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1. Introduction

The purpose of these notes is to give a brief and pedagogical aceount of the group-
geometric approach to (super)gravity and superstring theorles. Full details can be found
in the book written in collaboration with R. 13’ Auria and P. Fré [1]; hiere we surmmarize
the main ideas, and apply themn to sclected examples.

Group geometry provides a natural and unified formulation of gravity and sauge
theories. The invariances of both are interpreted as diffcomorphisnis on a snitable group
manifold. This geometrical framnework has a fruitful output, in that it provides a sys-
tematic algorithm for the gauging of Lic algebras, and the construction of (super)gravity
or (supcr)string lagrangians.

The busicidea is to associate fundamental ficlds to the group generators. This is done
by considering first a basis of tangent vectors on the group manifold. These vectors close
on the same algebra as the absiract group gencrators. The dual basis, i.c. the viclbeins
(cotangent basis of one-forms) is the 1 identificd with the sct of fundamental Aelds. Thus,
for example, the vielbein V* and the spin connection w® of erdinary Finstein Cartan
gravity are scen as the duals of the tangent vectors corresponding to translations and
Lorentz rotations, respectively.

Dealing with forms is particularly appropriate when having in mind to consiruct
integrands (lagrangians).. Also, this formalism extends to p- forms (p > 1), and gives
an algebraic “raison d’ étre” to antisyinmetric tensor ficids as well. The relevant stroe-
tures are the so-calied free differcntial algebras [2,3,1] and generalize the Cartan-Maurer
equations of ordinary Lie algebras.

We set up.the geometric framework in sections 2 and 3, and we apply it to the
derivation of D=4 gravity and supergravity lagrangians in sections 4 and 5. Scction
6 15 devoted to frec differential algebras. By adjoining a fermionic (central) charge (o
the Lie algebra &, we show in scction 7 that BRST symmctry can be seen as a global
coordinate change in the fermionic direction. This is generalized to free differential
algebras, and provides a geometric rationale to the “russian” formula of Stora for the
BRST transformations of antisymmetric ficlds. Finally, scction 8 contains the geometric
derivation of the {ype II superstring lagrangian in an arbitrary background.

Except for part of section 7, the material presented here is not new, and can be found
in the original references quoted at the end. We have tried to write a self-consistent review
and only elementary knowledge of differential geonictry and group theory is assumed.

2. Group manifolds _ .

Let us start from a Lic algebra Lic(G), with generators T4 satisfying the commuta-
tion rclations
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(T4, Ts) = C€ apTe: | (2.1)

A generic group element g € & connected with the identity * can be expressed as

g=exp(y*Ty) =y (2.2)
where y are the (eﬁponcntial) coordinates of the group manifold. Each element of G
is labelled by the coordinates y#, and for notational economy we denote it simply by y.
Similazly yz stands for exp(y*74) exp(2®Tp), the product of two group elements, and
. by (y2)M we denote the corresponding coordirfutes.
Consider now (yz)™ as a function ** of z4:

() = 4™ + e M (et + ead (y)ere® + .. (2.3)

For infinitesimal x:

. -, - — a
(o) =y b (@M = (L 22, D= e,V (y)gﬁ (2.4)

so that the £4 are a differential representation of the abstract generators Ty, and satisfy
therefore the same algebra:

[ta,i5] = CC 4ntc - (2.5)

The geometrical meaning of the components ¢ N (y) in eq. (2.3) is clear: consider the
infinitesimal displacement £,uM due to the (right) action of 1 4 ¢T4 (¢ = infinitesimal
parameter). Then

bay™ = eeM(y) (2.6)

and the dimd vectors e,M(y), A=1,..dimG are simply the tangent vectors at y in the
direction of ihe displacements §4y (see fig.1). It is customary to call tangent vector
along the T4 direction the whole differential operator t4 =e,V (y)gj—N—.

Note that e, ™ is an invertible matrix, since the ma — yz 15 a diffeormorphism.
A s PY—Y e

* Hereafter G indicates the part of the group connected with the identity.
*% Since G is a Lie group, this function is smooth.
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The t4(y) span the taugent space of G at y: they form a contraviriant basis. The
- L] . 3 . - . L] - " L]
“coordinate” basis given by the vectors 51%-— 18 related to the £4 (the intriusic basis) vis
the nondegencrate matrix e, V. The indices AB,... are tan gent space indices {“Hat”
indices) and are inert under y coordinate transformations. The indices M M., are

coordinate indices (“world” indices) and do transform under coordinate trans fornmhons
in the usual way (sce later). Next we define the one-forms ay) as fllo duals of the 1.4

o tp) = 6% (2.8)

The o are a covariant basis (the intrinsic vielbein bd‘a]S) for the dual of the tangent space,
called cohngcnt space (the spacc of 1-forms). The “coordinate” cotangent basis dual to

the a—yw vectors is given by the differentials dy™ (dy™( 8?]\ )= &), The components of

“(y) on the coordinate basis are denoted e,A(y): A/

oM (y) = er(y) dy™ (2.9)

From the duality of the tangent ane cotangent bases we have:

EJM'A eB ——6

esM eyt = 6 (2.10)

Exercise It Substitute cq. (2.7) into the commutator (2.5) and find the differentiol

condition on e, (y):

—Qe[AN eR) Money = C%4p (2.11)

Exercise 2: compute the exterior derivative of o/ using eq.s (2.9} and (2.11) and

find

1
do? + 50%003 No© =0 (2.12)

These are called the Cartan-Maurer equations, and provide a dual formulation of Lic
algebras in terms of the one-forms ¢?. It is immediate to verify that the closure of
the exterior derivative d (d” = 0) is equivalent to the Jacoln identities for the structure
constants:

(apply d to eq. (2.12)).

Note

Defining a(y) = UA(QJTA the Cartan-Maurer cq.s {2.12) take the form
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dotoAo=10 (2.14)

The Lie-valued one-form a(y) can also be constructed directly from the group ele-
ment y:

oly) =y ldy _ (2.15)

It is easy to verify that (2.15) satisfies the Cartan-Maurer equation (2 .14) (use
dy~' = —y dy y~1). Morcover, it takes tlc same value as e, Ady™ T4 at the origin
y = 0. Indeed from the definition of 4™ in cq. (2.3) one sces that e My =0) = 8%,

and therefore e, (0)dy™ T4 = dy* T4. This value coincides with vy Ydy|y=o since
¥~ 'y=0 =[group unit], and dy|,=¢ = dy' T4 (from (2.2)). This observation suffices to
conclude that y~1dy is equal to ear (1)dy™ Ty,

3. One-forms as dynamical fields

Consider a smooth deformation & of the group manifold G. Tis vielbein eld is given
by the intrinsic cotangent basis, defined for any differentinble manifold:

.UA(E!) = r’J'MA(y)dyM (3- 1)

In general u? does not satisfy the Cartan-Maurer equations auny more, so that
1 ,
du? -;Z-C'ABc,uB Au® = RA #0 (3.2)

The extent of the dcformation G — & is measured by the curvature two-form RA.

RA=¢ imiplies p# = o and viceversa.

Applying the external derivative d to the definition (3.2), using d* = 0 and the
Jacobi identlities on Cp¢, yields the Biandii identities

(VR = dR* — C*gcRE A p® = 0 (3.3)

The main idea is to consider the one-forms u4(y) as the fundamental ficlds of our
geometric theory. The deformation G — & is necessary in order to allow configurations
with nonvanishing curvature. } :

As a first exeinple, consider G= smooth deformation of the Poincaréd group, whose
structure constants are read off the corresponding Lie algebra

[P, ] = 0
[ﬂ{ab: -A{[cai] = "'hdﬁ’jbc + T?bcﬂjud - 7](1c-ﬂdbd — nbdﬂ'f{ac (34)
Mo, P} = mpePa = mucPy ©

Denoting by V' and w the vielbein 24 when the index A runs on the translations
and on the Lorentz rotations respectively, eqs (8.2) take the form:
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R = dV* — W A Ve

3.5
Rab - dwab — whe Awdbncd ( )

The fundanental fields V and " are interpreted as the ordinary vierbein and
the spin connection, respectively, and eq.s (3.5) define the torsion and the Riemann
curvature. These satisfy the Bianchi identities®

dR" - R**V?® — w*® R = DR + R*V? =0

3.6
dRab + Racwcb _ wac_Rcb = DRab =0 ( }

where D is the Lorentz covariant derivative, and repeated indices are contracted with
the Minkowski metric 74y

How do we find the dynamics of p(y} ? We want to obtain a geometric theory,
i.e. nvariant under diffeoinorphisms of the soft group manifold &. We need therefore
to construct an action invariant under diffeoinorphisms, and this is sinply achieved by
using only diffcomorphic invariant operations as the exterior derivative and the wedge
product. Qur building blocks are the one-form p# and its curvature two-form B4, and
exterior products of them czn wmoke up a lagrangian D-form (where D is the dimension
of space-time, sce laler),

An irmnediate problem presents itself: the fields p”(y) depend on all the soft group
manifold coordinates . In the Poincaré example, this means that the vierbein and the
spin conneciion depend on the coordinates y* associated to the translations (the crdinary
space- time coordinates) and oir the coordinates y*? associated to the Lorentz rotations,
Since we want to have space-time ficlds at the end of the game, we have to find a way to
remove the y*® dependence. This is achieved when the curvatures are horizontal in the
y*® directions, as we cxplain below.

