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Preface

The ideas and concepts of physics are best expressed in the language of mathe-
matics. But this language is far from unique. Many different algebraic systems
exist and are in use today, all with their own advantages and disadvantages. In
this book we describe what we believe to be the most powerful available mathe-
matical system developed to date. This is geometric algebra, which is presented
as a new mathematical tool to add to your existing set as either a theoretician or
experimentalist. Our aim is to introduce the new techniques via their applica-
tions, rather than as purely formal mathematics. These applications are diverse,
and throughout we emphasise the unity of the mathematics underpinning each
of these topics.

The history of geometric algebra is one of the more unusual tales in the de-
velopment of mathematical physics. William Kingdon Clifford introduced his
geometric algebra in the 1870s, building on the earlier work of Hamilton and
Grassmann. It is clear from his writing that Clifford intended his algebra to
describe the geometric properties of vectors, planes and higher-dimensional ob-
jects. But most physicists first encounter the algebra in the guise of the Pauli
and Dirac matrix algebras of quantum theory. Few then contemplate using these
unwieldy matrices for practical geometric computing. Indeed, some physicists
come away from a study of Dirac theory with the view that Clifford’s algebra
is inherently quantum-mechanical. In this book we aim to dispel this belief by
giving a straightforward introduction to this new and fundamentally different
approach to vectors and vector multiplication. In this language much of the
standard subject matter taught to physicists can be formulated in an elegant
and highly condensed fashion. And the portability of the techniques we discuss
enables us to reach a range of advanced topics with little extra work.

This book is intended to be of interest to both students and researchers in
physics. The early chapters grew out of an undergraduate lecture course that we
have run for a number of years in the Physics Department at Cambridge Uni-
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PREFACE

versity. We are indebted to the students who attended the early versions of this
course, and helped to shape the material into a form suitable for undergraduate
tuition. These early chapters require little more than a basic knowledge of linear
algebra and vector geometry, and some exposure to classical mechanics. More
advanced physical concepts are introduced as the book progresses.

A number of themes run throughout this book. The first is that geometric
algebra enables us to express fundamental physics in a language that is free from
coordinates or indices. Coordinates are only introduced later, when the geom-
etry of a given problem is clear. This approach gives many equations a degree
of clarity which is lost in tensor algebra. A second theme is the way in which
rotations are handled in geometric algebra through the use of rotors. This ap-
proach extends to arbitrary spaces the idea of using a complex phase to rotate in
a plane. Rotor techniques can be applied in spaces of arbitrary signature and are
particularly well suited to formulating Lorentz and conformal transformations.
The latter are central to our treatment of non-Euclidean geometry. Rotors also
provide a framework for studying Lie groups and Lie algebras, and are essential
to our discussion of gauge theories.

The third theme is the invertibility of the geometric product of vectors, which
makes it possible to divide by a vector. This idea extends to the vector derivative,
which has an inverse in the form a first-order Green’s function. The vector
derivative and its inverse enable us to extend complex analytic function theory
to arbitrary dimensions. This theory is perfectly suited to electromagnetism,
as all four Maxwell equations can be combined into a single spacetime equation
involving the invertible vector derivative. The same vector derivative appears
in the Dirac theory, and is central to the gauge treatment of gravitation which
dominates the final two chapters of this book.

This book would not have been possible without the help and encouragement
of a large number of people. We thank Stephen Gull for helping initiate much
of the research described here, for his constant advice and criticism, and for use
of a number of his figures. We also thank David Hestenes for all his work in
shaping the modern subject of geometric algebra and for his constant encour-
agement. Special mention must be made of our many collaborators, in particular
Joan Lasenby, Anthony Challinor, Leo Dorst, Tim Havel, Antony Lewis, Mark
Ashdown, Frank Sommen, Shyamal Somaroo, Jeff Tomasi, Bill Fitzgerald, Youri
Dabrowski and Mike Hobson. Special thanks also goes to Mike for his help with
Latex and explaining the intricacies of the CUP style files. We thank the Physics
Department of Cambridge University for the use of their facilities, and for the
range of technical advice and expertise we regularly called on. Finally we thank
everyone at Cambridge University Press who helped in the production of this
book.

CD would also like to thank the EPSRC and Sidney Sussex College for their
support, his friends and colleagues, all at Nomads HC, and above all Helen for
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PREFACE

not complaining about the lost evenings as I worked on this book. I promise to
finish the decorating now it is complete.

AL thanks Joan and his children Robert and Alison for their constant enthu-
siasm and support, and their patience in the face of many explanations of topics
from this book.

