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Abstract. In these notes, we give a brief overview of the (finite di-
mensional) representation theory of finite dimensional semisimple
Lie algebras. We first study the example of sl2(C) and then provide
the general (additive) theory, along with an analysis of the repre-
sentations of sl3(C). In the last section, we have a look at the multi-
plicative structure of the representation ring, discussing examples
for the Lie algebras sl2(C) and sl3(C). The main source for these
notes is the book Representation Theory, A First Course by William
Fulton and Joe Harris.

The name of the game

In this section, we present the fundamental terminology and notation used in the
sequel. In particular, we introduce representations of Lie algebras (Subsection 1.2)
and some basic constructions (Subsection 1.4).

1.1 Lie algebras

The theory of Lie algebras is the linear algebraic counterpart of the (rather geomet-
ric) theory of Lie groups.
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Definition (1.1). A Lie algebra is a finite dimensional complex vector space g,
equipped with a skew-symmetric bilinear map

[ · , · ] : g × g −→ g,

the so-called Lie bracket, satisfying the Jacobi identity, i.e., for all x, y ∈ g,
[
x, [y, z]

]
+

[
y, [z, x]

]
+

[
z, [x, y]

]
= 0.

A homomorphism of Lie algebras is a homomorphism ϕ : g −→ h of complex
vector spaces that is compatible with the Lie brackets, i.e., for all x, y ∈ g we have

ϕ
(
[x, y]g

)
=

[
ϕ(x), ϕ(y)

]
h. !

Example (1.2). Let V be a finite dimensional complex vector space. Then the trivial
Lie bracket [ · , · ] = 0 turns V into a Lie algebra. Lie algebras of this type are called
Abelian. "

Example (1.3). The main source of Lie algebras are matrix algebras:

• Let V be a finite dimensional complex vector space. Then the set of endo-
morphsisms of V is a Lie algebra, when endowed with the Lie bracket

EndV × EndV −→ EndV
(A, B) −→ A ◦ B− B ◦ A.

We denote this Lie algebra by gl(V). Moreover, we use the notation

gln(C) := gl(Cn),

and view the elements of gln(C) as matrices rather than endomorphisms.

• Let n ∈ N. Then the traceless matrices form a subalgebra of gln(C), denoted
by sln(C). "

Example (1.4). If G is a Lie group, then the tangent space TeG at the unit element
can be endowed with a Lie algebra structure (using the Lie derivative of vector
fields or the derivative of the adjoint representation of G [2; Section 8.1]). "

Definition (1.5). A Lie algebra is simple, if it contains no non-trivial ideals. Non-
trivial Lie algebras that can be decomposed as a direct product of simple Lie alge-
bras are called semisimple. !

Simple Lie algebras can be classified by means of Dynkin diagrams, a purely
combinatorial tool [2; Chapter 21].

Example (1.6). For example, the Lie algebras sln(C) are all semisimple (they are
even simple Lie algebras) [2; Chapter 21]. "
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1.2 Representations of Lie algebras

Like any algebraic object, Lie algebras can be represented on vector spaces. Clearly,
these actions should be compatible with the Lie algebra structure, leading to the
following definition.

Definition (1.7). Let g be a Lie algebra.

• A representation of the Lie algebra g is a (finite dimensional) complex vector
space V together with a homomorphism g −→ gl(V) of Lie algebras.

• A subrepresentation of a representation " : g −→ gl(V) consists of a sub-
spaceW satisfying

∀x∈g
(
"(x)

)
(W) ⊂W.

• A representation of the Lie algebra g is called irreducible, if it contains no
proper subrepresentations.V

ϕ

"V (x)
V

ϕ

W
"W (x)

W • A homomorphism of representations "V : g −→ gl(V) and "W : g −→ gl(W)
of the Lie algebra g is a linear map ϕ : V −→W such that

ϕ ◦
(
"V(x)

)
=

(
"W(x)

)
◦ ϕ

holds for all x ∈ g. !

Clearly, a representation g −→ gl(V) is the same as linear map ϕ : g ⊗ V −→ V
satisfying

ϕ
(
[x, y]⊗ v

)
= ϕ

(
x⊗ ϕ(y⊗ v)

)
− ϕ

(
y⊗ ϕ(x⊗ v)

)

for all x, y ∈ g and all v ∈ V. We will sometimes als make use of this description
and write x · v := ϕ(x⊗ v) for x ∈ g and v ∈ V.

Example (1.8). Let g be a Lie algebra. Then

ad: g −→ gl(g)

x )−→
(
y )→ [x, y]

)

defines a representation of g on itself, the adjoint representation of g. "

Example (1.9). LetV be a finite dimensional complex vector space and let g ⊂ gl(V)
be a subalgebra. Then the standard representation of g is given by

g −→ gl(V)
x )−→ x. "

With this terminology, the goal of this talk can be summarised as follows: We
want to classify (up to isomorphism) all finite dimensional representations of finite dimen-
sional semisimple Lie algebras.
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Lie algebras Lie groups
Lie algebra homomorphism Lie group homomorphism
ideal normal subgroup
Cartan subalgebra maximal torus
Lie algebra representation Lie group representation

Figure 1: Translation between Lie algebras and Lie groups

1.3 Travelling between the Lie group and the Lie algebra universe

Using the usual translation mechanisms (i.e., differentiating and the exponential
map) between Lie groups and Lie algebras (cf. Figure 1), we obtain Lie algebra
representations out of Lie group representations (and vice versa):

g = TeG

exp

Teϕ
End(V) = gl(V)

exp

G
ϕ

Aut(V)
Let G be a Lie group and let g := TeG be the corresponding Lie algebra. If

ϕ : G −→ Aut(V) is a representation of G, then the derivative Teϕ : g −→ End(V)
is a representation of the Lie algebra g.
If G is simply connected, this process also can be reversed [2; Second Principle

on p. 119]: If " : g −→ gl(V) is a representation (that is, a homomorphism of Lie
algebras), then there is a Lie group homomorphism (that is, a representation of G)
of type ϕ : G −→ Aut(V) such that " = Teϕ.

