are functions of L, and g; the explicit form of these functions
depends on the embedding of G/H in G, t.e. on the rule used in choosing the



coset representatives.

The left-invariant Lie Algebra-valued 1-form:
e(y) = L' dL, . (2.2)
transforms under left muitiplication by a constant g € & in the following way:
e(y’) = hi; g7 d(gLyh™") = he(y)h™) — hdh™. (23)

In particular, its projection on the coset generators, which defines the covariant

frame (vielbein) on G/H, transforms as:
e*(y’) = (he(y) h™)® = ®(y) Du* (A7), (2.4)
where U;3(g) is the adjoint representation of G defined by
T g =D Tp (T4 D). (2.5)

The index conventions are:

a b, -+ : fiat coset indices

o B8, -+ : curved coset indices
.j. - : H indices : (2.6)
A, B, - ! Gindices

The infinitesimal form of (2.4) is obtained by taking

g=1+8g4 Ty
h=1+6R'T, (2.7)
and reads:
e*(y + by) — 8%(y) = +6h' Ga®e®(y). (2.8}

easily derived from the fact that Cu® are the generators of the adjoint represen-

tation of H, and (;*=0. For compact semisimple Lie Algebras, the Killing
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metric can always be diagonalized, and for simplicity, we will assume it to be
diagonal. Then one has G,/ =0, and the algebra is reductive. Eq. (2.8) shows
that the left action of G on e%(y) is equivalent to an SO(N) rotation of e*(y) (N =

dim G/H). Thus the G-invariant metric on G/H is:

gas(y) = Yavea{¥)es(¥). (2.9)

where v, is the Killing group metric restricted to G/H.

The Killing vectors K #(y) associated with the left isometry group G are

given by
KiP(y) = Da*(Ly)ea’(y), (2.10)

.’ is defined as the inverse of the coset vielbein es® Recall the definition of

Eaf(y):
Lyssy = Ly + 6yP 351,
= L, + 69 KaP(y)0ply. (2.11)
On the other hand, from (2.1) one finds
Lyssy = (1 +6gA Ta) L, (1 = 6R'TY)
~ L, (1 + 698 DaB(Ly) Ty — 6R*Ty). (2.12)

Comparing (2.11) and (2.12), one arrives at the expression (2.10) for K *(y).

Moreover, projecting on T yields:
5kt = 59 [DaX(Ly) - KaP(y) wp* ()], (2.13)

which relates the parameters of the infinitesimal transformations g and h in
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(2.1). w'(y) is the projection of e{y) on the H generators.

We now turn to the right isometries on G/H, and their cbrresponding Killing

vectors.

The right action of g € G on L, is given by:

Lyg=L,h (2.14)

For the expression L, g to make sense, it should not depend on the choice of
coset representatives. This happens if and only if g belongs to the normalizer of
Hin G, denoted N(H). Indeed if

gHg'=H, (.15)

then L, g and L,'g are in the same coset (L,’ is another representative of the
same coset of L,). Notice that for left multiplication [Eq. (2.1)]. g, is well
defined for every g € G.

It is clear that if g € H, its right action on L, is trivial: it does not move the
point on the coset space. Thus we need only consider elernents of N(H)/H, which
has a natural group structure. We prove below that N(H)/H is the right isometry
group of G/H.

Consider the transformation law of the 1-form (2.2) under right multiplica-

tion:
a(y) = L,V dl, = hg ' (yldy) gh™' — hah, (R.16)
Projecting on the coset generators T ‘one finds
e*(y) = e®(y) D% (gh™)

= a%(y) D, () D7)



6.
= o¥(y) D4* (9) D, (7). (2.17)
Infinitesimally, taking g and h as is (2.7), one has,
ey + 8y) — a*(y) = —8g" ®(y) CusP - OH1¥(y) G ®
= (~0g* Cp® + 6R'Cy Det(y) — 8g° Gu®eM(y).  (2.18)

Thus, the right action of g on the vielbein will induce an SO(N) rotation of e®(y) if
and only if 6g® Cy® = 0, for every i, a. This happens if the generators K, of the

transformation g € N(H)/H commute with H: then

Cu®=0 Via (2.19)

It one decomposes Iz
G=H+K+L ) (2.20)

where K is the set of generators of N(H)/H, then eq. (2.19), and reductivity of G

imply the following cornmutation relations:
[KK]cK
(KH]=0
(K1 cL | (2.21)

In ref [7] it is shown that (2.21) are also the conditions for K to be in the Lie
Algebra of N(H)/H. Therefore, N(H)/H is the right isometry group of G/H.