Cambridge C.J.L. Doran
July 2002 A.N. Lasenby
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Notation

The subject of vector geometry in general, and geometric algebra in particular,
suffers from a profusion of notations and conventions. In short, there is no
single convention that is perfectly suited to the entire range of applications of
geometric algebra. For example, many of the formulae and results given in
this book involve arbitrary numbers of vectors and are valid in vector spaces
of arbitrary dimensions. These formulae invariably look neater if one does not
embolden all of the vectors in the expression. For this reason we typically choose
to write vectors in a lower case italic script, a, and more general multivectors in
upper case italic script, M . But in some applications, particularly mechanics and
dynamics, one often needs to reserve lower case italic symbols for coordinates
and scalars, and in these situations writing vectors in bold face is helpful. This
convention in adopted in chapter 3.

For many applications it is useful to have a notation which distinguishes frame
vectors from general vectors. In these cases we write the former in an upright
font as {ei}. But this notation looks clumsy in certain settings, and is not
followed rigorously in some of the later chapters. In this book our policy is to
ensure that we adopt a consistent notation within each chapter, and any new or
distinct features are explained either at the start of the chapter or at their point
of introduction.

Some conventions are universally adopted throughout this book, and for con-
venience we have gathered together a number of these here.

(i) The geometric (or Clifford) algebra generated by the vector space of sig-
nature (p, q) is denoted G(p, q). In the first three chapters we employ the
abbreviations G2 and G3 for the Euclidean algebras G(2, 0) and G(3, 0). In
chapter 4 we use Gn to denote all algebras G(p, q) of total dimension n.

(ii) The geometric product of A and B is denoted by juxtaposition, AB.
(iii) The inner product is written with a centred dot, A ·B. The inner product

is only employed between homogeneous multivectors.

xiii

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.002
https:/www.cambridge.org/core


NOTATION

(iv) The outer (exterior) product is written with a wedge, A ∧ B. The outer
product is also only employed between homogeneous multivectors.

(v) Inner and outer products are always performed before geometric prod-
ucts. This enables us to remove unnecessary brackets. For example, the
expression a·b c is to be read as (a·b)c.

(vi) Angled brackets 〈M〉p are used to denote the result of projecting onto the
terms in M of grade p. The subscript zero is dropped for the projection
onto the scalar part.

(vii) The reverse of the multivector M is denoted either with a dagger, M †, or
with a tilde, M̃ . The latter is employed for applications in spacetime.

(viii) Linear functions are written in an upright font as F(a) or h(a). This
helps to distinguish linear functions from multivectors. Some exceptions
are encountered in chapters 13 and 14, where caligraphic symbols are
used for certain tensors in gravitation. The adjoint of a linear function is
denoted with a bar, h̄(a).

(ix) Lie groups are written in capital, Roman font as in SU(n). The corre-
sponding Lie algebra is written in lower case, su(n).

Further details concerning the conventions adopted in this book can be found
in sections 2.5 and 4.1.

xiv
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1

Introduction

The goal of expressing geometrical relationships through algebraic equations has
dominated much of the development of mathematics. This line of thinking goes
back to the ancient Greeks, who constructed a set of geometric laws to describe
the world as they saw it. Their view of geometry was largely unchallenged
until the eighteenth century, when mathematicians discovered new geometries
with different properties from the Greeks’ Euclidean geometry. Each of these
new geometries had distinct algebraic properties, and a major preoccupation
of nineteenth century mathematicians was to place these geometries within a
unified algebraic framework. One of the key insights in this process was made by
W.K. Clifford, and this book is concerned with the implications of his discovery.

Before we describe Clifford’s discovery (in chapter 2) we have gathered to-
gether some introductory material of use throughout this book. This chapter
revises basic notions of vector spaces, emphasising pictorial representations of
the underlying algebraic rules — a theme which dominates this book. The ma-
terial is presented in a way which sets the scene for the introduction of Clifford’s
product, in part by reflecting the state of play when Clifford conducted his re-
search. To this end, much of this chapter is devoted to studying the various
products that can be defined between vectors. These include the scalar and
vector products familiar from three-dimensional geometry, and the complex and
quaternion products. We also introduce the outer or exterior product, though
this is covered in greater depth in later chapters. The material in this chapter is
intended to be fairly basic, and those impatient to uncover Clifford’s insight may
want to jump straight to chapter 2. Readers unfamiliar with the outer product
are encouraged to read this chapter, however, as it is crucial to understanding
Clifford’s discovery.

1
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INTRODUCTION

1.1 Vector (linear) spaces

At the heart of much of geometric algebra lies the idea of vector, or linear spaces.
Some properties of these are summarised here and assumed throughout this book.
In this section we talk in terms of vector spaces, as this is the more common
term. For all other occurrences, however, we prefer to use the term linear space.
This is because the term ‘vector ’ has a very specific meaning within geometric
algebra (as the grade-1 elements of the algebra).

1.1.1 Properties

Vector spaces are defined in terms of two objects. These are the vectors, which
can often be visualised as directions in space, and the scalars, which are usually
taken to be the real numbers. The vectors have a simple addition operation rule
with the following obvious properties:

(i) Addition is commutative:

a + b = b + a. (1.1)

(ii) Addition is associative:

a + (b + c) = (a + b) + c. (1.2)

This property enables us to write expressions such as a + b + c without
ambiguity.