1.4 Combining representations

The usual suspects of linear algebraic constructions give also rise to composite re-
presentations of Lie algebras. For example, there is an obvious way for defining
the direct sum of representations:
Definition (1.10). Let "V : g −→ gl(V) and "W : g −→ gl(W) be two representations
of the Lie algebra g. Then the direct sum of these representations is defined by

"V ⊕ "W : g −→ gl(V ⊕W)

x )−→
(

"V(x) 0
0 "W(x)

)
. !

This definition is compatible with the direct sum of group representations (in the
sense of Subsection 1.3).
Remark (1.11). Let G be a Lie group with corresponding Lie algebra g := TeG. If
"V : G × V −→ V and "W : G ×W −→ W are two representations of G, then the
direct sum of the differentiated representations, which are representations of g, is
the same as the derivative of the direct sum of the group representations "V and "W .

!

How can we define the tensor product of two Lie algebra representations? Let
g ⊗ V −→ V and g ⊗W −→ W be two representations of the Lie algebra g. The
naı̈ve definition

g × (V ⊗W) −→ V ⊗W
(
x, (v⊗ w)

)
)−→ x · v⊗ x · w
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is not linear in g and hence does not give rise to a representation of g on V ⊗W.
However, by differentiating the tensor product of Lie group representations, we
are led to the following definition:

Definition (1.12). Let "V : g −→ gl(V) and "W : g −→ gl(W) be two representations
of the Lie algebra g. Then the tensor product of these representations is defined by

"V ⊗ "W : g −→ gl(V ⊗W)

x )−→
(
v⊗ w )→

(
"V(x)

)
(v) ⊗ w+ v⊗

(
"W(x)

)
(w)

)
. !

Similarly, differentiating dual representations of Lie groups gives us the corre-
sponding representations for Lie algebras:

Definition (1.13). Let " : g −→ glV be a representation of the Lie algebra g. Then
the dual representation of " is given by

"∗ : g −→ gl(V∗)

x )−→ −"(x)T. !

The tensor product of representations of Lie algebras is bilinear (up to isomor-
phism) with respect to the direct sum of representations of Lie algebras. Hence, we
can reorganise the world of representations of Lie algebras into a single algebraic
object:

Definition (1.14). Let g be a Lie algebra. Then the Z-module generated by the set
of all isomorphism classes of g-representations, divided by the equivalence relation
generated by

["] ⊕ ["′] ∼ [" ⊕ "′],
and equipped with the direct sum and tensor product of g-representations is called
the representation ring of g. We denote the representation ring by R(g). !

Since we are only dealing with finite dimensional representations, it is easy to
see that the collection of all isomorphism classes of representations of a given Lie
algbra indeed form a set (and hence the above definition makes sense).

1.5 Reduction to irreducibility

When dealing with representations of semisimple Lie algebras, we can restrict our-
selves to irreducible representations:

Theorem (1.15) (Complete reducibility). Let g be a semisimple Lie algebra. Then every
(finite dimensional) representation of g is a direct sum of irreducible representations of g.
In particular, the representation ring of g is generated by the irreducible g-representations.

Since we are dealing with finite dimensional objects, to prove the theorem it
clearly suffices to show the following:

Proposition (1.16) (Existence of complementary submodules). Let V be a represen-
tation of the semisimple Lie algebra g and let W ⊂ V be a g-subrepresentation. Then there
is a g-subrepresentation W′ of V such that V is the direct sum of the representations of g
on W and W ′.
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Proof. For example, this can be reduced byWeyl’s “unitary trick” [2; Section 9.3] to
the corresponding statement about representations of compact Lie groups, where
it can easily be shown be means of averaged inner products [1; Theorem 3.20]. But
there are purely algebraic proofs of this fact [2; Proposition C.15].

Hence we only need to analyse irreducible representations and can thus refor-
mulate our goal as follows: We want to classify (up to isomorphism) all irreducible finite
dimensional representations of finite dimensional semisimple Lie algebras.

The atoms of representation theory

To get a first impression how a successful classification of the irreducible represen-
tations might look like, we sketch an analysis of the representations of the simplest
semisimple Lie algebra, namely sl2(C). Moreover, the representations of sl2(C) turn
out to be basic components of the representations of all semisimple Lie algebras.
To this end, we choose the following (vector space) basis of sl2(C) = {A ∈ C2×2 |

TrA = 0}:

H :=
(
1 0
0 −1

)
, X :=

(
0 1
0 0

)
, Y :=

(
0 0
1 0

)
.

These elements clearly satisfy the following relations:

[H,X] = 2 · X, [H,Y] = −2 · Y, [X,Y] = H.

2.1 Decomposition into eigenspaces

To find out how the (diagonalised) element H acts on a a representation of sl2(C),
we make use of the Jordan decomposition on Lie algebras [2; Corollary C.18]:

An element is called semisimple, if
its action is diagonalisable

Theorem (2.1) (Jordan decomposition). Let " : g −→ gl(V) be a representation of a
semisimple Lie algebra g, and let x ∈ g. If xs and xn ∈ gl(g) are the semisimple and the
nilpotent part of ad(x) respectively, then "(xs) and "(xn) ∈ gl(V) are the semisimple and
the nilpotent part of "(x) respectively.

