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ABSTRACT

We show that the structure of gauge theoriles gets particu-
larly simple when space time is enlarged by adjunction of Grassma-
nian coordinates. The method applies in flat space as well as

in curved space, with gravitational interactions.
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In some lectures given by the author in Cargese”, it

was observed that the gauge theories involving local fields
with p antisymmetrized Lorentz indices,p » 1, shxe generally
the fascinating property that thelr algebrale, and possibly geome-
tric, structure gets simplest when the flat space-time { xp'k is
enlarged by adjunction of a zet of unphysical ccordinates 2] ,€§
inte a space with local coordinatesi xp,e ,Eékz). A deeper unders-
tanding of the role of Bianchl identities in this description
of' gauge symmetries has been reached now. Furthermore, recent
work has shown that one can naturally Introduce the invariance
under local change of coordirnates in the formalism. As a matter
fact, this provides a simple algebraic description of the symme-
tries of gravity and of gauge theories coupled to gravitya).
It has become more and more obvicus that this formalism is &
quite efficient tool for extracting the cohomological structure
inherent to gauge invariant theoriesa).
deeper understanding of thase questions related to anomalies
has been reached1’5).

The 6§ and Eé unphysical coordinates are chocsen as pure
Grassmanians {©? -864+60 =§ * = () with no spinorlal charge.
Therefore they violate the physical statistics, and this permits
one to predict amn effective dimension D-2 for the enlarged space
ix“,@,é}. Notice that D=2 is the dimension of the tranver_'se
space in which the physical parts of gauge fields of the D-dimen-

sional Minkowskl space-time i xpis are forced to live whenever

In particular, a much



physics is described by a gauge invariant Lagranglan.

In the enlarged space, the gauge fTields are introduced
- as a set of extorior forms B? (x,2, 9) (p;), 1), classified
by the index 1 and possibly valued in given representations of
Lie algebra. The value p=1 corresponds to the Yang-Mills case.
Over the point (x,e,é) the space P_;of differentlal forms is
spanned by the basis of forms o\ “;{“I = dxfl, ... dxpﬁ.-q-/\
@) A (@B, witn @6, @Bz 46, ... 46,
dq..!dG,. Notlce that P 1is Infinite dimensional because (dg)ai
A (35)? never vanlshes whatever the values of q and _q are. Indeed
668 and d_é are exterior forms of Grassmanians, and thus are commu-

Pl
ting objects. In local coordinates one can expand Bp as

~ p -
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We cali Bp’ which has no d& or d© components the classical p-form

.uith BT ;g'Q 9)

g (a 8,0)dlx )" . p o™ ) (46) ¢

gauge field and B;‘q . § = Q+q 2 1» the ghosts of order g of
the p-form Bp' According to eq. (1), the spectrum of ghosts fer

a generallized p-form Bp has a pyramidal structure
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The fields which occur in ordinary field theory and are
subject to the functional integration are ldentifled as Bq' {r\,o 0)
(d 9)‘1 A @9) . They satisfy by definition the physical
statistics when the ghosf number g = q+q 1s even, and the unphysi-
cal one when g is edd. The commutation properties are identical
te those given by the rules of exterior caleulus in P, the grading
be;ing defined as the sum of the ghost number and Lorentz degree
for any object. It follows that the effective number of degrees
of freedom Nphys carried by all flelds contained in B is altoge-
ther

5 P P
Mobys = gﬁ“ @™o )= \o-2 )
=0

This 1s exactly what 1s needed, since a classical p-form gauge
fleld carries (g) inderendent components, but describes only
( E‘l) physical degrees of freedom in D-dimensional Minkowski
space-time. 7This property is related to the above remark abo:.:t
the effective dimension D-2 of the spaceix’:S ,_93. We have assumled
that a fleld whlch can propagate independently counts negatively

if 1ts statistics is unphysical. This assumption is motivated



by the rules of functional integratioen.

¥e shall in fact postulate that a p-form gauge fleld is
described at the quantum level by all components, classical and
ghost, contained In a generalized exterlor p-form in P, eq. (2).
All products of fields must be understood as exterior products
in P, and the wedge product symbol wrill be generally __omitted.