(iii) There is an identity element, denoted 0:

a + 0 = a. (1.3)

(iv) Every element a has an inverse −a:

a + (−a) = 0. (1.4)

For the case of directed line segments each of these properties has a clear geo-
metric equivalent. These are illustrated in figure 1.1.

Vector spaces also contain a multiplication operation between the scalars and
the vectors. This has the property that for any scalar λ and vector a, the product
λa is also a member of the vector space. Geometrically, this corresponds to the
dilation operation. The following further properties also hold for any scalars λ, µ

and vectors a and b:

(i) λ(a + b) = λa + λb;
(ii) (λ + µ)a = λa + µa;
(iii) (λµ)a = λ(µa);
(iv) if 1λ = λ for all scalars λ then 1a = a for all vectors a.

2
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1.1 VECTOR (LINEAR) SPACES

a a

b

b

a + b
a

b

a + b

b + c

a + b + c

c

Figure 1.1 A geometric picture of vector addition. The result of a + b is
formed by adding the tail of b to the head of a. As is shown, the resultant
vector a + b is the same as b + a. This finds an algebraic expression in the
statement that addition is commutative. In the right-hand diagram the
vector a + b + c is constructed two different ways, as a + (b + c) and as
(a+ b)+ c. The fact that the results are the same is a geometric expression
of the associativity of vector addition.

The preceding set of rules serves to define a vector space completely. Note that
the + operation connecting scalars is different from the + operation connecting
the vectors. There is no ambiguity, however, in using the same symbol for both.

The following two definitions will be useful later in this book:

(i) Two vector spaces are said to be isomorphic if their elements can be
placed in a one-to-one correspondence which preserves sums, and there
is a one-to-one correspondence between the scalars which preserves sums
and products.

(ii) If U and V are two vector spaces (sharing the same scalars) and all the
elements of U are contained in V, then U is said to form a subspace of V.

1.1.2 Bases and dimension

The concept of dimension is intuitive for simple vector spaces — lines are one-
dimensional, planes are two-dimensional, and so on. Equipped with the axioms
of a vector space we can proceed to a formal definition of the dimension of a
vector space. First we need to define some terms.

(i) A vector b is said to be a linear combination of the vectors a1, . . . , an if
scalars λ1, . . . , λn can be found such that

b = λ1a1 + · · · + λnan =
n∑

i=1

λiai. (1.5)

(ii) A set of vectors {a1, . . . , an} is said to be linearly dependent if scalars

3
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INTRODUCTION

λ1, . . . , λn (not all zero) can be found such that

λ1a1 + · · · + λnan = 0. (1.6)

If such a set of scalars cannot be found, the vectors are said to be linearly
independent.

(iii) A set of vectors {a1, . . . , an} is said to span a vector space V if every
element of V can be expressed as a linear combination of the set.

(iv) A set of vectors which are both linearly independent and span the space
V are said to form a basis for V.

These definitions all carry an obvious, intuitive picture if one thinks of vectors
in a plane or in three-dimensional space. For example, it is clear that two
independent vectors in a plane provide a basis for all vectors in that plane,
whereas any three vectors in the plane are linearly dependent. These axioms and
definitions are sufficient to prove the basis theorem, which states that all bases
of a vector space have the same number of elements. This number is called the
dimension of the space. Proofs of this statement can be found in any textbook
on linear algebra, and a sample proof is left to work through as an exercise. Note
that any two vector spaces of the same dimension and over the same field are
isomorphic.

The axioms for a vector space define an abstract mathematical entity which
is already well equipped for studying problems in geometry. In so doing we are
not compelled to interpret the elements of the vector space as displacements.
Often different interpretations can be attached to isomorphic spaces, leading to
different types of geometry (affine, projective, finite, etc.). For most problems
in physics, however, we need to be able to do more than just add the elements
of a vector space; we need to multiply them in various ways as well. This is
necessary to formalise concepts such as angles and lengths and to construct
higher-dimensional surfaces from simple vectors.

Constructing suitable products was a major concern of nineteenth century
mathematicians, and the concepts they introduced are integral to modern math-
ematical physics. In the following sections we study some of the basic concepts
that were successfully formulated in this period. The culmination of this work,
Clifford’s geometric product, is introduced separately in chapter 2. At various
points in this book we will see how the products defined in this section can all
be viewed as special cases of Clifford’s geometric product.

1.2 The scalar product

Euclidean geometry deals with concepts such as lines, circles and perpendicular-
ity. In order to arrive at Euclidean geometry we need to add two new concepts

4
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1.2 THE SCALAR PRODUCT

to our vector space. These are distances between points, which allow us to de-
fine a circle, and angles between vectors so that we can say that two lines are
perpendicular. The introduction of a scalar product achieves both of these goals.