Corollary (2.2) (Diagonalisability survives). Let " : g −→ gl(V) be a representation
of a semisimple Lie algebra g, and let x ∈ g. If ad(x) ∈ gl(g) is diagonalisable, then also
"(x) ∈ gl(V) is diagonalisable.

Remark (2.3). Let V be a finite dimensioanl complex vector space and let g be a
subalgebra of gl(V). If x ∈ g is diagonalisable (viewed as an element of End(V)),
then also ad(x) is diagonalisable. !
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In the following, we consider an irreducible representation of sl2(C) on a finite
dimensional vector space V. By the above theorem, the action of H on V is diago-
nalisable. Hence we can decompose V into the eigenspaces Vα of H, i.e.,

V =
⊕

α∈A
Vα,

where A ⊂ C is the (finite) set of eigenvalues of H acting on V.

2.2 The interaction between the eigenspaces

Obviously, it is crucial for the further analysis to know how X and Y act on this
decomposition. Let α ∈ A and v ∈ Vα. Then

H
(
X(v)

)
= [H,X](v) + X

(
H(v)

)

= 2 · X(v) + α · X(v)
= (α + 2) · X(v)

and thus X(v) ∈ Vα+2. Similarly, we see that Y(v) ∈ Vα−2.
In particular, the direct sum ⊕

β ∈ A
β ≡ α mod 2

Vβ

is a subrepresentation of V. Since V is irreducible, we must have A =
{

α + 2 · j |
j ∈ {0, . . . , n}

}
for some eigenvalue α and some n ∈ N, i.e.,

V =
⊕

j∈{0,...,n}
Vα+2·j.

We can depict this situation as follows:

0 Vα

X

Y

H

Vα+2
X

Y

H

· · ·
X

Y
Vα+2n−2

X

Y

H

Vα+2n
X

Y

H

0

2.3 The complete picture

It remains to investigate how large the eigenspaces Vα+2j are, how the set of eigen-
values may look like in detail, and how many irreducible representations for a
given set of eigenvalues exist. The key observation is the following:

Proposition (2.4). We use the notation established in the previous subsections. Let v ∈
Vα+2n \ {0}. Then

V =
⊕

j∈{0,...,n}
C ·Yj(v),
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and
X

(
Yj(v)

)
= j · (α + 2n− j+ 1) · Yj−1(v)

for all j ∈ {1, . . . , n}.

Proof. Clearly, the above direct sum is contained in V. Since V is irreducible, it
suffices to show that the subspace

W :=
⊕

j∈{0,...,n}
C ·Yj(v)

is closed under the action of H and X. Since each Yj(v) lies in the eigenspace Vα+2j
of H, we clearly obtain H(W) ⊂ W. For the assertion on X, we show inductively
that

X
(
Yj(v)

)
= j · (α + 2n− j+ 1) ·Yj−1(v)(∈ W)

for all j ∈ {0, . . . , n}.
Obviously,

X
(
Y0(v)

)
= X(v) = 0 ∈ W,

and

X
(
Y(v)

)
= [X,Y](v) +Y

(
X(v)

)

= H(v) + 0
= (α + 2n) · v.

For the induction step, we compute for all j ∈ {1, . . . , n− 1}

X
(
Yj+1(v)

)
= X

(
Y(Yj(v))

)

= [X,Y]
(
Yj(v)

)
+Y

(
X(Yj(v))

)

= H
(
Yj(v)

)
+Y

(
X(Yj(v))

)

= (α + 2n− 2j) ·Yj(v) +Y
(
j · (α + 2n− j+ 1) ·Yj−1(v)

)

= (j+ 1) · (α + 2n− j) ·Yj(v).

Therefore,W is also closed under the action of X, and hence V = W, as was to be
shown.

Corollary (2.5). In particular: All eigenspaces of H of an irreducible sl2(C)-representation
are one dimensional, and each irreducible representation of sl2(C) is uniquely determined
by the set of eigenvalues of H.

Moreover, we see that the set of eigenvalues of H on an irreducible represen-
tation of sl2(C) consists of integers, symmetric with respect to 0:
Let v ∈ Vα+2n \ {0} (where we use the same notation as above). By Proposi-

tion (2.4) we know that
Yn+1(v) = 0, but Yn /= 0.

Then the second part of Proposition (2.4) yields

0 = X
(
Yn+1(v)

)
= (n+ 1) · (α − n) ·Yn(v),

8
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which implies α = n. In particular, α must be an integer and the set {α, α +
2, . . . , α + 2n} is symmetric with respect to 0.
On the other hand, one checks that for every n ∈ N there exists an (n + 1)-

dimensional irreducible representation of sl2(C) on which H acts with the eigen-
values {−n,−n+ 2, . . . , n}, namely the representation generated by the relations
given in Proposition (2.4).

The combinatorics of general representations

Keeping the classification of representations of sl2(C) in mind, we now proceed to
the general case. Along with the general theory, we have a look at the represen-
tations of sl3(C).
Inspired by the case of sl2(C), we apply the following strategy:

• Find a replacement for H ∈ sl2(C).

• Generalise the concept of eigenvalues accordingly.

• Study the action on the eigenspace decomposition.

• Analyse the geometry of the set of eigenvalues with help of copies of sl2(C)
located in the given Lie algebra.

• More precisely: Find the right symmetries and distinguished eigenvalues and
associated cyclic representations.