First we discuss the variation under diffcomorphisms of the vielbein field p(y):

Ay + Ey) — pMy) = 8, y)dyM] =
= (O pa Yoy dy™ + ppt (On by dyY =

3.7)
= dy™[On by + 8y M (Ovpn” — Onpua)] = G0
= déy™ — 2uP 6y (dp ) pe = d(i@,u}l).—l— ig du?t

where
Sy? = Sy s, Sy = SyMay, dut = (dpNpou® A u®, (3.8)

- . -‘I >
and the contraction 77 along a tangent vector £ is defined on p-forms

* products between forins are understood to be exterior products. The wed ge symbal
A is omitted in the following
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-y

Wipy = Whe . p 7 Ao A utr

as

iy wiy =p tPwan,. 1:*;',44»»”"’;:2 Ao AP (3.9)

Note that ¢y maps p-forms into (p — 1)-forins. The operator

r=digdi;d (3.10)
is called the Lic derivative along the tangent vector { and rnaps p-forms into p-forms,

As shown in eq. (3.7), the Lie derivative of the one-form 4 along §y gives its variation
under the diffeomorphism y — y + éy. This holds true for any p-form.

We now rewrite the variation 67 of eq. {3.7) in a suggestive way, by adding and
subtractmg CApeu by
6,u,A = dﬁyA 4+ C% e P 5y% — Q;Lﬁéyc(dﬂfl)}gc — CABC,r_LBé'yC
CNA s pA
= (Véy) e 25-1'"13

where we have used the definition (3.2) {or the curvature, and the G-covariant derivative
V acts on §yt as

(3.11)

(Véy)t = dp? + CApepPoyt (3.12)

All the invariances of our geometric theory are contained in eq. (3.11). In particular,
su hat the two-f RY = RApep®? A 1€ has vanishi 2 1 h
ppose that -the two-torm A" = N%peop #7 has vamshung components along the
directions of a subgroup H of G:

A runson G
R%3n =0 Hirunson H (3.13)

Then we say that B4 is horizontal on I7, and the diffcomorphisms along the H-directions
reduce to gauge transformations:

o

Sut(y) = (Véy)A (3.14)
Morcover, the dependence on the ¥y coordinates becomes inessential, in the sense
that it factorizes after a finite gauge transformation. Indeed, let us examine eq. (3.14)

in more detail: separating the H-indices and the K-indices (thOaC along the directions
of the coset space G/H) we have *

* we recall that for semisimple Lie algebras (or direct products of semisimple Lie

- algebras with U(1) factors) it is always possible to find a tensor transformation on the

generators T4 — SA4TE such that the Willing metric gap = CC€ . Clhe becomes
diagonal. On this lmsas G/H (for any H) is reductive, Le. the structure constants C4,,
vanish. Indeed C'¥ 11 18 proportional to (g = Cy gy = 0 (indices are lowered with
the Killing metrie, and Cype is totally antisvrmmetrie because of Jacobi wdentities).




CBPF-NI'-022/91

6IJH = d&yH -+ CHHlHMﬂH'(SyH"l

. (3.15)
§uF = CF g sy™

for diffeomorphisms along yH. These equations have the typical form of gauge variations
.of the H-gauge field 1 and of a field ¢ transforming in a representation (Tg) {K' =
C¥pei g of the subgroup H. It is clear that invariance of the theory under (3.5) requ1res
the field u¥ to appear in the action only through the curvatures B4, whereas “naked” u
can appear since they do transform homogeneously. A finite H-coordinate transformation
can be used to remove the y¥ dependence in.the objects appearing in the action: for
example by integrating the second equation in (3.15) we find

pX (5, 1y = DI (g7 )X (5 4 = 0) (3.16)

where D ,® is the adjoint representation of G, so that the whole dependence on y¥
contained in the D matrices. If invariant H tensors are used to contract indices in the
lagrangian, the adjoint D matrices cancel out, and the fields really live on the coset space
G/H. The theory 'remembers” the invariance under y-diffeornorphisms by retaining
the gauge invariance under H (eq.(3.14)), with §y* interpreted now as a gauge parameter.
This mechanism is illustrated in the examples of next sections.

In Poincaré gravity, we have horizontality of the curvatures along the Lorentz direc-
tions (sce next Section): then the fields ¥ and w®® live on the coset space

G  Poincare’

H = Lorentz (3.17)

i.e. on ordinary spacetime. The lagrangian is integrated on a D- volume (D-dimensional

spacetime), and is therefore a D-form. The resulting theory is invariant under D-
spacetime diffeomorphisms, and under local Lorentz rotations.

4. Poincaré gravity in D=4

From the discussion in the preceding section, we know that the lagrangian must be
a 4-form, and therefore at most quadratic in the curvatures:

L=A" 1 RA/P + 1l%“°]L12"31/(':]) + total differential 4.1
4 19

‘with the group index A splitting into A = ab,a. The cosmological term A and the v
terms are exterior polynomials in the g2 = w®* V* group vielbeins:

AW = Cupep ptuBuCu®
VD = Capo 1740 - (4.2)

UAB =Cap
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The constant coefficients C' in (4.2) are Lorentz invariant tensors (since we want a Lorentz
invariant theory, see preceding section) .

The terms quadratic in thc curvatures can be dropped: indced they are equivalent
to total differentials+terms linear in B, To prove th1s we observe that the only Lorentz

invariant tensors of the type vap are:

Cab,cd = Egbed

: ¥ .
C'ab,ed = Naclof 653 = naeﬂbf§(525£ — §769) (4.3)
Ca,b = nac‘sf
and therefore
RARBV_E&)} = ¢ R“bRCdsabcd + coR¥ R 4 ¢, R*R* (4.4)

The first two terms are closed forms: -

d(RabRCdeabcd) = D(RabRCdsabcd) =0

d(RabRab) — D(RabRab) -0 (4.5)

because of Lorentz invariance and of the second Bianchi identity in (3.6). The two terms
are then locally exact, indeed:

RabRCdEa,bcd - d(sabcd wabRCd — Eabed walwlbwcd)

) RabRab — d( abRab 1 lawlmwma) (46)
- 3

Their spacetime integrals give topological numbers, respectively the first Pontriagyn .

number and the Euler characteristic of the 4- dimensional spacetime manifold. For the

last term in (4.4) we have:
‘R'R*=DV*DV* =D(V*DV*)+ V*DR® = (4
=d(V*DV*) + V(—-R®V?) '

and therefore can be reduced to a term linear in R*® plus a total derivative. Thus the
most general lagrangian is at most linear in the curvatures:

L= atgpea VOVIVVE + Begp g RPVEVE + ROV (4.8)

Note that w®® can appear only through the SO(1, 3)- covariant curvature R%® (local
Lorentz invariance).

A simple scaling consideration allows us to discaxd the first term (cosmological term)
in (4.8): the curvature definitions (3.5) and the Bianchi identities (3.6) are invariant under
~ the rescaling;

Ve = AV R® > AR® | (4.9)
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A theory based on the algebraic struciure encoded in (3.5-6) must have the same rescaling
mvariance. In other words, the lagrangian must scale homnogeneously under (4.9). The 8
and <y terms scale as A2 thr(*( w the cosinological terin’scales as A* and has therefore to
be dropped (alone it Would lead to the drastically simple ficld cquations V@ = 0). Note
that the same scaling argumert could have been used for the first two terms in (4.4),

"This argument docs not mean that we cannot deseribe gravity with a cosmological
constant. This can be done starting from a different Lic group, namely the de Sitter
S0(1,4) or anti de-Sitter SO(2,3) group. .

Another criterion we may use in building lagrangians is the requirement that the
vacuum (defined by 24 = 0) be a solution of the variational cquations.* This again rules
out the cosmolegical term in Poincaré gravity (but not in (anti) de-Sitter gravity).

The last two terms in (4.8) have opposite parity and cannot coexist in the same
lagrangian. The ficld equasions frem the «y term, obtained by varying in ¥° and w®,
read: M

Rabva =0

4.10
RV - Rbye = (4.10)

and are identically satisficd by R® = 0. The curvature R*® remains free, since the first
equation in (4.10) is simply equivalent to the first Bianchi identity in (3.6) when R® = 0.
This choice does not lead to any dynamics.

We are thus left Wlth the Cartan-Einstein a,ct1on

A= RabVCVdEGbcd (4'11)

A4
where the integration is on Minkowski spacetime M* C [smooth deformation of the
Poincaré group]. By excluding bare w®® in the lagrangian we have ensured the horizon-

-

* We can justify this as follows. Suppose that the vacuum is not a solution. Then
we have two caseb either there are no solutions at all or there is a solution of the type
RA = F Bl ,u where F; arc constants. Indeed the field equations are algebraic
equatlons for R, (with constant coefficients: cfr. for example the field equations
SL derived from (4.1 2)) and therefore either have no solution or have also constant

solutions. Bringing %FBC,U. 1€ to the left hand side of the previous equation we sec
that the constant curvature solution is given by the zero curvature of a new group whose
structure constants arc C’}}C F’}}p These c;cxtisfy Jacobiidentitics (to sce this substitute
in the Bianchi identity (3. .3) for R its value £ Fh-pPu©, and use the definition (3.2) to
eliminate the derivative dp?t ) and are thc‘r(‘fom “bona fide” structure constants. Then
we could consider the lagrangian based on this new group, whose field cquations would
now admit the zero curvature sclution. Henee there is no 10&,5 of generality in requiring
R = 0 to be a solution of the variational cquations.
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tality of the curvatures in the Lorentz directions. This will be verified in the variational
equations for the action (4.11).