Given any two vectors a, b, the scalar product a ·b is a rule for obtaining a
number with the following properties:

(i) a·b = b·a;
(ii) a·(λb) = λ(a·b);
(iii) a·(b + c) = a·b + a·c;
(iv) a·a > 0, unless a = 0.

(When we study relativity, this final property will be relaxed.) The introduction
of a scalar product allows us to define the length of a vector, |a|, by

|a| =
√

(a·a). (1.7)

Here, and throughout this book, the positive square root is always implied by
the

√
symbol. The fact that we now have a definition of lengths and distances

means that we have specified a metric space. Many different types of metric
space can be constructed, of which the simplest are the Euclidean spaces we
have just defined.

The fact that for Euclidean space the inner product is positive-definite means
that we have a Schwarz inequality of the form

|a·b| ≤ |a| |b|. (1.8)

The proof is straightforward:

(a + λb)·(a + λb) ≥ 0 ∀λ

⇒ a·a + 2λa·b + λ2b·b ≥ 0 ∀λ

⇒ (a·b)2 ≤ a·a b·b, (1.9)

where the last step follows by taking the discriminant of the quadratic in λ.
Since all of the numbers in this inequality are positive we recover (1.8). We can
now define the angle θ between a and b by

a·b = |a||b| cos(θ). (1.10)

Two vectors whose scalar product is zero are said to be orthogonal. It is usually
convenient to work with bases in which all of the vectors are mutually orthogonal.
If all of the basis vectors are further normalised to have unit length, they are
said to form an orthonormal basis. If the set of vectors {e1, . . . , en} denote such
a basis, the statement that the basis is orthonormal can be summarised as

ei ·ej = δij . (1.11)

5
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INTRODUCTION

Here the δij is the Kronecker delta function, defined by

δij =

{
1 if i = j,

0 if i 	= j.
(1.12)

We can expand any vector a in this basis as

a =
n∑

i=1

aiei = aiei, (1.13)

where we have started to employ the Einstein summation convention that pairs
of indices in any expression are summed over. This convention will be assumed
throughout this book. The {ai} are the components of the vector a in the {ei}
basis. These are found simply by

ai = ei ·a. (1.14)

The scalar product of two vectors a = aiei and b = biei can now written simply
as

a·b = (aiei)·(bjej) = aibj ei ·ej = aibjδij = aibi. (1.15)

In spaces where the inner product is not positive-definite, such as Minkowski
spacetime, there is no equivalent version of the Schwarz inequality. In such cases
it is often only possible to define an ‘angle’ between vectors by replacing the
cosine function with a cosh function. In these cases we can still introduce ortho-
normal frames and use these to compute scalar products. The main modification
is that the Kronecker delta is replaced by ηij which again is zero if i 	= j, but
can take values ±1 if i = j.

1.3 Complex numbers

The scalar product is the simplest product one can define between vectors, and
once such a product is defined one can formulate many of the key concepts of
Euclidean geometry. But this is by no means the only product that can be defined
between vectors. In two dimensions a new product can be defined via complex
arithmetic. A complex number can be viewed as an ordered pair of real numbers
which represents a direction in the complex plane, as was realised by Wessel in
1797. Their product enables complex numbers to perform geometric operations,
such as rotations and dilations. But suppose that we take the complex number
z = x + iy and square it, forming

z2 = (x + iy)2 = x2 − y2 + 2xyi. (1.16)

In terms of vector arithmetic, neither the real nor imaginary parts of this ex-
pression have any geometric significance. A more geometrically useful product

6
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1.4 QUATERNIONS

is defined instead by

zz∗ = (x + iy)(x − iy) = x2 + y2, (1.17)

which returns the square of the length of the vector. A product of two vectors
in a plane, z and w = u + vi, can therefore be constructed as

zw∗ = (x + iy)(u − iv) = xu + vy + i(uy − vx). (1.18)

The real part of the right-hand side recovers the scalar product. To understand
the imaginary term consider the polar representation

z = |z|eiθ, w = |w|eiφ (1.19)

so that

zw∗ = |z||w|ei(θ − φ). (1.20)

The imaginary term has magnitude |z||w| sin(θ − φ), where θ − φ is the angle
between the two vectors. The magnitude of this term is therefore the area of
the parallelogram defined by z and w. The sign of the term conveys information
about the handedness of the area element swept out by the two vectors. This
will be defined more carefully in section 1.6.

We thus have a satisfactory interpretation for both the real and imaginary
parts of the product zw∗. The surprising feature is that these are still both parts
of a complex number. We thus have a second interpretation for complex addition,
as a sum between scalar objects and objects representing plane segments. The
advantages of adding these together are precisely the advantages of working with
complex numbers as opposed to pairs of real numbers. This is a theme to which
we shall return regularly in following chapters.