3.1 Cartan subalgebras and generalised eigenvalues

The key to the analysis of irreducible representations of the Lie algebra sl2(C) was
the study of the action of the diagonal matrix H on the representations. In general,
we cannot hope that there will be a similar single element of the Lie algebra that
influences the structure of representations in the same measure. However, there is
a suitable replacement for the element H, namely Abelian subalgebras. Of course,
the larger the Abelian subalgebra in question, the larger the impact on the structure
of representations. Hence, we are led to consider maximal Abelian subalgebras:

Definition (3.1). Let g be a semisimple Lie algebra. A (with respect to inclusion)
maximal Abelian subalgebra of (under the adjoint representation) diagonalisable
elements of g is called a Cartan subalgebra of g. !

Example (3.2). The subalgebra C · H of sl2(C) is a Cartan subalgebra of sl2(C).
More general: Let n ∈ N. Then the set h of diagonal matrices in sln(C) is a Cartan

subalgebra of sln(C): Clearly, h is an Abelian subalgebra of diagonalisable elements.
A straightforward calculation shows that an element of sln(C) that commutes with
all diagonal matrices must be diagonal itself. Hence h is maximal and therefore a
Cartan subalgebra. "

9
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Theorem (3.3) (Existence of Cartan subalgebras). Any semisimple Lie algebra pos-
sesses a Cartan subalgebra.

Proof. To show this one can either use the existence of maximal tori in compact Lie
groups, or onemakes use of the non-degeneracy of the Killing form [2; SectionD.1].

In the case of sl2(C), any representation splits up into a sum of eigenspaces of
the diagonal matrix H. In general, the elements of a chosen Cartan subalgebra h
usually do not all act with the same eigenvalue on a given representation. But the
dependece of the eigenvalue of elements of h is obviously linear, and hence they
give rise to elements in the dual space h∗.

Definition (3.4). Let " : g −→ gl(V) be a representation of the semisimple Lie alge-
bra g and let h be a Cartan subalgebra of g.

• A weight of " is a linear functional α ∈ h∗ such that there is a vector v ∈
V \ {0} satisfying

∀x∈h
(
"(x)

)
(v) = α(x) · v.

• The set of all v ∈ V satisfying the above relation is called the weight space
associated to α, and usually is denoted by Vα. The dimension of Vα is the
multiplicity of α in ".

• The non-zero weights of the adjoint representation of g are the roots of g.

• The weight space corresponding to a root is called the root space of α of g.

• The Z-submodule of h∗ generated by the roots of g is called the root lattice
of g. !

All the notions in the above definition seem to depend on the choice of a Cartan
subalgebra. As in the case of maximal tori in compact Lie groups, which are all
conjugate, this ambiguity can be eliminated [2; Theorem D.22].

Example (3.5). The relations between the generators X, Y, and H of sl2(C) show
that 2 and −2 are the roots of sl2(C). "
Example (3.6). What are the roots of sl3(C)? For j, k ∈ {1, 2, 3} let Ejk ∈ C3×3
be the matrix whose (j, k)-coefficient is equal to 1 and whose other entries are 0.
Moreover, let Hjk := Ejj − Ekk. Then

h := C · H12 +C · H13 +C · H23

is a Cartan subalgebra of sl3(C) (cf. Example (3.2)). How does h act on sl3(C)?
For j ∈ {1, 2, 3} let

Lj : h −→ C



x1 0 0
0 x2 0
0 0 x3



 )−→ xj.
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L1

L2

L3

Figure 2: The roots of sl3(C)

L1

L2

L3

Figure 3: The weights of the standard representation of sl3(C) on C3

With this notation we obtain

[Hjk, Ers] =
(
(Lr − Ls)(Hjk)

)
· Ers

for all j, k, r, s ∈ {1, 2, 3} with j /= k and r /= s. Hence, the Lj − Lk are the roots
of sl3(C). A graphical representation of this fact is given in Figure 2 (this figure is
drawn in a certain real subspace of h, namely R · L1 +R · L2 · L3). "
Example (3.7). In this example, we compute the weights of the standard represen-
tation of sl3(C) on C3 and of its dual representation: For j ∈ {1, 2, 3} let ej ∈ C3 be
the j-th unit vector. Then for all k ∈ {1, 2, 3}

Hjk · er = δjr · er − δkr · er = Lr(Hjk) · er.

Thus, L1, L2, and L3 are the weights of the standard representation (cf. Figure 3).
Now Proposition (3.8) implies that −L1, −L2, and −L3 are the weights of the dual
of the standard representation of sl3(C) (cf. Figure 4). "
As in the case of the Lie algebra sl2(C) the analysis of the roots and weights will

be the first step towards a classification of the irreducible representations.

Proposition (3.8) (Weights of composite representations). Let "V : g −→ gl(V) and
"W : g −→ gl(W) be two representations of the Lie algebra g.

11
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L1

L2

L3

Figure 4: The weights of the dual of the standard representation of sl3(C) on C3

1. If α and β are weights of "V and "W respectively, then α + β is a weight of "V ⊗ "W.

2. If α is a weight of both "V and "W, then α is also a weight of "V ⊕ "W.

3. If α is a weight of "V, then −α is a weight of "∗
V.

Proof. These all are straightforward computations.

3.2 Decomposing representations into weight spaces

We continue our analysis with a brief look at the adjoint representation. Applying
the Jordan decomposition theorem (Theorem (2.1)) to the restricition of the adjoint
representation to a Cartan subalgebra and keeping in mind that commuting diago-
nalisable elements can be jointly diagonalised, we obtain the Cartan decomposition
of the Lie algebra:

Theorem (3.9) (Cartan decomposition). Let g be a semisimple Lie algebra and let h be
a Cartan subalgebra and let A be the set of roots of g (with respect to h). Then the Lie
algebra g splits up as

g = h⊕
⊕

α∈A
gα,

where gα is the root space associated to α.