To determine the wvarlations of all fields B(L‘(?x,s,-é)

A ~ F-3

we Introduce the exterior differential d in P. 'd splits into
the "horizontal" component d = dx* 3/3x"and the "vertical” compo-
nents s:dﬁéja_é and 3 = d-ébﬁé Evaluated at 6 = & = 0, the
action of s and S on the c¢lassical and ghost components of ,‘B'p
is identified with that of the BRS and anti-BRS symmetry. In
this way an infinitesimal gauge transformation 1s tantamount
to a displacement along the unphysical direction & or _é . The
basic rule of exterior calculus is Aé‘ = 0. By expansion in ghost
number, this is equivalent to d* = 0, sdrds = 0 = “sd+dS and

s = s8+8s = ' = 0. The latter property corresponds In fact

to the closure relation and Jacobi identity of the gauge symmetry.

associated with 35 and -5.6).

~ .
Using d we can define the field strenghts of the "potential"
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df 1is the free part, i.e. the Maxwell part of the fleld strenght,
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The interacting part Rf’ii is a (p+1)-exterior form function

e

of the potentials B and their exterior derivatives, that is
lba A

to say a functlon of B and G. In the Yang-Mills case for Instance,

A AA A L% A
one has F = dA+AA = dA+ ~ [A,’K}.
A
P
B, >
_~ P
determine the field strenghts G[,,.l y il.e. the possible forms

Given a set of gauge fields we need a criterion to

of the functions R?f_'i (E,E)- In fact Aéi"’ is to be interpreted
as a potential with gauge degrees of freedom and therefore should
not vary tensorially under s and s transformation. Yhis implies
in p icular that the s transform of BP must contain a non
homogeneous part, the simplest example being sA = -dc in electrody-
namics. On the other hand, G pyg must be eventually a physic.al
quantity with no gauge degrees of freedom and must vary tensorially
under s and s, i.e. gauge, transformations. As will be shown

shortly, this requirement and other consistency properties are

all satisfled at once if RPH is such that the field strenghts

G satisfy Blanchi identitjies.
pas Y

16, =2 &% (58 &

P;f‘i .b Pa'F-b é (5)
' & P
The {P, —Pa-)-form (L is an exterlor product of G and B. Fur-

thermore, one requires that the dependence of d*? on B, at fixed

G, is only through the 1-form (e.g. Yang-Mills) gauge fleldscontai-
P

ned in the set of filelds B, and not more than linearly. From

i
eq. (5) we can determine the possible forms of R since the

Bra
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equations

a0 16 -5 d326
R {8a)

o

&,

yield the algebraic constraints on R

Favl

Ri . d':)s ~ sy 3
o Pl - .Z;‘ Pi-p, (d’&f-a + Rf‘gu) {éb)

A P
Notice that R(B,G) 1s defined modulo d exact terms, Rop & RF*3+

Fa
dZP(B,G).The arbitrariness on I'P corresponds in fact to mere
redetinitions of By into By z Bo+Zn (B 20
4] P nto p= BP+ b <Gl
~—
BP ; the last equation

Starting from a set of fields

generally permits one to determine the admissible functions RP*I ,

by inspection over all possible dependences on AE-K and '&8’. or

{ﬁ' and '&' If for Instance one starts fyom a Yang-Mills field?
and a 2-form ?3'2 with no Yang-Mills charge, the general solutions
‘for the admissible field strenghts are F - WA .%['R,“A] and ’(\:'3
= Es";mT.: (AdA+ o, %m), so that &F ==d [}(,’ll:"} and oG =aTr (FE).
Notiece +pat ~ - ol and A are arbltrary parameters, which
represent the only freedom left in the determination of F and

o 7
G satisfying eq. (5)".

Suppose now that we have determined the admissible field

R o
strenghts, eqs, {4,5), of a system of gauge fields Bp. To enforce

the physicallty of these field strenghts 1In flat space-time,

and to determine In fact the dependence in & and -é of all quanti-

-~

ties, we impose the following horizontality conditions on the

field strenghts, which, somehdw, are of the Maurer-Cartan type

~ .= My Hord

GP+‘1 - Gﬂ"/"'pii OLX A----AJ\K = GP
o
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Eq. (7) means that the field strenghts have no ghost compo-
nents, in contrast with the gauge fields. This most simple requi-
rement has many consequences, which eventually determine consisten-
tly the expression of the gauge symmetry on all fields.