Contact with the usual Einstein action is made as Toliows:
£ = RV asa = R VVIVV ey =

1 - T ! ) .4 r
=RV, VIV, V, Y eapea do?'dedafda” = R, V,°V, TV, °V, Yeqye0 €777 da =

= R™,; e £hp00 detVd'e = —4R*E,\/Tgd's

(4.12)
where we have used the horizontalily of the Lorentz curvature.
Variational equations
A )y
.(5V“ = = RE Vc&:ablca! = , (4.13:1)
A aysh
Soab D= RV eopea =0 (4.13b)
To examine their content, first expand the curvatures R = {R*, R**) on the complete
basis of 2-forms pu A p®:
R* = R popPut = R GVVE 4+ RA, Vo 4 BA ) w®bwd (4.14)

Projecting the 3-form equations (4.13a) on independent components of the complete basis
pt A pB A p® we find the three cquations:

Rabﬁf Vc.vfbrceabcd =0 ' (4150.)
Rabe,fg Ve(""‘fg.{/"cgabcd =0 (4156)
Rabef,gh L""ejr(dyh'Vcecmbcd = () (415(3)

From the first equation, after setting

VAVIve e eefoq, (4.16)
we retrieve the Einstein equations:

1

Rabcfsﬁfcgaabcd = —3! 5Z£gﬂai;cf == Racbc 5

. d
SR, =0 (4.17)
The other two equations ({.15b,¢} finply the horizontality of R%% as anticipated:

R =Rk, =0 i (4.18)

cd,e

4 o o 1 A PEpn e
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With sinilar considerations we find that the torsion equation (4.13b) yiclds horizon-
tality conditions on R, and R% = 0. Thesc constraints, arising as ficld equations, arc

summarized by the vero-torsion conditicn:

R =0 - (4.19)

1.e. the torsion vanishes as a two-form on the whole soft group manifold. Eq. (4.19)
cant be solved for the spin connection in terms of the viclbein, its first derivatives and its
inverse:

wﬂab — (q)-.l.tw + Gojrp — Q;tlv)\)VcAVdunacnbd (420)

where

Ix|pr = VAaa[uVV] b"'?ab (421)

(expand R® = dV*® —w*®V? = 0 in the coordinate basis dz® A dz”, multiply by a viclbein
MacV, % and sum cyclic permutations in the curved indices with signg - -+ - ).

Inserting w®® as given in (4.20) into the Einstein equation (4.17) which is of first
order in derivatives of w*®, we obtain a second order cquation for the vielbein field. The
conclusion 1s that starting from the Cartan-Einstein action (4.11), the propagation of the
vielbein field is obtained via the torsion mechanisin B¢ = 0, allowing the climination of
the spin connection in terms of V,“, the culy physical (propagating) field.

Symmetries .
The symmetries of Poincaré gravity are given by the diffeomorphisms on the Poincaré
(soft) group manifold. Applying the general formula (3.11) with

by = 0y + %04
we find

BV = (V) +i,R" = Dt 4 2V (422)
6Ewab — (vg)ab + isRab — DEab 1 QECVdRabcd (422&)

We have used 2% = 0 in the first equation. The reader may verily as an exercise that the
variation of V' in {4.22a) induces preciscly the variation (4.22h) for the spin conuection
given by eq. (4.20) in terms of the vierbein ficld.

Diffeomorphisms along Lorentz directions {(¢* = 0) become local Lorentz rotations
gauged by the spin connection. Diffcomorphisms along the translations (** = 0) give
the usual variutions of V¢ and w® under general coordinate transformations. Actually
for the vierbein ficld this is true modulo a field dependent Lorentz rotation. Indeed from
eq. (4.22a) we find the variation of the vierbein components:
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651/!1“ . ‘D”(V;"QEU) = (630.'1 -+ wﬁab)(“fybﬁu) =
=DV, )" +V,"Buey = (D1, - DV, e + DV, %" +V,%0,6" = (4.23)
= (D"' Kia)av + Vyaaﬂgv = (&y L':l,aa.)fff" + V;fﬁ(r}ugu + wuaf"v,ul'gz,

(use DV, ¢ ~ D,V," == 0 becausc of the zero-torsion condition R? = DV = 0. Note

that the final expression for 6.V, * does not chenge when R® +£ 0: then the covariant curl
of V,,* cancels with the B® term in (4.22a)). This reproduces the usual transformiation
law plus a Lorentz rotation with field dependent parameter e’w ™. Since the theory is
separately invariant under local Lerentz rotations, the usual transformation of V,"isa
symmetry, as it should.

5. D=4, N=1 supergravity

This section supersymmetrizes the previous one. [ = 4, N == 1 supergravity is based
on the superPoincaré Lie algebra:

[Paapb] =) (51)
[‘P"ﬁrﬂba JLde] = nﬂdﬂd’bc 4 T:Ibr-fﬁ'-{{nd - nacﬂ’fr)d - Ubdirmrac (52)
[-ﬂ'{{aba Pc] = nbc-pa - Wrxcf;b (53)
. 1.
[Afa.baQﬁ] = 4@&(7ab>a,ﬂ (54}
{Qa:Qp) = ((CY*)apFa (5.5)
where the supersymmetry charge Qg = QL(’Y{))ﬁa 15 a Majorana fermion:
Q;:QTC, €' = cherpe conjugation mabrix (5.6)
Greek indices are spinor indices,
We write the Lie-valued one-form of eq. (?14) as
1 _
oly) = o Ty = ;Z-w“"Mua + VP, + Qv (5.7

and we usc the notation (V“=vicrbein, w*?=spin connection, 1 =gravitine) also for the
vielbein pt of the soft superPoincaré mauifold. Then the curvature definitions (3.2) take
the form :

S (5.8)

R o ot 0,00 (5_8())

1
p=dyp - :I—a:“b')’um,b = Dip : (5.8¢2)

R® = dV® — eyt -




CBPF-NF-022/91
_]_3._

and the corresponding Bianchi identitics arve

DR* 4+ R¥V® — ipyp =0 © (5.90)

DR =0 : (5.95)
1

Dp + ZR”%bw = () (5.9¢)

Eq.s (5.8,9) are invariant under the rescaling:

V= AV = VM (= R* = AR p— Vp) (5.10)

The fields depend in principle on the coordinates z%, z®® and 6~ (this last being
a fermionic coordinate corresponding to the supersymmctry generator (Jo) of the soft
superPoincaré group manifold. Horizontality of the curvatures in the Lorentz directions
‘will remove the %" dependence, as in Peincaré gravity, and ensure local Lorentz invari-
ance. How about the dependence on 6 7 This translates into new degrees of freedom
when expanding u®(z, €) in series of the anticommuting 6%,

Notice that here we do not need superfields, i.e. fields living in the superspace
(z¢,0¢), whose expansion in the anticommuting € yiclds a supersymrmetric multiplet (for
ex. the vielbein and the gravitino). Indced we already have both the vielbein and the
gravitino as part of the same superPoincaré vielbein ! The dependence on € is therefore
redundant mn our framework aud we must find a way to dispose of it.

This is done by a mechanism which resembles horizontality, but is a weaker require-
ment on the curvatures, called “rheonomy”. It simply consists in having curvatures with
outer components (i.e. components in the § directions) expressible as linear combinations
of inner (or spacetime) components:

RﬁA = C%A %VRE:W (5-11)

If this happens, the purely spacctime configuration (/J,#A(IB, 0), 8,p,*(x,0)) determines
the extension of g, (x,0)dz” to the whole superspace:

w2, 0) = p, e, 0)de” — pA(x, 0)de” 4 p Mz, 6)d6° (5.12)
Proof: consider formula (3.11) for a diffcomorphism 4 — 8 + e(z, 8) :

pA(2,0 =€) = ui(z,0) + (Vo) + 28R, (z, 0)dy* =
= 1 (z,0) + 8508 e”dy" + Chopt®(w,0)% + 26C4, 15 RE, (=, 0)dy™
: (5.13)
where we have used the rheonomy condition (5.10), and dy = (dz*,d8®). Since the
spacetime components of the curvature are given by
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R, = Oy 4 5C nep, P pC (5.14)

we sce that , by integrating eq. (5.13), we can reconstruet the whole superspace vielbein
from the knowledge of its spacctime restriction I A(7,0) and the spacetime derivatives

8,10, (z,0) appearing in (5.14).