Example (3.10). The relations [X,Y] = H, [H,X] = 2 · X, and [H,Y] = −2 ·Y show
that

sl2(C) = C · H ⊕ C · X ⊕ C ·Y

is the Cartan decomposition of sl2(C). "
Example (3.11). The calculations of Example (3.2) and Example (3.6) show that

sl3(C) = h⊕
⊕

j∈{1,2,3}

⊕

k∈{1,2,3}\{j}
C · Ejk

is the Cartan decomposition of sl3(C) with respect to the Cartan subalgebra

h := C · H12 ⊕C · H23. "
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gα

gα

gα

gα

gα

Vβ

Vα+β

0

Figure 5: Graphical representation of the action on the weight space decomposition

More general, by the same argument as in Theorem (3.9), any representation can
be split up into the weight spaces:

Theorem (3.12) (Weight space decomposition). Let " : g −→ gl(V) be a represen-
tation of the semisimple Lie algebra g, and let A" be the set of weights of ". Then

V =
⊕

α∈A"

Vα.

3.3 Interaction of the root and weight spaces

As in the case of the Lie algebra sl2(C), the root spaces act nicely on the decompo-
sition of a representation into weight spaces:

Proposition (3.13) (Action on theweight space decomposition). Let " : g −→ gl(V)
be a representation of the semisimple Lie algebra g and let h be a Cartan subalgebra of g.
Suppose g = h⊕

⊕
α∈A gα is the Cartan decomposition and suppose that V =

⊕
α∈A"

Vα

is the weight space decomposition of V.If α + β is not a weight of the repre-
sentation, we define Vα+β := 0.

1. Then for all roots α ∈ A and all weights β ∈ A" we obtain

gα ·Vβ ⊂ Vα+β.

2. In particular: If " is irreducible, there is a β ∈ h∗ such that

V =
⊕

α∈A
Vβ+α.

We can represent this proposition graphically as in Figure 5.

Proof. Let y ∈ gα and z ∈ Vβ. It suffices to show

"(x)
(
"(y)z

)
= (α + β)(x) · "(y)z

13
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Figure 6: An impossible configuration

for all x ∈ h. By definition of the Lie bracket on gl(V), we obtain

"(x)
(
"(y)z

)
=

[
"(x), "(y)

]
gl(V)(z) + "(y)

(
"(x)z

)

= "
(
[x, y]g

)
(z) + "(y)(β(x) · z)

= "
(
ad(x)y)z+ β(x) · "(y)z

= α(x) · "(y)z+ β(x) · "(y)z

for all x ∈ h, as desired.

Proposition (3.13) shows that the weight decomposition might be a good tool for
the study of representations.

Definition (3.14). Let " : g −→ gl(V) be a representation of the semisimple Lie
algebra g and let h be a Cartan subalgebra of g. The weight diagram of " is the set
of weights of " in the dual space h. !

In the following steps, we analyse the beautiful geometric structure lying at the
heart of weight diagrams of (irreducible) representations.

3.4 Looking for atoms

It is plausible that not all configurations of weights of a given Lie algebra belong to
some irreducible representation. But which configurations are possible? In some
sense every semisimple Lie algebra is built up out of copies of sl2(C) and the repre-
sentation theory of sl2(C) helps us to discover some of the rules of the geometry of
possible weight diagrams. For example, these rules imply that the configuration in
Figure 6 cannot occur as a weight diagram of sl3(C).

Proposition (3.15) (Locating copies of sl2(C)). Let g be a semisimple Lie algebra with
Cartan decomposition g = h⊕

⊕
α∈A gα. For each root α ∈ A, the direct sum

sα := gα ⊕ g−α ⊕ [gα, g−α]

with the induced Lie bracket is a subalgebra of g that is isomorphic to the Lie algebra sl2(C).

14
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All cited proofs rely on the non-
degeneracy of the Killing form on h∗. Proof. If α is a root of g, then −α is also a root of g [2; D.13]. Moreover, the root

spaces gα and g−α are both one dimensional [2; D.20] and [gα, g−alpha] /= 0, as well
as

[
[gα, g−α], gα

]
/= 0 [2; D.16, D.19].

Hence, we can find elements X ∈ gα, Y ∈ g−α and H ∈ [gα, g−α] satisfying the
relations [H,X] = 2 · X, [H,Y] = −2 · Y, and [X,Y] = H. Therefore, sα must be
ismorphic to sl(C).

In the rest of this section, we mainly stick to the following notation:

Setup (3.16). Let g be a semisimple Lie algebra, let h be a Cartan subalgebra of g
and let

g = h⊕
⊕

α∈A
gα

be the corresponding Cartan decomposition. For each α ∈ A, we write

sα := gα ⊕ g−α ⊕ [gα, g−α]

and we choose generators Xα ∈ gα, Yα ∈ g−α, and Hα ∈ [gα.g−α] satisfying the
relations

[Hα,Xα] = 2 · Xα, [Hα,Yα] = −2 ·Yα, [Xα,Yα] = Hα,

which is possible by Proposition (3.15). !

The results of Section 2 imply that the eigenvalues of Hα on any representation
of sα

∼= sl2(C) must be integral. In particular, this must be true for all the restric-
tions "|sα . Thus:

Proposition (3.17). We assume the notation of Setup (3.16). If β ∈ h∗ is a weight of a
representation of the semisimple Lie algebra g, then β(Hα) is integral for all α ∈ A.