We now compute the corresponding Killing vectors on G/H, defined by
Lyssy = Ly + 89" BaP(y)0pLy =

= L,(1 + 592 K P(y) 845(y) Tp). (2.22)



From (2.14), we have
Lyvey = Lygh™t = L,(1 + 8g4 Ty - 6R'T,). (2.23)
Projecting (2.22) and (2.23) on T, yields:
Kf(y)=0 (2.24)
Kl (y) = efly). (2:25)

Eq. (2.24) is consistent with the fact that the right action of H is trivial on G/H.
Eq. {2.25) tells us that the Killing vectors X4* corresponding to the right action
of K, on G/H are just the inverse vielbeins g, #(y). As in the case of left
isometries, one can compute the H parameter 8h' in (2.1B) by projecting {2.22)
and (2.23) on 7y We find:

6kt = —0g% e, (y)we(y). (2.26)

It is easy to see from eqs. (2.1) and (2.14) that the isometries G and N(H)/H
commute. This can be checked from the commutation relations between the
left and right Killing vectors. As K is the inverse vielbein, the commutator

[K.K] was in tact given in eq. (2.8). Indeed
e*(y + Oy) —e®(y) = 6giip e%(y) = 65*(Ka"0aep® + ea’0pKy") dyPf. (2.27)
Multiplying by —e,” e,?, and using (2.13), one derives the commutator
Ky%0,ey” — eyP8p K37 = —[DaY (L) — KaP (0 )ws'(¥)] G 2. 7. (2.28)

When the index b of e,” corresponds to the generators in K, e,7 is the right
Killing vector. But in that case G, ¢ =0V i,c (eq. 2.19), and therefore the right
hand side of (2.28) vanishes: left and right Killing vectors commute. A criterion
to find elements in the Lie Algebra of N(H)/H is given in eq. {2.19) or (2.21). [Cf.
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ref [7], eqgs {3.17) and (3.1.12).] The Killing vectors corresponding to left and

right isometries are respectively
G: K*(y) = Da™Ly)e(y)

N(EVH: B Y) = epf(y). (2.29)

One should not conclude from the preceding discussion that the isometry

~ group of G/H is always

G x N(H)/H. (2.30)

In most cases this is indeed correct. However, there are two ways the above

construction can fail to give the actual isometry group:

1) Some of the right Killing vectors may coincide with left Killing vectors. As
each right isometry commutes with each left isometry, these common Killing
vectors can only correspond to explicit U(l) factors occurring in G and in

N(H)/H. The actual isometry of G/H is therefore reduced to
Gx N'/H, (2.31)

where N = N'x {common U(1)-factors). An example is provided by the coset

spaces

SU!S) x U;l)

V(1) x U(1) * (2.32)

discussed in ref [12]. For a generic embedding, N(H)/H = U(1) yields the same
Killing vector as the explicit U(1) factor in G = SU(3) x U(1), which is indeed the
true isometry group.

2) The symmetry may be larger than (2.30). This can happen when the coset
manifeld can be described by more than one quotient G/H. If G/H = G/ H, with

G > G the maximal group for which this is possible, the true isometry group of



the coset manifold will be
Gx N(H)V/H, (2.33)

modulo the considerations in 1) above. A classic example is given by the seven-

sphere: as a coset space, S7 can be written in many ways:

SO(5) _ SU(4) _ SO(7) _ SO(B) (2.34)
SO(3) ~ SU(B) G SO’ '

In the first two cases, the isometry group is in general G x N(H)/H, but is
increased to SO(8) for a particular rescaling of the vielbeins. On SO(7)/G; the
unique SO(7)-invariant metric is also SO(B) invariant, and 50(7)/ Gz is indeed the

round S7.

3. Symmetric rescalings of G/H vielbeins.

By symmetric rescaling we mean a rescaling of the coset vielbein e,® which
preserves the ‘"natural” isometry G x N(H)/H of the coset metric
Fap(y) = Yavea®(y)egb(y). For example, on a round sphere S" =
SO{n + 1)/S0{n), there is only one such rescaling, i.e. the trivial one which
dilates uniformily all the directions. If some directions expand differently from
others, the SO(n + 1) symmetry of the original S™ is lost, and the resulting
squashed S™ has a lower symmetry.

Let us recall the transformation laws of the coset vielbein under the left

and right action of G:
(left G) : e*(y + 6y) — e*{y)

= =694 [DyY(Ly) — KaP(W)ep(v)] Go ® 2%(y) (8.1
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{right N(H)/ H) : ey + 6y} — e*(y)
= =69°[ Go® + &P(y) wp'(y) G “1e° (). (3.2)

obtained from eqs. {2.8), {2.13) and (2.18), (2.26). Also, in the case of right

isometries generated by Ty, Cy® = O has been used.