1.4 Quaternions

The fact that complex arithmetic can be viewed as representing a product for
vectors in a plane carries with it a further advantage — it allows us to divide
by a vector. Generalising this to three dimensions was a major preoccupation
of the physicist W.R. Hamilton (see figure 1.2). Since a complex number x + iy

can be represented by two rectangular axes on a plane it seemed reasonable to
represent directions in space by a triplet consisting of one real and two complex
numbers. These can be written as x+ iy+jz, where the third term jz represents
a third axis perpendicular to the other two. The complex numbers i and j have
the properties that i2 = j2 = −1. The norm for such a triplet would then be

(x + iy + jz)(x − iy − jz) = (x2 + y2 + z2) − yz(ij + ji). (1.21)

The final term is problematic, as one would like to recover the scalar product
here. The obvious solution to this problem is to set ij = −ji so that the last
term vanishes.

7
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INTRODUCTION

Figure 1.2 William Rowan Hamilton 1805–1865. Inventor of quaternions,
and one of the key scientific figures of the nineteenth century. He spent
many years frustrated at being unable to extend his theory of couples of
numbers (complex numbers) to three dimensions. In the autumn of 1843
he returned to this problem, quite possibly prompted by a visit he received
from the young German mathematician Eisenberg. Among Eisenberg’s
papers was the observation that matrices form the elements of an alge-
bra that was much like ordinary arithmetic except that multiplication was
non-commutative. This was the vital step required to find the quater-
nion algebra. Hamilton arrived at this algebra on 16 October 1843 while
out walking with his wife, and carved the equations in stone on Brougham
Bridge. His discovery of quaternions is perhaps the best-documented math-
ematical discovery ever.

The anticommutative law ij = −ji ensures that the norm of a triplet behaves
sensibly, and also that multiplication of triplets in a plane behaves in a reasonable
manner. The same is not true for the general product of triplets, however.
Consider

(a + ib + jc)(x + iy + jz) = (ax − by − cz) + i(ay + bx)

+ j(az + cx) + ij(bz − cy). (1.22)

Setting ij = −ji is no longer sufficient to remove the ij term, so the algebra
does not close. The only thing for Hamilton to do was to set ij = k, where k is
some unknown, and see if it could be removed somehow. While walking along
the Royal Canal he suddenly realised that if his triplets were instead made up
of four terms he would be able to close the algebra in a simple, symmetric way.
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To understand his discovery, consider

(a + ib + jc + kd)(a − ib − jc − kd)

= a2 + b2 + c2 + d2(−k2) − bd(ik + ki) − cd(jk + kj), (1.23)

where we have assumed that i2 = j2 = −1 and ij = −ji. The expected norm of
the above product is a2 + b2 + c2 + d2, which is obtained by setting k2 = −1 and
ik = −ki and jk = −kj. So what values do we use for jk and ik? These follow
from the fact that ij = k, which gives

ik = i(ij) = (ii)j = −j (1.24)

and

kj = (ij)j = −i. (1.25)

Thus the multiplication rules for quaternions are

i2 = j2 = k2 = −1 (1.26)

and

ij = −ji = k, jk = −kj = i, ki = −ik = j. (1.27)

These can be summarised neatly as i2 = j2 = k2 = ijk = −1. It is a simple
matter to check that these multiplication laws define a closed algebra.

Hamilton was so excited by his discovery that the very same day he obtained
leave to present a paper on the quaternions to the Royal Irish Academy. The
subsequent history of the quaternions is a fascinating story which has been de-
scribed by many authors. Some suggested material for further reading is given
at the end of this chapter. In brief, despite the many advantages of working with
quaternions, their development was blighted by two major problems.

The first problem was the status of vectors in the algebra. Hamilton identified
vectors with pure quaternions, which had a null scalar part. On the surface
this seems fine — pure quaternions define a three-dimensional vector space.
Indeed, Hamilton invented the word ‘vector ’ precisely for these objects and this
is the origin of the now traditional use of i, j and k for a set of orthonormal
basis vectors. Furthermore, the full product of two pure quaternions led to the
definition of the extremely useful cross product (see section 1.5). The problem
is that the product of two pure vectors does not return a new pure vector, so
the vector part of the algebra does not close. This means that a number of ideas
in complex analysis do not extend easily to three dimensions. Some people felt
that this meant that the full quaternion product was of little use, and that the
scalar and vector parts of the product should be kept separate. This criticism
misses the point that the quaternion product is invertible, which does bring many
advantages.

The second major difficulty encountered with quaternions was their use in
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describing rotations. The irony here is that quaternions offer the clearest way
of handling rotations in three dimensions, once one realises that they provide
a ‘spin-1/2’ representation of the rotation group. That is, if a is a vector (a
pure quaternion) and R is a unit quaternion, a new vector is obtained by the
double-sided transformation law

a′ = RaR∗, (1.28)

where the * operation reverses the sign of all three ‘imaginary’ components. A
consequence of this is that each of the basis quaternions i, j and k generates
rotations through π. Hamilton, however, was led astray by the analogy with
complex numbers and tried to impose a single-sided transformation of the form
a′ = Ra. This works if the axis of rotation is perpendicular to a, but otherwise
does not return a pure quaternion. More damagingly, it forces one to interpret
the basis quaternions as generators of rotations through π/2, which is simply
wrong!