Definition (3.18). Assume the notation of Setup (3.16). The set of functionals β ∈ h∗

satisfying
∀α∈A β(Hα) ∈ Z

is called theweight lattice of g. !

In particular, all the weights of a representation of a semisimple Lie algebra must
be contained in its weight lattice.

3.5 Discovering symmetries

The weight diagrams of sl2(C) all are symmetric with respect to 0. The subalge-
bras sα carry these symmetries over to the general case. The symmetry group then
of course does not only consist of two elements, but it is still generated by reflec-
tions.

Definition (3.19). We assume the notation of Setup (3.16).

15
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α

Wα

L1

L2

L3

Figure 7: The Weyl group of sl3(C)

• For any root α ∈ h∗ letWα be the “reflection”

Wα : h∗ −→ h∗

β )−→ β − 2 · β(Hα)
α(Hα)

· α = β − β(Hα) · α

at the hyperplane “orthogonal” to α.

• TheWeyl group of g, denoted byW(g), is the subgroup of End(h∗) generated
by the “reflections” (Wα)α∈A. !

The term “reflection” can be made precise by introducing a suitable inner prod-
uct on the dual space h∗, for example the Killing form [2; Section 14.2].
A priori, the definition of the Weyl group depends on a choice of a Cartan sub-

algebra, but it can be shown that this group is indeed independent of the chosen
Cartan subalgebra [2; Theorem D.22].

Example (3.20). The Weyl group of sl3(C) and its action on the Cartan decomposi-
tion of sl3(C) are illustrated in Figure 7. "
Proposition (3.21) (Symmetries of the weights). The weights of any representation
of a semisimple Lie algebra g are invariant under the action of the Weyl group W(g).
Moreover, also the multiplicities of weights of any representation are invariant under the
Weyl group.

Proof. Let " : g −→ gl(V) be a representation of g. We nowmake use of the notation
esatblished in Setup (3.16). Let α ∈ h∗ be some root of g, and let β ∈ h∗ be a weight
of ". Then

V[β] :=
⊕

n∈Z
Vβ+n·α

16
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is a subrepresentation of the sα-representation resgsα on V (cf. Proposition (3.13)).
By the classification of sl2(C)-representationswe know that the set of eigenvalues

of Hα on V[β], i.e., the set S(Hα) with

S :=
{

β + n · α
∣∣ n ∈ Z,Vβ+n·α /= 0

}
,

is symmetric about the origin. By replacing β with a translate by a multiple of α,
we may assume that

S = {β, β + α, . . . , β + n · α}

for some suitable n ∈ N. Since α(Hα) = 2 and S is symmetric, we obtain

−β(Hα) = β(Hα) + 2 · n

and thus n = −β(Hα). Therefore,

Wα · S =
{
Wα(β + j · α)

∣∣ j ∈ {0, . . . , n}
}

=
{

β + j · α − (β + j · α)(Hα) · α
∣∣ j ∈ {0, . . . , n}

}

=
{

β + (n− j) · α
∣∣ j ∈ {0, . . . , n}

}

= S,

which implies that the weights of V[β] are invariant under the action ofWα. Hence
also the set of all weights of V must be invariant underWα (and thus underW(g)).
The same argument also shows that themultiplicities are invariant under the action
of the Weyl group.

3.6 Highest weights

When classifying the irreducible representations of sl2(C)we exploited the fact that
we could assign an order to the occurring eigenvalues. Of course, in the general
case, we cannot expect to have such a linear ordering of the weights, but there still
are distinguished weights, the highest weights:

Definition (3.22). We assume the notation of Setup (3.16). Furthermore, let ! be a
functional on the root lattice of the Lie algebra g that is irrational with respect to
the root lattice.

• A root α ∈ h∗ of g is called positive, if !(α) > 0. The roots that are not
positive are called negative. Such a decomposition of the root space is called
an ordering of the roots of g.

• A highestweight of a representation " : g −→ gl(V) is a weight of " admitting
a highest weight vector.

• A highest weight vector of the representation " is a vector v ∈ V \ {0} con-
tained in some weight space of V such that

gα · v = 0

holds for all positive roots α of g. !

17
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+−

L1

L2

L3

Figure 8: An ordering of the roots of sl3(C)

Example (3.23). A possible ordering of the roots of sl3(C) is given in Figure 8. "

Proposition (3.24) (Highest weights of irreducible representations). Let g be a
semisimple Lie algebra and let A = A+ 0 A− be an ordering of the roots of g.

1. Any (finite dimensional) representation of g possesses a highest weight vector.

2. If v is a highest weight vector of some representation of g, then the subspace W
generated by successive applications to v of the root spaces gα with α ∈ A− is an
irreducible subrepresentation of g.

3. The highest weight vectors of an irreducible representation of g are unique up to
scalars.

Proof. 1. This is a direct consequence of Theorem (3.12) and finiteness of the dimen-
sion of the representation.
2. Let " : g −→ gl(V) be a representation of g and let v be a highest weight vector
of ". For n ∈ N letWn be the subspace generated by all vectors of the form wn · v,
where wn is a word of length at most n consisting of elements of the root spaces
with negative roots. Then

W =
⋃

n∈N
Wn.