Both (3.1) and (3.2) are isometries of G/H: indeed they describe the effect
of (left G) and (right N(H)/H) as SO(N)-rotations on the vielbein. It is clear that
it (Cg)s® is block diagonal in some subspaces 5,, Sg.... of K, then the vielbeins
spanning these subspaces can be independently rescaled with no loss of left G
symmetry. Indeed in this case eq. (3.1) will hold also for the rescaled vielbeins.
A similar argument holds for the right N(H)/H-symmetry, when (C). ® and (Cy).*
are block diagonal in the same subspaces. |

Thus we have the following

Theorem: a rescaling

e™ +7,8", a,runson S,
P N rga"‘. ap runs oh Sp
‘ (3.3)
is a G x N(H)/H-symmetric rescaling if and only if
(Cp)p® D runs on N(H), (3.4)

is block diagonal in the spaces spanned by e, e®. ...
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4. Rescaled connection and curvature of G/H.

The Maurer-Cartan equations for e® and &* are easily derived from e = L, ~' d[,:

de® + %C‘.’u g~ e® + C% ebawt=10
det + -;—c‘,, g%~ e+ %C‘,,v’-.d‘ =0 (4.1)
Under a rescaling of % e% = dir(a)

e” = d=r(ap)

egs. (4.1) become:
1r(r{c) o oo 5 b ra t=
d9+2 r(a) C% & 9'!"'(“)0“@&0—0
do* + %r(a)r(b)c*.. e+ %C‘,-,,o’aw" = 0. (4.2)
The connection one-form B% on G/H can be defined by
de + B% “ ¢ = 0. (4.3)

Combining (4.3) and (4.1} together yields

B‘.=—%%QC““E—%C'0¢N‘+K“&=E’- (4.4)

The tensor K %, symmetric in b,e, is determined by the requirement of

antisymmetry B + Bp® = 0:

r. = -T2 oo, 20 - 2] (5)

Thus the antisymmetric connection B% is given by

PRSP | (OLIG I OLC BRIOLIC

- b
7(a) r(b) r(c) |~ %t ﬂ—)'w‘. {4.8)

r(a)
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The Riemann curvature is defined in terms of £% as
R% = dBF% +B% AB‘Q = R %4 2%~ g% (4-7)

Substituting (4.8) in (4.7), using the Maurer-Cartan eqs. (4.2) for the
differentiated vielbeins, and Jacobi identities for products of structure con-

stants, one arrives at

R = $C° cca'”’]—@—(-l+ Len clyr(dyr(e)

jenenfilld) - denenbills) o
with
i et T

Antisymmetry of R®.4 in @, b, and ¢, d is manifest. The symmetry under (a, &)

and (c, d) interchange is not so obvious, but can be checked with a little work.

The Ricci tensor K, is easily obtained by contracting a and d in (4.8).

Notice that for symmetric algebras its expression reduces to

R = £C% Clar(@7(e) = 27mlr(®)F = yulr(@F,  (4.10)
because

Yoo = =Cp CPa = —Ca C% — C% Cleq = +2 C%; Clys, (4.11)

and the C%, is block diagonal.
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5. KaluzaKlein superpgravity and the squashed seven-sphere.

An interesting compactification of d = 11 supergravity occurs on the
squashed S”, henceforth denoted J7, obtained from the round S? through a con-
tinuous deformation It was originally constructed by Jensen [8] and shown to
be an Finstein space, i.e., a space for which the Ricei tensor is proportional to
the metric. As previously mentioned, such spaces are impnortant in d = 11
supergravity: indeed they give solutions of the field equations [9]. J 7 was investi-
gated as a compactification of d = 11 supergravity by Awada, Duff and Pope in
ref [10], and its supersymmetry content was shown to be either N=0orN=1
depending upon orientation [11]. Subsequently Bais, Nicolai and van

Nieuwenhuizen [12] showed that /7 can be identified with the coset space

50(5) x SO(3
S0(3) x SO(3)"

(5.1)
where SO(3) x SO(3) is embedded as SO(3)! x S0(3)"*£, SO(3)! x SO(3)7 being the
SO(3) x S0O(3) subgroup of SO(5), SO(3)! the factorized S0(3) and SO(3)’*Z the
diagonal subgroup of SO(3)Y x SO(3)L.

Here we will show that J7 can also be viewed as the coset space

S0O(5)

50(3)" (5.2)

where SO(3) is embedded in one of the SO(3)'s of the S0(3) x S0(3) subgroup of
80(5).