This is the solution to our problem: the unwanted extra degrees of freedom in u#
due to 1ts & dependence (i.c. the fields appeering in the § and d6 expansion of pA(x, 9))
are not reaily independent and all the physical information resides in the spacetime field

(;r 0). ¥ eq. (5.10) (rheonomy) helds, we can rewrite the transformation (5.13) as

bep(z,0) = §20,e%dat + C4 0P (2, 0)e™ +26°C4 1y =B, (2, 0)uP(2,0)  (5.150)

Oor In components:

65;:,'”‘4(;11, 0) = 6736 + C“Emupl (2,0)c® +28°C4 %"Iﬂfiw(:c,O};;,pD(m, 0) (3.158)

and consider it as & symmetry between purely spacetime fields p “‘4 (2,0} (supersymme-
try)., with e(z}® as fermionic infiuitesin ml parameter. By construction the soft group
manifold action is invariant under the supersymmetry (5.15), since it is invariant un-
der the superspace diifcomorphisins (&. 3) reducing to (5.15) when the curvatures are
1‘11@01101113(3. rlu«,u, if we restiict this aovicon on spals tiuie (a\,uuﬂb = 0, df = 0 ia the
lograngian D-form, und integrating on spacetime), the supersymmetry variation (5.15)
is still o symmeiry, transforming spacetinie fields into spacetime fields, This is how we
arrive at spacetinie supersymmetric actions,

Note It the rheonomy property {5.310) does not depend on the narticular basis chosen
Y ) 1 H
for the 1-forms. The indices o, A in (5.10) are curved indices, bul an analorgous relation
y L ) 5
holds for the flal components (i.c. the components along the vielbein basis p).

Note 2: there is an Liicresting analogy between analiticity and rheonomy: .

" vielbein «+ analytic function
superspace «» complex plané
spacetime <+ real line
Caucby — Rieinann conditions « rheonomy conditions
so that rheonomy can be seen as a kind of anaiiticity in superspace.
Let us now retwrn to our specific cxam]_",»lu of N=1 supergravity in D=4. The most

general lagrangian 4-form is of the type (4.1). We have five possible terms quadratic in
the curvatures:
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The first two are total derivatives as in the gravity case (4.6), since the definition of Reb
is the same. The last three can be reduced Lo linear terns in the curvatures plus total
derivatives. Actually the scaling invariance of {5.11) eliminates all the terms in (5.16)
except R*Ii*, since the Einstein term (4.12) scales as A2, The torsion-squared term can
be reduced to a lincar term since

iR = d(VOR®) + V=RV 4 iy p) — %@»ﬁmu (5.17)

RR" = (DV* -

in virtue of the Bianchi identity (5.9a). This leaves us with a lagrangian of the form:

L=A+vyRY+v,R* +1p (5.18)

where

A = a]gabcd-[/avbvvci/tf 4+ 3:052Ea.b(:rf'{];’fabwvcvd 4+ i&':-}’ﬁZ’}'ab'l}fJT/ravb
Vap = ﬁlera-'u:d"ffcvd + ,5'2 I’ﬂlvb +- E/j‘%wﬁ"nblﬁf’ +- iﬂ‘leaﬂcd'ﬁ;vcdw

Vg = énl'ﬂ;’?'at;b

V= 815 Ya V' H ibyya b Ve

(5.19)

are the most general Lorentz covariant terms. Notice that the only nonvanishing i
currents are Py® and Py (¢ and ¥ commute since they are fermionic ene-forms).
Correct A* scaling of £ under (3.10) drastically reduces the possible terms: aq = ay =
az = fy = [ = 0. Morcover parity conscrvation implies 8y = 15y = § = 0 (all
terms must have the same pority as the Einstein term R**V*V4e,p.4, i.c. must be
pseudoscalars). Thus we finally have:

L= ﬁl.‘:abcdRabVCV[l + 51%5’}’57(;[)1/“ (5.20)

The requirement that the vacuum be a solution of the field equations fixes the last
arameter @ = 81 /41, Indecd the field cquations obtained by varving (5.20) in the ficlds

p ! y yimg

Ve, w4 are respectively: :

b _
2R Vcsabcd + a?rbq"ﬁffdp =0

— P
[ (=
o b
— —
o o

N S

1 .
iy rorrd i
2DV V %aped + ﬁ—l&'t/";’s’rd”-;’auﬂ" =0

—
[uhy
]
—t
P

o

a7, oV — aysy v R =0
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To {ind the fisst is Immediate; for ihe recond we only have to recall that varying w?®

in R yields 64 = D(6w™), and that by it pmtmv by parts the Lorentsz covariant
derivative D can be transfored o V* Fivadly for the gravitino variation we have

—8L = oY) 7 UV + aibysy D(6)V " ==
= (6751 DUV + 1 5DV + 5%’5%91/)1/“ =

_ (5.22)
= (6P )11 PPV = Srpeye i (R + ZM Y =
= (SY)( 277 DV — y571p R)
in virtue of J”)’S’Y;:(é%{’) = (5'&)75%?;? and the Tierz identity
Yyt = Q) (5.23)
Note that using the gemma-algebra identity:
VsYdYor == 258.0uT0) — 1€abea” (5.24)
the variational equat-ion (5.21L) can be recust in the forra:
2RV e upca + ;( o - Aprsyavap Ve = 0 (5.25)

so that the vacuurn, defined by ‘vdh]ahtoﬁ curvatures, s a solution of the ficld equations

(5.21) only if @ = 4.
Analysis of the ficld equations
Let us find what are the constraints on the curvatinies due to cq.s {5.21) with a = 4.

For short, we refer to these equations as a), b) and ¢), respectively. We expand the
curvatures on a complete basis of 2-fornis:

R* = R%VV® 4 0" Ve o I (5.26a)

b — _Rabc‘d'vc-v(.’ aa wvr - l/J.!’ab'gb (5263))

p=pa VeV 4 Hob Ve + Qb p? (5.26¢)

where 6%, 8%, are spinor-tensors, Y = - M e and f, are 4 x 4 matrices in spinor

space, and the 4 X 4 matrix Q.4 is a Majorana spinor. Inserting the parametrizations
(5.26) for the curvatures into the ficld cquations a),b) and ¢) yields in the various sectors:

by sector:
a.) = Qup=0
c)= K=
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ipV sector:

a) = 2P RNV e ped + dhye vy IFop Ve =0
b)= 0=0

¢) = 6% =0

YVV sector:
a) = 2§(1b¢¢¢vuvcsabcd + 41/7”}’5’7(1‘{)*“(,1/&175 = ()
b)= 0=10
o) = AV~ b R VY = )

VVV scctor:
a‘) = Rabc ——.
b) = Rucbc ﬁé‘ﬂRc cd =

) = 757(Lb¢ccab5d =0

The last VVV sector contains the propegation cquations (Einstein and Rarita-
Schwinger equations). The other + tors deterimine the “outer” components of the cur-
vatures. Indeed using 2%, = 0 into the last of V'V eq.s yields H, = 0, which inserted
into the fiest of the ¥V eqs implics K¢ = 0. The only nontrivial relation is the first
of the Yy V'V scctor:

(€“b £ e apoa + 2parysyee MV h s = (5.27)
where we uscd for the avca clement VOVP = grbedq Cairylag out the £ contractions
leads to:

?abd + 2(5{[;: éﬂcc 1 Eabceﬁce’)fﬁ'}’d — (5.28)
witdrnelioe e ndices boand d yields 8%, = % abed 5 4vs7s, which substituted into
( .58\ 111 rLiJ t')l"'. NV

6% = el sy, — 6100 vy, (5.29)

In summary, the ficld equations deduced from the supergravity lagrangian

L= €qpea R VVE A difysy, pV© (5.30)

have determined the curvatures:

Rab _ R-a.b‘:di/rcvd +- ( chdp V5 Ye 6£G€b]CdfﬁrIf'}'57c)7;f’Ve (531(1)
BT -0 | (5.310)
= gV o (5.31¢)

where the spacctime components R, and py satisfy the propagation equations found in
the VVV sector. As we see from eq.s {5.31) the curvatures are rheouomnie, Le. their outer
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compouents (the only nonvanishing onter components are those of R*Y are expressed
hi termns of inner ones (here in tenns of pao). Then the 8 diffeomorphisin invariance
of the superspace Tngrangion (5.39] hecome spacetime supersymmetry of its spacetime
restriction, as exploined o the pievious paray mpha, Inserting the curvatures given in
eq.s (5.31} into the general fovmuia (311, with Sy =€ n generic tangent vecior of the
soit supcerloineard group manifold

£=E%0, + %0, + %0y (5.32)

we can deduce the transformation laws:

6V = (Ve)® = De® 4 *PVP 4 ien™y (5.33a)
6£wab :‘(vs)ab 1 'E-ERM; .
. @Erfb " Eucwcb 4 Ebcwac + JECVdRath 4 gé(tbc,lpec + 29&5661/(_' (53331)

: 1. .
betp = Vi 415 = De -ie“b’raod' 4 268 po VP (5.33¢)

with 9°% given by (5.20). Ou the spacstime restriction of the D=4 N=1 surgravity la-
grangian, the above transformintions nve interpreled as ordinary D=4 diffeomorphisms
with porameter € supersynunctry viriations “*ﬁh paramneter € and local Lorentz rota-
tions with paramecter £9°, ‘