First we show thatW is a subrepresentation of ": For this it suffices to show that
W is invariant under the action of all elements in the positive root spaces (because
the Cartan algebra acts diagonally onW). To this end we verify inductively that

x ·Wn ⊂Wn+1

holds for all n ∈ N and all x ∈ gα with α ∈ A+:
Since v is a highest weight vector of ", this is true in the case n = 0. For the

induction step let x ∈ gα with α ∈ A+ and let w ∈ Wn. By definition ofWn, we can

18
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write w = y ·w′ with w′ ∈Wn−1 and y ∈ gβ with β ∈ A−. Then

x ·w = x · y ·w′

= [x, y] ·w′ + y · x ·w′,

where [x, y] ∈ gα+β (Proposition (3.13)). If α + β ∈ A−, then [x, y] ·w′ ∈ Wn ⊂Wn+1
by definition of Wn. If α + β ∈ A+, then [x, y] · w′ ∈ Wn ⊂ Wn+1 by induction. If
α + β = 0, then [x, y] lies in the Cartan algebra and hence [x, y] ·w ′ ∈ Wn−1 ⊂Wn+1.
Moreover, the second summand is contained inWn ⊂Wn+1 by induction.
Therefore, W is a subrepresentation of ". Since the highest weight space of W,

i.e.,W0, is one dimensional, Proposition (3.8) yields thatW is irreducible.
3. This follows from the second part and from Proposition (3.13).

3.7 Weight polytopes of representations

Definition (3.25). Let " : g −→ gl(V) be a representation of the semisimple Lie
algebra g and let h be a Cartan subalgebra of g. The weight polytope of " is the
convex hull in h∗ of all weights of ". !

Proposition (3.26) (The weight polytope). Let " : g −→ gl(V) be an irreducible re-
presentation of the semisimple Lie algebra g and let α ∈ h∗ be a highest weight of " (with
respect to some chosen ordering A = A+ 0 A− of the roots of g).

1. Every vertex of the weight polytope of " is conjugate to α under the action of the Weyl
group W(g).

2. The set of weights of " is convex in the following sense: If β ∈ h∗ and γ is any root
of g, then the intersection of the set of weights with the (discrete) line {β + n · γ|n ∈
Z} is a connected string.

Proof. 1. By Proposition (3.24), the weights of " must be contained in the cone

α + {n · β | n ∈ N, α ∈ A+}.

Moreover, we know that for any β ∈ A−, the functionals α, α + β, . . . , α + (−α(Hβ)) ·
β all must be weights of " (proof of Proposition (3.21)). Hence, any vertex of the
weight polytope adjacent to α must be of the form

α − α(Hβ) · β =Wβ(α) ∈W(g) · α.

Inductively we see that all vertices of the weight polytope must lie inW(g) · α.
2. This can be shown using the same argument as in the proof of Proposition (3.21).

Sometimes it is convenient, to have a special fundamental domain of the action
of the Weyl group on the dual of the Cartan algebra at hand.

Definition (3.27). Let g be a semisimple Lie algebra with Cartan subalgebra h, and
let A = A+ 0 A− be an ordering of the roots. TheWeyl chamber associated to this
ordering is the set of all α ∈ h∗ satisfying

∀β∈A+ α(Hβ) ≥ 0. !

19
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Figure 9: Weyl chamber of sl3(C)

By the above proposition, any Weyl chamber contains exactly one vertex of the
weight polytope.

Example (3.28). Corresponding to the ordering of Figure 8, we obtain the Weyl
chamber shown in Figure 9. "

3.8 The classification

We now collected all tools necessary to provide a classification of the irreducible
representations of semisimple Lie algebras.

Theorem (3.29) (Classification of irreducible representations). Let g be a semisim-
ple Lie algebra, let A = A+ 0 A− be be an ordering of the roots of g and let C be the
corresponding Weyl chamber. Moreover, let Λ be the weight lattice of g.

1. For any α ∈ C ∩ Λ there exists a unique (finite dimensional) representation Γα of g
with highest weight α.

2. Hence there is a bijection between C ∩ Λ and the set of isomorphism classes of irre-
ducible (finite dimensional) representations of g.

3. The set of weights of Γα is convex in the following sense: If β ∈ h∗ and γ is any root
of g, then the intersection of the set of weights with the (discrete) line {β + n · γ|n ∈
Z} is a connected string.

4. In particular, any representation of g is uniquely determined by the multiplicities of
its weights.

Proof. It only remains to show existence and uniqueness of the representations Γα.
Uniqueness. Let g −→ gl(V) and g −→ gl(W) be two irreducible representations of g
both with the same highest weight α ∈ h∗. Let v ∈ V and w ∈ W be corresponding
highest weight vectors of these representations. Then the pair (v,w) clearly is a
highest weight vector of the direct sum representation on V ⊕W. Let U ⊂ V ⊕W
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be the (irreducible) subrepresentation generated by (v,w). We now consider the
projection homomorphisms

πV : U −→ V,
πW : U −→W,

which clearly are homomorphisms of g-representations. Since (v,w) ∈ U, we ob-
tain πV /= 0 and πW /= 0. Now irreducibility of U, V, and W forces πV and πW
to be isomorphisms. In particular, V andW must be isomorphic, which proves the
uniqueness part.
Existence. Let α ∈ C ∩ Λ. In view of Proposition (3.24) it suffices to construct any
finite dimensional representation of g having highest weight α (because then the
subrepresentation generated by a highest weight vector is an irreducible represen-
tation of g with highest weight α).
By taking tensor products and duals of representations, we see that we only need

to construct such representation for so-called simple roots (i.e., positive roots that
cannot be decomposed as an integral linear combination of positive roots with pos-
itive coefficients). However, in general, it is quite difficult to construct these repre-
sentations. Other approaches include the use of Verma modules or the explicit
construction for all types of simple Lie algebras (and applying to the classification
of simple Lie algebras).
We only show existence in the special case of sl3(C): There is an ordering of the

roots of sl3(C) such that the Weyl chamber is the positive cone generated by L1
and −L3 (cf. Figure 9). For a, b ∈ N we consider the representation

Γ′
a,b := "⊗a ⊗ ("∗)⊗b,

where " : sl3(C) −→ gl(C3) is the standard representation of sl3(C). Clearly, the
representation Γ′

a,b has highest weight a times the highest weight of " plus b times
the highest weight of "∗. Now taking the subrepresentation generated by a highest
weight vector yields an irreducible representation of sl3(C) with highest weight

a · L1 − b · L3,

as desired. The case “a = 6, b = 2” is depicted in Figure 10.