(i') Once the constraint (7) is expanded in ghost number, this
determines the action of 5 and s with s® = s3+8s = 5 7 = 0. In
uil]

fact the eqiations CP"% = 0 can be thought of as

differential

_equations in &, &, and eqs.(5) are their integrability conditlons,

which enforce the nilpotency of s and s. The usual BRS operators
are identified with s and s, evaluated at &= é = 0.

{ii) The field strenghts vary '"tensorlally" under s and s trans-
formations, which mean that sG,,, (36 pyy ) is generally indepen-
dent of the space-time variatiens of primary ghosts dBP‘_'T (dB;‘: ).
(111} Invariant Lagrangians in D-dimensions, éfp , which can be
written as exterior products, correspond to Invariant d-exact
form of rank D+1, ID-H {G) = d£0 (B,G).‘ Other solutions may
exist of the type *GG.

(iv) The existence of invariant d-exact forms of rank D+2, IDHL (G)=

e v s




d A psi (BG) implies the possibility of anomalies f{n D-dimen-
sional space-time defined as the solutions of the conslstency
equa.tion 5 ﬁi +d Ag—_1= 0.

The correspondence between the anomaly ﬂ;and the invariant form
Iml= d ﬂo,i is given by the following equation, true modulo s -
and d - exact terms.

. Bh0 S '
A = Bp-d 3E>P 6 -/—1011 (B) 6) (8)

£

D

We will give now short demonstrations of the peint (1) — (iv).
Pl

Point i: The action of s and S on the fields BP is

given by expanding in ghost number eq. (7). For the fields

which are on the edges of the pyramid (2}, one has

9.0 a0 a 4,0
S E??% -.d BP":) - [Rpu( B)G)]P,%

(9a)
< 29 o4 H T 199 |
3 E‘;_% -~ 48 [R?“[B,e)}P_g o0
ql‘_{“ - “‘*')?l‘i
On the other hand, only sB +sB is determined for

Py P2
the fields inside the pyramid (2) with Q¢ g, @ < g, G+g =

g- This degeneracy however is not essential, and can be railsed
. fad
by postulating an auxiliary generalized (p-1) form bp-i . The
At
field components 1n beuild up the following pyramid of auxiliary

[
fields, which must be considered as fundamental fields, comple-

»

~
ting all fields components of Bp'f
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These flelds generalize the well-known Stuckelberg-Kugo-0jima
auxiliary scalar field b of the genulne Yang Mills case. They

can be Interpreted as Lagrange multipliers for all relevant gauge
ad a,3

. We call the fields b
-9 p-toy

auxiliary, because it is always possible to obtain gauge fixed

fixir~ functions for the fields B

and s and/or s invariant Lagrangians such that they have akebraic e qualions

of motion. One . defines 58;’; = b?_’,\q'i d6 d6 (9 < g, O
- 4- - - 3+, 9.4
<9, g+q = g) and sb',__’% = 0, which determines in turn sB:_%q
- 4,4 — -
ang sb 44 with s* = s5+3s5 = 5% = (.
L

The gauge transformations of Bp are obtained from the
expression of sBp., by replacing all the primary ghosts B;)io

by'infinif':esimal parameters € with the opposite, i.e. physical,

-t
statistic;

.

Res (8,6) (o

. : ; .
SB'='de?-i‘6f. §—.-
[ i i 58 2

e 16
3

It is simple to verify that eq. (7) effectively determines

s and s with s* = s54+3s = 52 = 0, which is necessary for consisten-

cy 6) » To prove this, one uses the Bianchi identity (5), written
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fad
under both following equivalent foras, where we have set & = G

~ Tt ~ Ny

‘ GP(” = d GPa'rj.