The root diagram of SO(5) is given in Figure 1.
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The SO(3YxS0(3)Y subalgebra is associated to the generators
E,, Ea, F\, Fp, H,, Hz. More precisely, it is generated by the following combina-

tions:
SO(3) : E, = -——-——(El + Ep), Eg = —(El Ey). Eg= ———(Hl + H) (5.3)
So(3Y : K = -——(Fl +Fp), B= —-m Fa), B = (Hl Hp). (5.4)

The remaining 4 generators Q in SO(5) split into a singlet S and a triplet T4 of

the SO{3)/*/ subgroup:
S =i(Q@s + &)
T\=Qs— %
To = —i(Qa + a)
Ts = @s—@. (5.5)
A list of the structure constants of SO(5) in the basis (5.3), (5.4), (5.5) follows:
Cla = Eigx, ct % =R
C% = 20t C% = —30as Claa = gou

C% = ~3ba C% = 284 Clao =10

ia 2 a4
1 1
C% = pEtan Clar = 3Eiab
ch = 1 C; =1 (5.8)
ta © 2%aw ab = 3 .
The index conventions are
i,j.k runon SO(3)’
1,7.E runonSO(3)
a,b,c correspond toT, (5.7)

b
0 corresponds to S .
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The Killing metric
748 = ~C%cC%p A B - runonS0(5) (5.8)
is given by:
Y = 3y, 77 =365, Yap = 2ay, Yoo =2, (5.9)

with vanishing non-diagonal parts.

We choose here to embed SO(3) in the SO(3)! subgroup of SO(5). The coset

indices are therefore a,i,0.

According to our discussion in Section 2, the symmetry of this SO(5)/50(3)

coset space is
S0(5) x S0(3), (5.10)

the SO(3)’ being the normalizer of SO(3) in SO(5). The rescalings that preserve

(5.10) are
gt~ %é. e“-hl-!l,-e'. e » %e. (5.11)
Indeed
af=ai0-G/H
Coff  ps=tienun (5.12)

is block diagonal in the spaces {i} and {a,0.

Applying formula (4.8) of Section 4, the rescaled Riemann curvature is

found to be
bz
R = 5 (Buabun — Beabia) B~ 2|82
2
R'.gg = 2156.5 B—g'abT bz

= Lg b
4879 2
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1 B4 2
RC‘” =+ ‘5‘2‘6“6.5 ;‘2' - é(ﬁqaﬂ, - 6‘“6”) 2*%]!’2

R‘m = %63 a.z
1 bt
Rfj“ = 1—2'(6“6” - 5{@6;’)[? - sz}

R( - 1 ba bz
joa = _ﬁaijg - ;'2- g (5.13)

The corresponding Ricci tensor is

Ry = [% - % %:—]bz. (5.14)

We now look for rescalings e, b such that the resulting space becomes an Ein-
stein space. This requires the coefficients in front of the Kronecker deltas in

(5.14) to be equal. This happens only in two cases:
y =2 | 5.15)
V== (5.
N DR _2
i‘l.) ? =5 (5.16)

As it is easy to verify by reinserting (5.15) and (5.18) into the Riemann curvature

(5.13), b%/a? = 2 corresponds to the round S™:
R = 2= 6380 (5.17)

To put (5.13) in the form R %%y one uses the metric in (5.9). The second rescal-
ing b%/a® = 2/5 corresponds to the squashed seven-sphere. Indeed (5.13)

reduces to

(Sag e — Gga8ba)b?

o
813
D

R e =
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17 5, 82

Ruﬂbﬂ = o

aD|rs

: 1
R‘,,, = '12—0 Gq »?

b2
Ruibj = 'I'E % 6“5“ - 'é%‘ (6#6@ - 6.;6,,,)62

Rim =264
¢« -_28 2
R jab — -ﬁ (61‘6"5 —Gwﬁc,—)b

1
RYee = ~3g Sve b2, (5.18)

which coincides with the curvature tensor of the squashed seven-sphere (cf. refs
[10,11]).

This concludes our proof that SO{5)/S0(3), with the embedding discussed
above and the rescaling b%/a? = 2/5, is indeed J7.

When one rescales with 5%/a? = 2, the round S7 is recovered. This is an
interesting illustration of how the symmetry G x N(H)/H of a coset space G/H
can be increased by a rescaling that brings G/H to be equivalent to GrH, with
G c &. Here the SO(5) x SO(3) symmetry becomes the full SO(8) of the round S7
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Figure Caption

[1] The root diagram for SO(5).
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