These sywuciries ave really ou sicll synunelrics of the supergravity action, since
in deducing the fransformations (3.33) we used the the eurvatures given in eq.s (5.30),
obtained via the ficld equations. Cf couvrse, one could use the general parametrization
of the curvatures {5.26) instead, and the resulting variations obtained through formula
(3.11) would then be totally off-shell, the price being the introduction of extra auxiliary
fields (the outer components of the enrvanwen),

Note: The Einstein equation
ac 1 3 , ed E
R (w) ~ 58 A (w) =0, (5.34)
deduced from (8.20) with ¢ = 4, is formally the same as in ordinary gravity. However,

the spin connection w is different. To {find it, we solve the zero-torsion constraint (5.31b)
as we did for ordinary gravity, and find:

0,0 =S "1 A (5.35)
uf.)’u -= W‘u 1 w“ [$ I3
Dab - 0 . - . '
where w  is the usual Riemannian spin connccetion (4.20) and

’ T - . n : - 7. v, ac « .
©Aw = e F Bt — ey - (Ao VAVt (5.36)
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Substituting (5.35) in the supergravity curvatures:

R¥(w) = R**(& + Aw) = R*(&) + D( 2) Aw™ — Aw*e Al (5.374)
p=Dlwh = ’D(w + Aw) = ’D(w)w - Zi\w“b%bz/) (5.37b)

the spacetime field equations read:

) - 2 )+ Ty (5.384)
8457a Do (W)ihee™* ™ = 25y, AwY,my, piboe”0e (5.385)
where
a c ca ca 1 @ ° c ¢ ce
T{¢) = Dicdw db] — Aw l[CAw b~ 5[55 De(w)Aw™; — Aw d]CAw el (5.39)

is the energy momentum tensor of the gravitino field.

6. Free differential algebras

The dual formulation of Lie algebras provided by the Cartan-Maurer equations (2. 12}
can be naturally extended to p-forms (p > 1):

)+Z c WGy A ANO =0, pAl=pi 4. +p, (6.1)

PsP1,.--Pr 8re, Tespectively, the degrees of the forms 8¢, 8%, ..., 8% the indices ; 2 i1y ey in
run on irreps of a group G, and C': i, are gencrah?ed structure constants S’J,tnsfvmg,
generalized Jacabi identities due to dz = 0. When p = p; = p; = 1 and 4,4;,4» belong
to the adjoint represcntation of G, eq.s (6.1) reduce to the ordinary Cartan-Maurer
cquations. The (anti)symmetry- propertics of the indices ¢y, ...i, depend on the bosonic
or fermionic character of the forms 6.,

If the generalized Jacobi 1dcnf1t1cs hold, eq.s (6.1) dcﬁne a free differential algebra
[2](FDA). The possible FDA extensions G’ of a Lie algebra G have been studicd in ref.s
[2,3], and rely on the existence of Chevalley cohomology classes in G [5]. Suppose that,
given an ordinary Lie algebra G, there exists a p-form:

o) = Q’AI__APUAI A... Aehr, ¥'A,. A, = constants, i runs on a G ~ irrep (6.2)

which is covariantly closed but not covariantly exact, i.c.
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Then Q"(p) is said to be a representative of a Chevalley eohomology class in the Dij irrep
of @. V is the boundary operator satisfying V? = 0 (it would be proportional to the
curvature 2-form on the soft group manifold). The existence of Q’( ) allows the extension

of the original Lie algebra G to the FDA G*:

1
do? + ECABCUB Ac® =10 (6.4a)
VI o1y + 8,)(0) =0 ,, (6.4b)

where E’(:P__]) is a new p — l-form, not contained in G. Closure of eq.s (6.4} is ensured

- because Vﬂzp) = (. .
It is elear that QEP) disfering by exact pleces V!Dép_ll lead to equivalent FDA’s, via

the redefinition Ezlp_]) — Eé}, 1) —}‘(I')Ep—l)“ What we are intercsted in are really nontrivial
cohomology classes satisflying eq.s {6.3).

The whole gaine can be repeated on the free differential algebra &7 which now
contains o 1, BEP--U' One looks for the existence of polynomials in ¢, EEP—I)

H VY () Al A Aa i . P
Q(q)(tj, u) = SLAL L Asin.. i‘_C" AL Ao A TR IAREL N E(_’p*—l)

(6.5)

satisfying the cohomology conditions {6.3). I such a polynomial exists, the FDA of eq.s
(6.4) can be further extended to G, and so on.

In constructing D-dimensional supergravity theories we usually choose as starting
point the superPoincaré Lie algebra, whose dual formulation is given in eq.s (3.4). The
possible G’ extensions to FDA’s depend on the spacetime dimension D. For example
in D = 11 therc is a cohomology class of the supcrPoincaré algebra in the identity
representation:

1 v
UV,w, ) = SpT* VeV’ (6.6)
d§! = 0 holds because of the D = 11 Fierz 1dentity
P8y T2V =0 (6.7)
This allows the extension of the algebra (3.4) by means of a three -form A:
dA — Y V,w,) =0 (6.8)
Note Only nonsemisimple algebras can have FIDDA extensions in nontrivial G-irreps. In-

deed a theorem by Chevalley aud Eilenbery [5] states that there is no nontrivial coho-
mology class of G in noutrivial G-irreps when (47 is scmisimple.
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As we have done in the case of ordinary Lie algebras, we find a dynamical theory
based on FDA’s by allowing nonvanishing curvatures. This means, for example, that
D = 11 supergravity is based on a deformation of the fields Viw, 1, A such that the
superPoincaré curvatures and the A-curvature of (6.8) are different from zero. The
construction of the action proceeds along the same lines outlined in section 4, and we
refer the reader to vefs. [1,3]. Other theories containing higher forms (i.e. antisymnctric
" tensors) have been interpreted as gaugings of free differential algebras: we refer the reader
to ref.s [1,3] for a detailed study of these theories.

7. BRST geometry

In this section we provide a geometric interpretation of BRST symmetry [6]. The
basic idea is to enlarge with an extra grassmann coordinate 8 the group manifold G of
the original theory, be it a gauge, a (super)gravity or a (super)string theory. Adding @ to
the spacetime coordinates was already considered in refs. [7-8], and indced in this way
one achieves a superspace forinulation of BRST invariant theories. Here we want to take
a step further, and consider the theory as living on the enlarged group manifold G +
Q, obtained by adding a fermionic central charge Q to the original group generators Ty,
satisfying Q% = 0. This is, in our opinion, the natural geometric arena of BRST-invariant
theories. Also, our formulation is easily extended to describe the BRST structure of
- theories containing antisymmetric tensors. In this case, the relevant geometry is that of

an cnlarged free differential algebra FDA + Q).

BRST symmetry is a global fermionic symmetry. Global symmetries are described
in our formalism by rigid translations along some group manifold coordinates yZ. Also,
the would be gauge potentials associated to the corresponding generators Ts become
pure gauge, and thus effectively disappear from the theory, if one imposes RZ = 0.

In the case of BRST symmetry, we assume therefore that the Q-curvature R[Q)
vanishes. Moreover, in order to remove the #-dependence in the fields of the theory, we
impose the horizontality constraints:

Rc = RAcy = R =0 (7.1)

The enlarged Lie algebra we start from is given by the (anti)commutations:

[Ta, T} = C% 45Tc
{@,Q} =0

Using the structure constants of (7.2) in eq. (3.2), we find the curvature definitions:

1 .
RA = d'LLA + %CABCFLH /\,UO
R[Q] = du[Q)]

(7.3)
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where pu[(2] is the potential corresponding to Q. The Bianchi identities are:

AR —Ch5c REA S =0

7.4
aR[Q) =0 9

Note that the horizontality constraints in eq. (7.1) and the "rigidity” constraint
R[] =0 (7.5)

are consistent with the Biauchi identities {7.4).

Our claim is that the gauging of the extended Lie algebra (7.2), supplemented with
the constraints (7.1) and (7.5), yields a BRST-invariant theory. -The proof is simple.
First we expand the vielbein one-form g on the basis of differentials (dy®, d8):

p(y, ) = ud dy 4 g d8 = pl dy + g4 de (7.6a)
RNy, 0) = p|Qla dy™ + p[Qle a8 (7.60)

1@ being a pure gauge because of eq. (7.5), we will concentrate on the transformation
laws for p*. Note that in eq. (7.6a) we have renamed g2 the df component of 4. The
rcason is that the fermionic zero-form ¢ will play the role of the ghost field associated
to the gauge potcntial p2. Thus, gauge ficlds and ghost fields are parts of the same
fundamental field o

Consider now the general formula (8.11) for all the symmetry transformations of the
theory. The coordinate variation éy# has a flat (adjomt) index A, and can be expressed
in terms of coordinate variations with curved indices as:

fyt = 6y.°',u;f + 66 p (7.7)

Let us specialize the variation (éy®,86) to describe a rigid translation in the 6
direction. Then §y® =0, 66 = constant and eq. (3.11) takes the form:

Sut = V(66 g*) = d(86 ¢*) + C pop® (66 ¢°)

. (7.8
= (‘“dgA - CABcHBg(’)M )

where the curvature term drops because of horizontality. 'Proje(_:ting on the differentials
dy®, df yields the BRST transforination laws of the gauge ficlds p! and ghost fields ¢g4:

Sult = —(Vag™M)66 (7.9)
1
A = (=3t — C'pegy C)ae:_icf‘ﬁcg%cm (7.10)

In the last equation we have used the curvature definition (3 2) and the horizontality

condition R4, = 0 to express Gpg?
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1 : .
Dog” = —§CABGQBQC ©(7.11)

This concludes the proof. The theory is BRST invariant, this invariance being on
the same conceptual footing as the other invariances of the theory. All of them have the
same geometric origin, i.e. are relics of diffeomorphism invariance on the enlarged group
manifold G+4Q, i.e. the soft group manifold associated to the algebra (7.2).