~ % AL Rl L5 5

d GP-+1 = d BF;u t Z Pi*?g(‘e’ﬁ) [;l’dti (1)

By comparing these twc equatlons, and using the properties d?
= 0, sd+ds = 0, sd+d5 = 0, one finds that ?LBP must vanish
as the only possible source of terms containing more than two
d@ and/ or d@. The hypothesis that d;s {¢,B) cannot depend
on the gauge flelds B at fixed €, except for a possible linear
dependence on the 1-form gauge flelds, is the clue of thls demons-
tration. It follows that s® = Ss+s5 = 5 2 = 0 on all the fields
contained in (Ep.

Point 1i: The Blanchi identity (5), expanded In ghost

number, determines the action of s {and ‘E) on the fleld strenghts.

One has

@tsfs)Gf*i Z d. (6 Al’i‘) @Q—CK))G

ffi

( 6 A) (12}

"l

SA™

In our notation A(“) stand for the 1-form gauge fields of the

Gf?a

12

system, and “¢® and T ) are the corresponding Faddeev-Popov
scalar ghosts and anti-ghosts.

Point_jiii: Depending on the form of the matrix dié in
eq. (H), it 1s often possible to write an s and s invariant
Lagrangian in D dimensien Jn (G,* ) function of G P and their

Hodge transform(* G . The * operation is defined as * (Z

b-p By B

dx“,f.,._,ﬁdxp?)ﬁ ghiies s My Zl’-d f". dxpf:';\I ..... Adxpo . For the
pp

system F = dA+ %*:[A,A], Gy = dBy + A TR (AdAsal AMA), an invariant

O p ty of the

tagranglan 1s for Iastance ib” F¥F, GG imdepe ndently ¢ . e

value of D.
The existence of a Lagrangian in D-dimension is also guaran-
teed if one can construct a d-exact form of rank D+1 function

of G. Indeed, the following algebrafe identity, valld fer any’

value of D s

I (8) = e i (B,6) (13a)

implies cbviously

- A . |
Tns (G) = & £,(8,6) (13

A - bl
Thas, using the constraint (7}, G = G, one gets (d+s+s) §°(B,G)
=d 'iD (B,G). This equation can be expanded in ghost number,

and ylelds the following equations

INCE A AL

For g = 0, eq. (14) indicates that jD (B,6) is indeed an admissi-
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ble Lagranglan since its action is s invariant)s Sofo {B,G)
~ 4

= Sd [:9‘5'6”0-1 = 0. Observe that J, 1is only defined up

to a d-exact form (a pure divergency) or a s-exact term (a gauge

fixing term). Canronical gauge fixing terms,including the relevant

- -
ghost interactions, are of the form ss (Z Z B'q (P.ﬁ)
330929
In these gauges the equatlons of motion oP the fields b are alge-
By

brale. GOther gauges exist in which the bp-l-%, _propagate and

can be Interpraeted as generalized Nielsen Kallesh ghosts.

Point iv: In the same way as some lagranglans im D-dimen-

slons are related te d-exact forms in D+1 dimensions, anomalies ~

in D-dimensions ,which can be written as exterior products.are
related to d-exact forms in D+2 dimensions, I .y (G) = d ﬂnu
(B,G). Suppose the existence of such a form I,,.. (8,6). One

has identically

(15)
The BRS symmetry equation ’E = G Implies that Ip,s © = ID+&.
{G}, and thus
AL
(16a)

One has again . a tower of equations

t d[ﬂou( 8

- %Jo
S [ﬂtm(. Bac’\]m.',_g
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among which one recognizes, for g = 1, the consistency equation
for an anomaly in D-dimensional space-time. The corresponding
1

solution ( &ﬂm}o‘ois written in eq. (8), and the possible anoma-

lous diagrams- can be classified from the fleld decomposition in
4"
o

These general predictions concerning lLagrangians and anoma-

lies, are clearly related with the cohomology of the s and

5 operators for D-forms with ghost number 0 and !1). It is only

in the case of anomalies which can be written as exterior products

in v--g Mills theories that these results have been rigerously

8}

verified ’. As a matter of fact, all studied examples of thecries

with p~form gauge fields support the following genmeral conjecture.
31¢ 31
82 ¢ 5K S

+ d Ka, which are exterlor products of the fields, can be determi-

The sclutions ﬂ of the equation sﬂ + d ﬂ

ned for any value of % and D from the sole knowledge of a d-exact

form ID,%H_ of degree D+%+1such that

ai_ : [L\“% (3, é)ﬁ,

{17a)

d ’lmg (B,6) = Im%u (B, 6) (17b)
ﬂ%\bo " A% ip 4 ol Ko-tg -1

and the B and G dependences of the d-exact form ID+5+1 and of

are. such that

Bn+3

(8 .. 8,6/ + 0
S&p; 55;.»1) I ( ) #

PeteetPq = 3
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(% .