Despite the problems with quaternions, it was clear to many that they were
a useful mathematical system worthy of study. Tait claimed that quaternions
‘freed the physicist from the constraints of coordinates and allowed thoughts to
run in their most natural channels’ — a theme we shall frequently meet in this
book. Quaternions also found favour with the physicist James Clerk Maxwell,
who employed them in his development of the theory of electromagnetism. De-
spite these successes, however, quaternions were weighed down by the increas-
ingly dogmatic arguments over their interpretation and were eventually displaced
by the hybrid system of vector algebra promoted by Gibbs.

1.5 The cross product

Two of the lasting legacies of the quaternion story are the introduction of the
idea of a vector, and the cross product between two vectors. Suppose we form
the product of two pure quaternions a and b, where

a = a1i + a2j + a3k, b = b1i + b2j + b3k. (1.29)

Their product can be written

ab = −aibi + c, (1.30)

where c is the pure quaternion

c = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k. (1.31)

Writing c = c1i + c2j + c3k the component relation can be written as

ci = εijkajbk, (1.32)
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1.6 THE OUTER PRODUCT

where the alternating tensor εijk is defined by

εijk =




1 if ijk is a cylic permutation of 123,

−1 if ijk is an anticylic permutation of 123,

0 otherwise.

(1.33)

We recognise the preceding as defining the cross product of two vectors, a×b.
This has the following properties:

(i) a×b is perpendicular to the plane defined by a and b;
(ii) a×b has magnitude |a||b| sin(θ);
(iii) the vectors a, b and a×b form a right-handed set.

These properties can alternatively be viewed as defining the cross product, and
from them the algebraic definition can be recovered. This is achieved by starting
with a right-handed orthonormal frame {ei}. For these we must have

e1×e2 = e3 etc. (1.34)

so that we can write

ei×ej = εijkek. (1.35)

Expanding out a vector in terms of this basis recovers the formula

a×b = (aiei)×(bjej)

= aibj(ei×ej)

= (εijkaibj)ek. (1.36)

Hence the geometric definition recovers the algebraic one.
The cross product quickly proved itself to be invaluable to physicists, dra-

matically simplifying equations in dynamics and electromagnetism. In the latter
part of the nineteenth century many physicists, most notably Gibbs, advocated
abandoning quaternions altogether and just working with the individual scalar
and cross products. We shall see in later chapters that Gibbs was misguided in
some of his objections to the quaternion product, but his considerable reputa-
tion carried the day and by the 1900s quaternions had all but disappeared from
mainstream physics.

1.6 The outer product

The cross product has one major failing — it only exists in three dimensions. In
two dimensions there is nowhere else to go, whereas in four dimensions the con-
cept of a vector orthogonal to a pair of vectors is not unique. To see this, consider
four orthonormal vectors e1, . . . , e4. If we take the pair e1 and e2 and attempt
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Figure 1.3 Hermann Gunther Grassmann (1809–1877), born in Stettin,
Germany (now Szczecin, Poland). A German mathematician and school-
teacher, Grassmann was the third of his parents’ twelve children and was
born into a family of scholars. His father studied theology and became a
minister, before switching to teaching mathematics and physics at the Stet-
tin Gymnasium. Hermann followed in his father’s footsteps, first studying
theology, classical languages and literature at Berlin. After returning to
Stettin in 1830 he turned his attention to mathematics and physics. Grass-
mann passed the qualifying examination to win a teaching certificate in
1839. This exam included a written assignment on the tides, for which he
gave a simplified treatment of Laplace’s work based upon a new geometric
calculus that he had developed. By 1840 he had decided to concentrate
on mathematics research. He published the first edition of his geometric
calculus, the 300 page Lineale Ausdehnungslehre in 1844, the same year
that Hamilton announced the discovery of the quaternions. His work did
not achieve the same impact as the quaternions, however, and it was many
years before his ideas were understood and appreciated by other mathe-
maticians. Disappointed by this lack of interest, Grassmann turned his
attention to linguistics and comparative philology, with greater immediate
impact. He was an expert in Sanskrit and translated the Rig-Veda (1876–
1877). He also formulated the linguistic law (named after him) stating
that in Indo-European bases, successive syllables may not begin with as-
pirates. He died before he could see his ideas on geometry being adopted
into mainstream mathematics.

to find a vector perpendicular to both of these, we see that any combination of
e3 and e4 will do.