The whole discussion can be straightforwardly extended to the case of free differential
algebras. It suffices to enlarge the FDA to FDA4Q. Let us see how this works in a
particular case.

The FDA we consider is the simplest extension of a Lie algebra (in the following

. denoted by FDA1l):

1
dO‘A-l-'é'GABCa'BJC:O
- . . 1 . ) 1 . (7.12)
d.B!'i'CtAjO'ABJ+ECZABGUAO'BO'CEVBE‘I“'G'CtABc(TAO'BO'C:O

where B' is a two-form in a representation D° ; of G. The generalized Jacobi identities
(d? = 0), besides the usual ones for C4p¢, are’ '

CiAJ-CjBk — CiB_,-C'J'A,; = C%pC's, representation condition (7.13a)

1 7 i 1 E i - | .y
_EC[ABCC D]j "I“ ZC [DAC BC]E = O, 3 —_ CO(.'.yC].e Condltlon : (7135)
Eq. (7.2a) implies that (C’A)ij = C‘iAJ- is a matrix representation of G, while eq. (7.2b)

is just the statement that C' = C*, 5304080 is a 3-cocycle, ‘i.e. VCE = 0.

To this algebra we adjoin the central fermionic charge () and we allow the left
hand sides of eq.s (7.12) to be nonvanishing curvatures R4, R’ respectively, satisfying
generalized Bianchi identities: '

dR* -~ C4pc RBu% =0 ' (7.140)
Y . . . A

th - CljljRABJ + ClAJ'}'.LARJ - 'é'clABcRA[JB_LLC =0 (714b)

dR[Q] =0 : (7.14c)

The ghost fields are contained in the expansion of 4 and B* along d differentials:

rpo . ' T T T T P00 0 VO OGRS PR
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u?(y,0) = p2 dy® + g4 do | | (7.150)
Bf = B’ gdy®dy® + b dy*df -+ g' dfdf (7.15b)

As discussed in ref.s [8,9], in the case of FDA’s we cannot require complete horizontality
of the higher form curvatures. We will comment on this later. In general, if Ry is a
curvature p-form, one needs to consider all the components (p, 0),(p —1,1),...(2,p — 2),
where (r,s) denotes the components with r differentials dy® and s differentials d6. In
- our specific case the three-form R is expanded as

| ‘ Rl = R"uﬂ_ydy“dyﬁdy'r + r;ﬂdy“dyﬂdﬂ (7.16)
We want to prove again that coordinate transformations in the 8 direction reproduce

the correct BRST transformations on the FDA1 fields. Applying the Lie derivative (3.10)
to B* yields:

; . . i . i 1 ; 1 i . i
88" = (isyd + disy)B* = i5y(R' — C"-AJ-,uAB’ — EC Aok BB ) + d(is, BY)  (7.17)
Specializing the tangent vector §y to point in the @ direction, i.e:

0
by = 68— .
y = 46 3% (7 18)
and projecting eq. (7.17) respectively onto the complete basis of 2-forms (dy*dy?, dy=d8,

'dfdf}, one arrives at the transformation rules:

6 iy e ‘ i L i

;5—53 ap = ~Tap+C L 0%B 5+ C Aj#fibfa] + §C aBc9  uSug + Oa 5 (7.19a)
@ba =2 clAngb},x +2 C’A,‘#QAQJ - ClABC”éngC + 20ag" — Opby, (7.19%)
b ; 1 i

59 =3 C' g 097 — 5C a9’ g8 g% + 85(24%) | (7.19¢)

where care has to be taken of the (anti)symmetrization properties of the various quantities

(for ex. g and d@ anticommute ete.) As in the case for ordinary Lie algebras, we make

use now of the horizontality conditions to get rid of the 2 derivatives in eq.s (7.19b)

a6
and (7.19c). From -
Riagp = Rigge =10 (7.20)
(Ria,ea = r"m6 from eq. (7.16)) we deduce
Oag’ = 0oy == C' 400’ — C a9V & SC apopleg®e° (7.21a)

. ) .1 .
Dsg’ = '“C'Ajfi'AQJ + EC'ABCHAQBQG ‘ . (7.219)
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so that the expressions for §-diffeomorphisms (7.19) reduce to:

6 i é i Apj ; e i

EB—B ap =T ap+C AngBjaﬁ + Cia‘lj”fib},i] + 50 ABCgA,uaB;Lg + O(a b (7.224)
b i i 1 i

ggte = Cas0 "0+ Clajuily’ = SC apoitia®sC + dag (7.220)
6 i i 1

559 = Caie"d — 5Cancg?e®s® | (7.22¢)

These are the usual BRST transformation rules for FDA1 as given for example in
ref.s [8,9]. In these references the BRST transformations are obtained via the “Russian
formula” algorithm due to Stora [4]. To compare them with eq.s (7.22) we recall that
in our language the BRST operator s is really d@%, and that our ghosts have to be
multiplied by the df differentials before comparing. This is because in the algorithm of
[4] the ghosts are defined by

pt = pldy® 4 g4 (7.23a)
Bi =D pdydyf 40 dy* ¢ (7.23¢)

Let us comment now on the “almost horizontality” conditions (7.20). To see the

- necessity of Riaﬁg = r;ﬁ 7 0 consider the Bianchi identity (7.14b), and project it on

dy® dy® d9d6:
. . . . . 1 .
7' ap =~ C 4 Rpy” + CzAngTJo:ﬂ + ECtABCRAo:ﬁngc =0 (7.24)

If we had insisted on total horizontality of R in the 4 direction, i.e. riap =0, eq. (7.24)
would have implied an algebraic relation between the fields and the curvatures, so that
the basic fields of the theory would not have been independent any more.

Can the fields still be considered to be independent of the fermionic coordinate 8 7
After all, in the case of ordinary Lie algebras, this independence was due to horizontality.
Here, however, horizontality is not complete, and we may wonder whether it is possible to
remove the § dependence. It turns out that the “almost horizontality” conditions (7.20)
are enough to do the trick: indeed with their help we have removed the 85 terms in the
right hand sides of (7.19). We have thercefore a sort of global rheonomy: the knowledge
of the values of the fields at 6 = 0 allows to find their # dependence just by integrating
eq.s (7.22). The physical information resides then in the 8 = 0 restriction of the fields. In
other words, the dependence on 8 of the physical fields can be removed via a finite global
6-diffeomorphism (by integrating eq.s (7.22)). The resulting theory is invariant under the
global BRST transformation (7.22), where now 68 is interpreted as the fermionic BRST
transformation parameter. ‘ . '

In cdnclusion, we have proved that BRST transformations can be interpreted as
diffeomorphisms in @ dircetions. In our framework, BRST invariant lagrangians can be
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obtained by “gauging” the enlarged free differential algebra, FDA+Q, using the systematic
algorithm discussed in sections 3 and 4. ' '

Anti-BRST transformations are easily included in the game, just by coﬁs_idering
another nilpotent central charge @, and gauging the augmented algebra G + Q+Q. This
of course introduces another grassmann coordinate 8, and the corresponding antighosts
~A
g ete.

8. The sigma model of type II superstrings

Type Il superstring theories, although deemed to be inadequate for realistic phe-
nomenology [10] (seec however [11}), are been considered with renewed attention, This is

dize to the existence of a canonical map [12,13], called the h-map in refs. {14,15], that

relates two different modular invariant heterotic models to every consistent modular in-
variant type II superstring theory. As emphasized in [13)], the h-map is the analogue, at
the level of 2D-conformal field theories, of the spin connection embedding into the gauge
connection coupled to the heterotic fermions.

A classification of (2,2) heterotic superstring vacua has been given in [16], where the
h-map is applied on the type II superstring compactifications on SU(2)* groupfolds (=
twisted group manifelds) [17,18]. '

In this section, based on ref. [19], we provide the geometric construction of the rele-
vant o-model for type Il superstrings propagating on an arbitrary target space Mygrget-
From the action of this o-model, one can deduce the world-sheet supercurrent whose
structure turns out to be different from the one considered in the free-fermion con-
structions of ref.s [20]. This supercurrent yields a more restricted set of solutions to
the problem of constructing four-dimensional modular invariant theories that preserve
world-sheet supersymmetry.

In subsection 8.1 we discuss the geometry of (1,1)-superspace, i.e. the space under-
lying the N=2 superconformal algebra in two dimensions. In subsection 8.2 we match
this geometry together with the target space geometry, and in subsection 8.3 we derive
the geometric action of the (1,1) o-model. '

8.1 World-sheet geometry: (1,1)-superspace

In this subscction we derive the gcomc;try of (1,1)-superspace from its underlying
algebraic structure, i.e. the two-dimensional N=2 superconformal algebra.