. 1 (B,6) . O
'SB“_ sBPq) IG pre+d )

Pi"“‘*f:'q =¢2 (17¢)

Clearly, eq. {17), If general, would amount to an easy algebralc
determination of the cohomology of the operator s.

Gravity and curved space

Cravity, l.e. the gauge theory associated with invariance
under local changes of coordinates, can be naturally intreduced
in the formalism as resulting from the structure of the Poincaré.
algebra.

We will assume for simplicity that no gauge field has a spinorial
Acharge, and therefore we leave aside the case of supergravities,
for. which we known now to apply the method only in few examples‘*).

In addition to the set of gauge fields B;‘: de_scribed above,

A A a P R—
we introduce the vielbein & = e dx® + e~ d& + €z d2 and the

~ al ab * ab @ ab =
spin-connection O = C-U'u dxf C—UO d© + . dB. a and
(=]
b stand for the indices of the Lorentz group In D-dimensions.
a.
The classlical vielbein eu is assumed as jnvertible. Therefore,
the part with ghost number 1 In © ‘must not be an Independent

A
ghost. Rather we impose the following constraint on e

16

=8 .
. . _ 2
e =& +ige 138 “"F(Lg@) (e%)
SA and S’Lare the ghost and antighost vector fieldSof the dif-
fromorphism symmetry. The contraction operator i‘f along a vector
SNy
field \f'u'is defined by L?dx :‘f-, LTF:O when F is a O-form, and
"'f’ is graded by g(f)-1, where g(f’) is the ghost number of t‘f"""'-
Al PR LCH . . It determines
Eq. (18) means eil = ep. +£ ep +5 e[.t
in fact the correspondence between the algebra of diffeomorphisms,
with ghosts El:and the ‘translation sector of the Poincare alge’:}:‘aJ
e A
with ghosts ?Q = e‘; %'K. The field strenghts of e and @, and

their Bianchi identities are

AN
Aa N oaq ~ab +o ;%—:_,ng-;-g‘e
T = de + W & P A Al A
Fa™
Aﬁfdk': & wab + wac wc d’ R :_[W’ ](19)

A AT e
Eq- (18), and the Bianchi identity of 7, DT = Re, suggest that

the notion of horizontality in curved space must be defined as

N .

Sz (2015,3) Gpat

R = (mpt'i*-%) R

N * -~

T = (enpigg) T (20)

Ve ¥

This can be written also as Gp-ﬂ. = G“-i--' _qPH(B,G,eaT,%‘sR)
rgﬁ# tﬂpd— “

This definition of the horizontality, when the space has

curvature, i1s in fact determined by the necessity of assigning
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a part with ghost number 1 t& the vielbein, In turm, this provides
a geometrical interpretation for the ghosts SK and 'sr— of diffeo-

mosphisms.

Awr
By expanding the constraint on T in ghest number, we obtain

the actlon of s on the ghost of diffeomorphisms
BUPR R R F
- - 5 M ——
RN TR PR S48 S 1

This 1s the expected transformation law for é » corresponding
2)

[ 7]
(]

in

tl- fot-

&
zsé
i's' 3

to the known diffeomorphism algebra” . The rest of BRS equations

is deduced from eq. (20}, and gives back the results of refs.
3,9).

The conslstency of this comnstruction of the BRS symmetry,
i.e. the verification of :i" = 0, is crystal clear by the foliowing

change of variables:3’4)

-~
?55-1—5 {'5\3'3—1'-‘5: ot-:oti-’;-rf-s\
/E’.\ 2 (Q‘(P-‘-.g+§) g

A~ . b

&z (erpiq,x) &

-~ Do (22}
Bpz (2¥p-3r3) Bp

‘5; is d-dls is the Lie derivative along the wvector
field

v -

. One has the essential propert{e?)