A suitable generalisation of the idea of the cross product was constructed by
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1.6 THE OUTER PRODUCT

θ θ

a

b

a∧b

a

b

b∧a

Figure 1.4 The outer product. The outer or wedge product of a and b
returns a directed area element of area |a||b| sin(θ). The orientation of the
parallelogram is defined by whether the circuit a, b, −a, −b is right-handed
(anticlockwise) or left-handed (clockwise). Interchanging the order of the
vectors reverses the orientation and introduces a minus sign in the product.

the remarkable German mathematician H.G. Grassmann (see figure 1.3). His
work had its origin in the Barycentrischer Calcul of Möbius. There the author
introduced expressions like AB for the line connecting the points A and B and
ABC for the triangle defined by A, B and C. Möbius also introduced the
crucial idea that the sign of the quantity should change if any two points are
interchanged. (These oriented segments are now referred to as simplices.) It was
Grassmann’s leap of genius to realise that expressions like AB could actually be
viewed as a product between vectors. He thus introduced the outer or exterior
product which, in modern notation, we write as a ∧ b, or ‘a wedge b’.

The outer product can be defined on any vector space and, geometrically, we
are not forced to picture these vectors as displacements. Indeed, Grassmann
was motivated by a projective viewpoint, where the elements of the vector space
are interpreted as points, and the outer product of two points defines the line
through the points. For our purposes, however, it is simplest to adopt a pic-
ture in which vectors represent directed line segments. The outer product then
provides a means of encoding a plane, without relying on the notion of a vector
perpendicular to it. The result of the outer product is therefore neither a scalar
nor a vector. It is a new mathematical entity encoding an oriented plane and is
called a bivector. It can be visualised as the parallelogram obtained by sweep-
ing one vector along the other (figure 1.4). Changing the order of the vectors
reverses the orientation of the plane. The magnitude of a∧b is |a||b| sin(θ), the
same as the area of the plane segment swept out by the vectors.

The outer product of two vectors has the following algebraic properties:
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a

b + c

a∧b a∧c

b c

a

a∧(b + c)

Figure 1.5 A geometric picture of bivector addition. In three dimensions
any two non-parallel planes share a common line. If this line is denoted a,
the two planes can be represented by a ∧ b and a ∧ c. Bivector addition
proceeds much like vector addition. The planes are combined at a common
boundary and the resulting plane is defined by the initial and final edges,
as opposed to the initial and final points for vector addition. The math-
ematical statement of this addition rule is the distributivity of the outer
product over addition.

(i) The product is antisymmetric:

a∧b = −b∧a. (1.37)

This has the geometric interpretation of reversing the orientation of the
surface defined by a and b. It follows immediately that

a∧a = 0, for all vectors a. (1.38)

(ii) Bivectors form a linear space, the same way that vectors do. In two and
three dimensions the addition of bivectors is easy to visualise. In higher
dimensions this addition is not always so easy to visualise, because two
planes need not share a common line.

(iii) The outer product is distributive over addition:

a∧(b + c) = a∧b + a∧c. (1.39)

This helps to visualise the addition of bivectors which share a common
line (see figure 1.5).

While it is convenient to visualise the outer product as a parallelogram, the
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1.6 THE OUTER PRODUCT

actual shape of the object is not conveyed by the result of the product. This can
be seen easily by defining a′ = a + λb and forming

a′∧b = a∧b + λb∧b = a∧b. (1.40)

The same bivector can therefore be generated by many different pairs of vectors.
In many ways it is better to replace the picture of a directed parallelogram with
that of a directed circle. The circle defines both the plane and a handedness,
and its area is equal to the magnitude of the bivector. This therefore conveys
all of the information one has about the bivector, though it does make bivector
addition harder to visualise.

1.6.1 Two dimensions

The outer product of any two vectors defines a plane, so one has to go to at least
two dimensions to form an interesting product. Suppose then that {e1, e2} are
an orthonormal basis for the plane, and introduce the vectors

a = a1e1 + a2e2, b = b1e1 + b2e2. (1.41)

The outer product a ∧ b contains

a∧b = a1b1e1∧e1 + a1b2e1∧e2 + a2b1e2∧e1 + a2b2e2∧e2

= (a1b2 − a2b1)e1∧e2, (1.42)

which recovers the imaginary part of the product of (1.18). The term therefore
immediately has the expected magnitude |a| |b| sin(θ). The coefficient of e1 ∧ e2

is positive if a and b have the same orientation as e1 and e2. The orientation is
defined by traversing the boundary of the parallelogram defined by the vectors a,
b, −a, −b (see figure 1.4). By convention, we usually work with a right-handed
set of reference axes (viewed from above). In this case the coefficient a1b2 −a2b1

will be positive if a and b also form a right-handed pair.