This superalgebra contains

N W)
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translations — V¢
conformal boosts — I{*

Q — supersymmetry -— .

S — supersymmetry — ¢ (8.1)

Lorentz rotations — w®®
w

dilatations —

and we have indicated on right-hand side of the arrow the corresponding gauge field
one-forms. In the dual language of Cartan-Maurer equations the N=2 superconformal
algebra reads: :

DV +WAV® ~ ;—'1,5 Avy*eh =0 | (8.2a)
DK*-WAK® - %r,z_ﬁl\fy“qS:O (8.20)
Dy + %Ww—i«,acﬁ/\va =0 (8.2¢)
DY~ SWAG— iy Y AK =0 - (8.2)
dw“"’ L P A4S —avie A KH = g (8.2¢)
dW—gB/\¢5+2V“_AK“=O’ (8.2f)

The 2 gravitini 1 and ¢ are respectively Majorana-Weyl and Majorana anti-Wey! spinors,
je.

b=l =9TC; ey =9 (8.3a)

s=¢l¥ =9TC, wé=-4 - (8.35)

Our conventions for the two dimensional gamma matrices and the charge conjugation
matrix C' are as in ref. [17]. Egs. (1.3) are uniquely solved by setting

=i @ (= (8.4a)

peet(Nomn "
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Now we allow the left-hand sides of ¢qs.(8.2) to be nonvanishing, and define them
to be the corresponding curvatures of the superconformal N=2 algebra. Moreover, we
introduce the convenient basis: ' :

' 1
e = %(V" £ V1), B = S(K° + K7 (8.5a,)

w®® = 0, wt =W Lw ' (8.5¢,d)

In this basis the algebra (8.2) is rewritten as *: |

Tt =det +whet - -;-cc | (8.6a)
T- =de” twTe” (8.6b)

DF =dkt —w kT (8.6¢)

T =dkT - wtk™ 4 %xx (8.6d)
p=dl + St~ 2xet (8.6¢)
o= dx — %w+x =2k (8.6f)
Rt = dwt + 2i¢x + 8eTk™ (8.6¢)
R~ =dw 48kt (8.6h)

The associated superconformal transformations are nonlinearly realized in a suitable
superspace, called (1,1)-superspace, described by two bosonic coordinates z = 2z +al,z =
2% — 1 and two fermionic coordinates 8 and 8. Let us see how.

We consider the theory, whose basic fields are the 1-forms in (1.1), as living in the
(2,2,9,9_) superspace. A complete basis of 1-forms for this superspace is given by its
supervielbein, which we choose to identify with (et,e™,(,x), l.e. with a subset of the
1-forms associated to the N=2 superconformal algebra in two dimensions.

The torsion and the curvature of (1,1)-superspace are therefore defined by:

T+ = de¥ 4 wet (8.7a)

* wedge symbols are omitted.
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T =de™ —we”™ ' (8.75)
. 1 -
o i
T° =dy — WX (8.7d)
R =dw (8.7¢)

where w is the superspace spin connection (w = w!?).
The remaining 1-forms w¥, k* in the algebra (8.6) live on (1,1)-superspace, and can
be expanded on the (eT,e™,(, x) basis.

Now the question is: what is the geometry of (1,1) superspace ? In other words,
which constrainés arise on the torsion and curvature in (8.7) because of the underlying
N=2 supecrconformal algebra ?

The answer is found by analysing the Bianchi identities of the superspace torsion
and curvature, and of the superconformal curvatures (8.6).

These identities are immediately obtained by extericr differentiation of the defini-
~ tions (8.6) and (8.7), and are satisfied by the following torsions and curvatures:

superconformal curvatures:

Tt =0 {(8.8a)

- _%' X | (8.85)

n+ — %CC (?.86)

s~ 0 (8.8d)

p=roctem 4 Pyet (8.8¢)

oc=r1% e Ple™ - (8.81)

R = (8 + R)e*e™ +ir°yet — ir*(e™ — iPCx (8.89)

R~ =—Rete™ —ir®xet 4 ir°Ce™ +i(P + 2)Cx (8.8h)

LA}
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superspace curvatures:

T+ = ;;cc | (8.94)

T = *%xx | (8.95)

T* =7%%e™ 4 (P + 2)xe* (8.9¢)

T° =7°ete™ + (P +2)Ce” - (8.94)

| R=-R" (8.9¢)

w=wt=_—w" (8.91)

where R, 7°* and 7° are the only independent ﬁelds,‘ and P is determined by

D,m* —~(P+2)? = %R , (8.10)

Let us comment what we have done so far. We have taken as initial algebraic
structure & the N=2 superconformal algebra in two dimensions. We have then chosen
the particular subgroup H C G spanned by the Lorentz rotations, conformal boosts and
dilatations and considered the “H-horizontal” fiber bundle G = (G/H,H) where the
fiber is H. The bundle is “H-horizontal” in the sense that all curvatures vanish in the
H-directions of G. This'allows to consider the basic left-invariant one-forms of & as living
on G/H . This G/H is nothing else but the (1,1) superspace we have been discussing,.

A geometrical theory based on G is invariant under G-differomorphisms. Therefore,
to find the transformation rules of the basic fields in eq. (8.1) we apply the Lie-derivative
rule and find for the (1,1) supervielbein:

bet = DET + (¢4 Adet +ieC (8.10a)
be” =D& 4 (¢ - A)e™ —iny (8.100)
8¢ = De + l(¢ + A+ (P + 2)pet + Px‘{++
= 2 | 1 (8.10¢)
+ ‘r'{"’e_ + T'6+§_
1 ' _ _
6x=D?’)+-2-(—¢5+/\)x-l—(P+2)ee + P+ (8.104)

+7ote 4 roetem
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where £+, €7, ¢,m, A, ¢ arc the parameters of the left translations, right translations, Q-

supersymmetry, S-supersymmetry, Lorentz rotations and dilatations respectively.
These transformations preserve the constraints (8.9) and allow the choice of a special

superconformal gauge where: -

e” =dz+ ;6df
¢=4d9
x = df . (8.11)

'a:nd:

(8.12)

8.2 Field equations of the target space supervielbein

In this subsection we introduce an embedding function X#(z, 2, 6, 8), mapping (1,1)-
superspace into an arbitrary target manifold Mt”get and describing the superstring
propagation on M;,pger. From the Bianchi identities of the My,rgei-curvatures we de-
termine the field equations for the Myaryer-vielbein V?(z, 7,6, 0}, which can be viewed
as a 2-D superfield, i.e. a function of the (1,1)-superspace coordinates. The same holds
for the target spin connection w®®(z,z,8,6). Thus the Bianchi identitics of Myarges,
which is per se a purely bosonic manifold, become actually differential equations for the
2D superfield V*(z, z, 8, 9) in (1,1)- superspace. As usual in supergravity theories with-
out auxiliary fields, Bianchi identities determine the equations of motion of the physical
fields, in our case the superfield V*(z, 2,6, §) (or its component fields along the complete
basis of 1-forms for (1,1)-superspace, see. eq. (8.14)).

The torsion and curvature of Mg,,4¢ are defined as usual by

T% = V' 4wVt = T4, VPVe | (8.13q)

R = dw®? + ww = R VeVe (8.135)

where the M grger-vielbein can be expanded on the basis et,e™, ¢, x of (1,1)-superspace:

Vo = Vet + Ve~ + A% 4+ p®x (8.14)
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Thus, the superbmlbcm V@ contains two bosonic fields V+,V“ and two 2- dlmensxon'xl

spinors A" 7

Inserting the decomposition (8.14) into the torsion definition (8.13a) yields, in the

various sectors of (1,1)-superspace:

e i —V_VE 4 VLVe — 275, VIVE =0
¥ (i =V + VAt — 2T VEX =0
X =VoVi+ Vyp® —2T4 Vi =0
e ¢ =V V24V X — 2T VX =0
e x : —VoVe 4+ V_pu® — 2fabcvfpc =0
(( V++VA“+T“AAR_0
(x ' VoA® + Vou® 4 2T% APy =

XX *§Vf + Vop® + T P =0

Consider now the Bianchi identity for the Miarget torsion (8.13a):

Ve — V2VG _ Rabvb

or:

a abysb
VIV = Ry

vZVa — Rabvb
VZ,\G — Rab)\b
VZ#a :_Ra.b“b

(8.154)
(8.15b)
(8.15¢)
(8.15d)
(8.15¢)
(8.15f)

(8.159)

(8.15h)

(8.16)

(8.17a)
(8.17b)
(8.17¢)

(8.17d)

As we discuss later (subsection 8.3), for a generic (1,1} action including a topological
WZ term [ H, the components of the torsion Tyy, will be ultimately identified with

M3
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the components Hgy. of the closed 3-form H = H,,.V*VbV e, This justifics taking Ty
completely antisymmetric and " ‘

H(TapcVoVIVE) =0 " (8.18a)
or -

ViaTyeay + 3T, T = 0 " (8.18h)

This ansatz is compatible with the Bianchi identities solved in this Section. Together
with the torsion Bianchi identity {8.16):

V[m‘ abc] + 2Ta£mszc] = Ra[mbc] (819)

the ansatz (8.18) implies the following identities:
Voliem = =67, T ) + 3R sy (8.20a)
Ra[bcm] = Tga[ngcm] (8206)

Next from eq. (8.17c) we find

v (V+A"e+ + VoA + (—%) VEC— TN + Vof\”x) =

= R y(Viet + VEe™ + 3°C+ ux) (Viet + V2™ + X0 + uy)

(8.21j

For simplicity, we set

VoAt =0 (8.22)

in the following. This constraint is compatible with the Bianchi identities, as we see in
this Section, and really amounts to a suitable redefinition of the spin connection w??,
From the xx sector of eq. {8.21) we find

- —-;-v_,\“ = —R%_ \bucyd (8.23)

which is the A? field equation.
Similarly from the (¢ projection of eq. (8.17d) we have

-;-v+,u“ = —iTbepbVE — ROV e pd (8.24)
" ie. the y® field equation. We have used

Vep® = —2T% X p¢

from eq. (8.15g) and
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V(T A ) = -——T Ve
where the VT + 1T terms cancel after use of egs. (8.20).