T o vy o) T lare
= Gxp-g,g) d (e iy, g) (232)

2
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LAY . e A
BC = @xp-ts,3) BC
(23n)

Notice that the redefinition (22) leads to the introduction
~ . e . .
of the modified ghosts Bﬁ'o -8%% . g B% e (~)% bg -t
Py Py 5 P Yy
The horizontallty constraints (20) on the field strenghts
are simplest in terms of the new variables. Indeed, using the

properties (23), one gets

A\
a = 2.
-~
T 2 de 1-3)8 =T
N o~ o~ A A D “
GPH = dﬁ? t R?tt(B)G: PR R:T): GP-“ (29

We have therefore obtained a BRS structure completely

similar to that of a gauge system in flat space, eq.7. The same

analysis as 1in flat space, based on Bianchi identities, shows

. =
therefore that (24} determine S and s

AR
with d = 0. Finally, eq.
AR Az
(23a), which implies trivially the equivalence d =0¢yd =0, insures
-~~~
that the full BRS operatoers s = ?+L.3 and s = 3+Li are nilpotent,
which proves finally the consisteney of the geometrical determina-
tion of s and s from egs. (20) or (A4).
Notice that the disentangling of the diffeomorphisms fr_{;m
the internal symmetrles, including the local Lorentz symmetry,

A
has been achieved by the introduction of "hat" variables in eq.

R IR o
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{22) with the crutlal properties (23).

As a consequence, the search of Llagrangians and anomalies
In curved space 1s eguivalent to a similar problem in flat space
(points (111) and (iv))} except that one must ilaclude a possible
dependence on ¢, R, T for ID+‘.L and 1012_, in eqs. (13) and
(15). The clue is that the Lagrarglan and anomaly equations
sfo = 0 and Ss ﬂ'm = 0 are equivalent to S/s\ 6{0 = 0 and
5? ﬂ'p = 0 in D-dimensional space time, since ; S L;CZD) =
0 for any D-form which vanishes at the boundary. The equation
that one must solve is thus of the flat-space type ry ﬂ?('a‘,c)
+d ﬂ?; (8,0 = 0.

As an example the Einstein Lagrangian and cosmological

term correspond respectively to the (D+1)-forms 56;.1%'"_0_0

o - a, a

14 M0 gfesdond(e, | el.eRT2 ) ang.
as 4 % a4 - a

€ay.eay, T € o e o~ 4Gy, a € .. € ) This

result 1is similar tolthe one c;btained in the group rnanifo‘ld apprc;-
ach of Regge et al.

To summarize, 1t appears that the algebralc structure
of gauge symmetries in curved space is completely analogous to
that in flat space. The invariance under diffeomorphisms is obtai-
ned from the translation sector of the Poincare algebra, owing
to egq. (18). The correspondence between the gauge symnetries
in curved space and in flat space is simply obtained by the redefi-
nitions of fields and BRS operators from the changes of variableg

. A

P e
b = aly - = - d ).
{23,23),8 = exp 'y B d {exp Yy d(exp 1313) As a

1.
i
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consequence, the relevance of the enlarged space ix?Q,é‘S for
studylng the properties of gauge symmetrles 1s still existing
in the presence of non vanlshing curvature and torsion. Finally
the possible gauge symmetries invelving exterior p-form gauge
fields can be classified from the algebralc determination of
field strenéhts satisfylng Bianchi identities.

A byproduct of our analysls of gauge symmetries in curved
space 1s that 1ts points out the existence of a graded algebra
of operators actlng on the generalized ghost-classical gauge
fields. This algebra is generated by the operatoers d, s, ';, ij’
i

‘b

. . . &5
g+L of the iLorenz degreel and ghost number g.Preliminary work !

by mean of the commutator [ , ] which 1s graded by the sum

seems to indicate that this formalism 1s in fact also well adapted
when local supersymmetry is present, and 1ts aplication %o the

10}

gauge Tixing problem in curved space will be presented elsewhere.
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