Tensor products of representations

So far, we only studied the additive structure of the representation ring. In the
following, we want to describe the effect of multiplication of representations in the
representation ring, i.e., we want to decompose the tensor products of irreducible
representations as a direct sum of irreducible representations.
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L1

L2

L3

Figure 10: The weights of the irreducible representation of sl3(C) with highest
weight 6 · L1 − 2 · L3

−4 −2 0 2 4

−6 −4 −2 0 2 4 6

Figure 11: The tensor product representations V(4) ⊗V(2) and V(5) ⊗V(3) of sl2(C)

4.1 Tensor products of sl2(C)-representations

To find decompositions of tensor products into irreducible representations it is nec-
essary to have some knowledge about the multiplicities of weights of irreducible
representations. For example, the multiplicities of weights of irreducible represen-
tations of sl2(C) are all equal to 1 (see Section 2).
Let V(n) and V(m) the n-dimensional and the m-dimensional irreducible repre-

sentation of sl2(C) respectively. What is the decomposition of the tensor product
representation V := V(n) ⊗V(m) into irreducible representations?
The examples V(4) ⊗V(2) and V(5) ⊗V(3) are illustrated in Figure 11.
Clearly, the highest weight of V is n − 1 + m − 1 = n + m − 2. Thus, V must

contain one copy of V(n+m−2). Now we can look at what remains of V after remov-
ing V(n+m−2). We again find some highest weight and remove the corresponding
irreducible representation (with the right multiplicity) and so on . . .
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L1

L2

L3

Figure 12: The irreducible representation of sl3(C) with highest weight 2 · L1 − L3

More general, a careful (inductive) analysis of V with help of Proposition (3.8)
reveals for n ≥ m that

V = V(n+m−2) ⊕V(n+m−4) ⊕ · · ·⊕V(n−m).

4.2 Tensor products of sl3(C)-representations

Let " and "′ be two irreducible representations of sl3(C) corresponding to the high-
est weights α and α′ respectively. Then the irreducible representation of sl3(C)with
highest weight α + α′ is contained in the tensor product "⊗ "′. We now remove this
part from "⊗ "′ and look at the highest weight of the remaining representation, and
so on . . .
I.e., if we know themultiplicities of all weights in the irreducible representations,

we can inductively decompose tensor products of irreducible representations into
direct sums of irreducible representations.
For example, let V be the standard representation of sl3(C) (see Figure 3) and let

Γ2,1 be the irreducible representation of sl3(C) with highest weight 2 · L1 − L3 (see
Figure 12). Then the tensor productW := V ⊗ Γ2,1 has the weights

3 · Lj − Lk with multiplicity 1,
2 · Lj + Lk − Lr with multiplicity 2,
2 · Lj with multiplicity 4,
Lj + Lk with multiplicity 5.
Hence,Wmust contain the irreducible representation Γ3,1 with highest weight 3 ·

Lj − Lk. Removing this part fromW, we obtain the representation depicted in Fig-
ure 13. This representation has highest weight

2 · L1 + L2 − L3 = L1 − 2 · L3,

and hence this representation must contain Γ1,2. Removing this representation
yields the representation of Figure 14, which is easily recognised to be Γ2,0.
Putting it all together shows that

W ∼= Γ3,1 ⊕ Γ1,2 ⊕ Γ2,0.
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L1

L2

L3

Figure 13: After reducingW the first time

L1

L2

L3

Figure 14: After reducingW the second time

4.3 The structure of representation rings

There are general techniques to compute the multiplicities of weights in the irre-
ducible representations of semisimple Lie algebras. We will not explain these in
these notes, but we present the final classification result in Theorem (4.3).

Definition (4.1). Let g be a semisimple Lie algebra with weight lattice Λ. We
write Z[Λ] for the integral group ring of the Abelian group Λ. Then the charac-
ter homomorphism of the Lie algebra g is given by

χ : R(g) −→ Z[Λ]

[V] )−→ ∑
λ∈Λ

dimVλ · λ,

where Vλ is the weight space corresponding to λ. ! Here, Vλ = 0, if λ is not a weight
of V.

Clearly, the character of a representation can be read off the weight diagram
(with multiplicities). In this sense, all our pictures of weight diagrams can be inter-
preted as pictures of characters of representations.

Definition (4.2). Let g be a semisimple Lie algebra and let an ordering of the roots
be given. The fundamental weights of g with respect to this ordering are the first
non-zero weights met along the edges of the Weyl chamber. !

With this terminology, the classification of representations of semisimple Lie al-
gebras can be put into the following theorem [2; Theorem 23.24].
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Theorem (4.3) (Representation rings of semisimple Lie algebras). Let g be a semi-
simple Lie algebra with fundamental weights ω1, . . . ,ωn and let Γ1, . . . , Γn be the corre-
sponding irreducible representations. Then the representation ring R(g) is a polynomial
ring on the variables Γ1, . . . , Γn and the character homomorphism induces an isomorphism

R(g) ∼= Z[Λ]W(g)

of rings.
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