The V3§ field cquations can be found from the xx ‘projection of (8.17a) and from the
¢¢ projection of (8.17b):
V_VE =2iR* Vi — 2iR* VE el
-2V, Rbcde/\b/\cpdﬂe 4+ 8Rde£beacAdAe#b#c
Vi V2 = 2TV Ve + 2R VA acn
~ 2R VI ucu? ~ (8.26)
— oV Rbc )\Ac#d!ﬂe_{_SRde T£ )\dAc c

(8.25)

égain after use of the identities (8.20).

No further information can be gleaned from the torsion Bianchi identity (8.16). As
usual, the Bianchi identity for the M, rg.¢ curvature (8.13b) does not give new conditions
when the other Bianchi identities are satisfied.

8.3 Geometric action of the (1,1) o-model

In this subsection we construct the action that yields the parametrizations (8.15)
and the field equations (8.23-8.26) together with the constraint (8.18).

We begin be writing a natural extension of the (1,0) lagrangian (in our notations,
this lagrangian is given in Part. 6 of ref. [1]) where now many more terms are possible,
because of the presence of the second bidimensional spinor u?:

S = f [(VE = A%¢ — ux (I8 et — % e™) + 2iA°V A%t + 02ip0V e~

+ AV 4 ButVix + AT eTe™ + ad®u(x .

B TN NN 1 8Ty uxe™ + ta TN N u e + £, T 4@ P ACCe™
4t THPoANPY et 4 4 Tobe % by o=

4 (M R¥, 4+ qTFPTI )\ \b e pdetem 4 (rgRabcd b uTT T edya b e pdet
4 (ra R + g To4TP )2 A 1 poet o= 4 (ry R + ga T2 T o) NS el ] 4

+[ B
M

(8.27)
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M is a three-dimensional manifold bounded by M, and the three-form K is closed:
dH = 0. Note that all the terme in S must have vanishing w-weight, where the w-weight
is given by the coefficient of the w-connection term in eqs. (8.7):

[eX] =41 - (A% = —%

1 1
[€1=3 [u®] = 5 (8.28)
X =}

since the action must be invariant under Weyl rescalings and two-dimensional Lorentz
rotations, generated by J'2 £ D. The w-weights of A* and p* can be deduced from eq.
(8.14) (V* bas w-weight= 0). Moreover, the action S is invariant also under the global
rescalings

Ve — wV*® ¢— %w(

P -;—w/\“ X — éwx

S _ (8.29)
ut = swp

=$’Tabc —_ w—lTabc
Rade — w—2Ra.bcd

which preserve the parametrizations (8.15) and the field equations (8.23-8.26).

The undetermined coeﬁicien’ns. in the action (8.27) are computed by requiring that
the variation 65 reproduces the parametrizations (8.15) and the field eqs. (8.23-8.26).
Variations in T1% yield immediately

s =y (8.30)

namely the auxiliary 0-forms II% are identified with the bosonic projections of the target
vielbein. '

The variation in the spinor A* leads to the following equations, in the various sectors
of (1,1)-superspace:

¢C:0=0 : (8.31a)
xx:0=0 - (8.31b)
Cx:(1+a)p*=0 ' (8.31¢)
Cet i =2V 4 4V, A% + 36, 7NN 42 24, b pb A = 0 (8.31d)
Ce™ : 4Tl =0 (8.31e)

xet VAT £ TN e 4 28, TN == K (8.31f)
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xe  :0=0 © (8.31g)
ete™ 1 —4iV_A® — 25 TN VS 4 2(r Ry + gy TFBTT o) 2 e 4

+2(r2 B g* + Ty, "TY) DA p? 4 (r3 B2y + g TI90TIab) N b 0
— (r3qu + g TIIPT a9\ 90 2{ry R+ q.inc‘inCd)/\eﬂ“,u'; =0 (8.31h)

leading immediately to

a = '—1, t4 = 0‘, t3 = —ts (832)

(the last equality being due two the choice VA = 0). Imposing further

3ty + 245 = 4i (8.33)

we see that (8.15f) is correctly reproduced. Also, comparing (8.31h)} with the field equa-
tion (8.23) we see that

"4
_ ts =0 (:} tg = 0, i = ‘gt) (834:)

© 15 necessary since the corresponding term T%*°A’V¢ cannot be otherwise eliminated.
Moreover, the last four terms in the action (8.27), i.e. the terms with T1,Qly *<T4,0q4
. must sum up to 4R* ; A4\ 42, so that eq. (8.31h) indeed reduces to the field equation
(8.23).

Varying now S in §u® we find:

¢¢:0.=0 | (8.35a)
xx (e + )t =0 (8.350)
Cx:(B+1)A*=0 : (8.35¢)
Cet:0=0 | (8.35d)
Ce™ 1 4aV u® + 2T ub A = 0 (8.35¢)
xet i —(1+g)Ve=0 (8.35)
xe” 1 4iVou® + 2V 4 (3ty 4 246)T*°ub u® = 0 (8.354)
ete™ 1 4iVu® + 26T Ut VE 48R, utAoxd = 0 (8.35h)

'These equations imply

) 4,
ﬁz—-l,azl,té :4z,t2:—§z (836)

and the eqs. (8.15g,h) and (8.24) are satisfied.if

bo = 4i,ty = —%i - (8.37)
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All the coeflicients in the action (8.27) have been determined, and S takes the form:
§= f [Vo = 2%¢ — pox)(IT% et — T1% e ) + 2iAeVAGeH
oM _
+20p°Vpte™ + XV — p*Vey + G2 ete™ — A%u(x
+ giT“bcz\“/\b,\cCe'i' — giT“bcp“ybpcxe_ ’ (8.38)
_.42-Tabc‘u‘ay‘bvce— + 4Rabcd’\a I\b‘uc‘u’d]

+/H
M

Next, we consider the variation of (8.38) in the coordinates X#. It is convenient to use
the anholonomized variations §X* (tangent vectors to Myayyer), Whose generator is the
Lie derivative: '

Osx V= lsxV® =isxdV® + d(i,sxl/"‘) (8.39)
where
6X =6X°P,, V“(Pb) = by (8_.40)
and we have;
8sx V@ = MEX* + 276 XV ° — (1550 V? (8.41)

where (i5;w®*)V? is a field dependent Lorentz transformation on the vielbein. By the
same token we have: '

Ssxw®® = V(isxw?®) + 2R _§X°V? (8.42)

6sx / H=3 / Hp6XVve (8.43)
M aM

Varying now (8.38) in §X° yiélds, in the (¢ and yyx sectors, the constraint

Tllbc — __3Habc . (8-44)

which we anticipated in subsection 8.2. The §X¢ variation in those sectors is really a su-

.persymmetry variation, so that the constraint (8.44) is necessary for the supersymmetry

invariance of the action. Note that 7'**¢ = const - H*% can be obtained from the more
general action (8.27), where all the coefficients. are still undetermined. The other sectors
of 6x.5 simply reproduce the field equations (8.23-8.26).

Finally, we compute the stress-energy tensor F of our final lagrangian (3.12), defined
by '
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— f(E+6e+ + E_de” 4+ E.6¢ + E.dx) (8.45)
Recalling the transformation rules (8.10) in the special gauge (8.11) and requiri'ng
85 &S
A EE =0 . (846)
yields
Ei-=E 4 =E,_ =E_,=Fy=FE;,=0
1 '
E—|—. = ':EE0+ (8-47)
1
E—o —_ -'_EEO— |
Therefore, we are left with four independent, components:
. By, BE__,Eo,E_,
Varying the action S in éet, de™, 8¢, 6y, we find
E++ = V_EV_;? + 22:)\QV+/\a : (8481’1)
E__ = -VIV2 4+ 2%p°V_p® + 4TV by (8.48b)
By =0V - —ng“b"‘A“A A° . (8.48¢)
2.
E_y = —psVe 4 ng“bc,u“,ub,uc | (8.48d)
and 1t is straightforward (but somewhat laborious) to show that:
V_E++ =0 : (8.490.’.)
V4iE._=0 (8.49b)
V_Ei =0 ' . (8.49¢)
ViE_o=0 - (8.49d)
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