1.6.2 Three dimensions

In three dimensions the space of bivectors is also three-dimensional, because each
bivector can be placed in a one-to-one correspondence with the vector perpen-
dicular to it. Suppose that {e1, e2, e3} form a right-handed basis (see comments
below), and the two vectors a and b are expanded in this basis as a = aiei and
b = biei. The bivector a∧ b can then be decomposed in terms of an orthonormal
frame of bivectors by

a∧b = (aiei)∧(bjej)

= (a2b3 − b3a2)e2∧e3 + (a3b1 − a1b3)e3∧e1

+ (a1b2 − a2b1)e1∧e2. (1.43)
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The components in this frame are therefore the same as those of the cross prod-
uct. But instead of being the components of a vector perpendicular to a and b,
they are the components of the bivector a∧b. It is this distinction which enables
the outer product to be defined in any dimension.

1.6.3 Handedness

We have started to employ the idea of handedness without giving a satisfactory
definition of it. The only space in which there is an unambiguous definition of
handedness is three dimensions, as this is the space we inhabit and most of us
can distinguish our left and right hands. This concept of ‘left’ and ‘right’ is
a man-made convention adopted to make our life easier, and it extends to the
concept of a frame in a straightforward way. Suppose that we are presented
with three orthogonal vectors {e1, e2, e3}. We align the 3 axis with the thumb
of our right hand and then close our fist. If the direction in which our fist closes
is the same as that formed by rotating from the 1 to the 2 axis, the frame is
right-handed. If not, it is left-handed.

Swapping any pair of vectors swaps the handedness of a frame. Performing two
such swaps returns us to the original handedness. In three dimensions this corre-
sponds to a cyclic reordering, and ensures that the frames {e1, e2, e3}, {e3, e1, e2}
and {e2, e3, e1} all have the same orientation.

There is no agreed definition of a ‘right-handed’ orientation in spaces of di-
mensions other than three. All one can do is to make sure that any convention
used is adopted consistently. In all dimensions the orientation of a set of vec-
tors is changed if any two vectors are swapped. In two dimensions one does
still tend to talk about right-handed axes, though the definition is dependent
on the idea of looking down on the plane from above. The idea of above and
below is not a feature of the plane itself, but depends on how we embed it in our
three-dimensional world. There is no definition of left or right-handed which is
intrinsic to the plane.

1.6.4 Extending the outer product

The preceding examples demonstrate that in arbitrary dimensions the compo-
nents of a∧b are given by

(a∧b)ij = a[ibj] (1.44)

where the [ ] denotes antisymmetrisation. Grassmann was able to take this idea
further by defining an outer product for any number of vectors. The idea is a
simple extension of the preceding formula. Expressed in an orthonormal frame,
the components of the outer product on n vectors are the totally antisymmetrised
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products of the components of each vector. This definition has the useful prop-
erty that the outer product is associative,

a∧(b∧c) = (a∧b)∧c. (1.45)

For example, in three dimensions we have

a∧b∧c = (aiei)∧(bjej)∧(ckek) = εijkaibjcke1∧e2∧e3, (1.46)

which represents a directed volume (see section 2.4).
A further feature of the antisymmetry of the product is that the outer product

of any set of linearly dependent vectors vanishes. This means that statements like
‘this vector lies on a given plane’, or ‘these two hypersurfaces share a common
line’ can be encoded algebraically in a simple manner. Equipped with these
ideas, Grassmann was able to construct a system capable of handling geometric
concepts in arbitrary dimensions.

Despite Grassmann’s considerable achievement, the book describing his ideas,
his Lineale Ausdehnungslehre, did not have any immediate impact. This was
no doubt due largely to his relative lack of reputation (he was still a German
schoolteacher when he wrote this work). It was over twenty years before anyone
of note referred to Grassmann’s work, and during this time Grassmann produced
a second, extended version of the Ausdehnungslehre. In the latter part of the
nineteenth century Grassmann’s work started to influence leading figures like
Gibbs and Clifford. Gibbs wrote a number of papers praising Grassmann’s work
and contrasting it favourably with the quaternion algebra. Clifford used Grass-
mann’s work as the starting point for the development of his geometric algebra,
the subject of this book.

Today, Grassmann’s ideas are recognised as the first presentation of the ab-
stract theory of vector spaces over the field of real numbers. Since his death, his
work has given rise to the influential and fashionable areas of differential forms
and Grassmann variables. The latter are anticommuting variables and are fun-
damental to the foundations of much of modern supersymmetry and superstring
theory.

1.7 Notes

Descriptions of linear algebra and vector spaces can be found in most intro-
ductory textbooks of mathematics, as can discussions of the scalar and cross
products and complex arithmetic. Quaternions, on the other hand, are much less
likely to be mentioned. There is a large specialised literature on the quaternions,
and a good starting point are the works of Altmann (1986, 1989). Altmann’s
paper on ‘Hamilton, Rodriques and the quaternion scandal’ (1989) is also a good
introduction to the history of the subject.

The outer product is covered in most modern textbooks on geometry and
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physics, such as those by Nakahara (1990), Schutz (1980), and Gockeler &
Schucker (1987). In most of these works, however, the exterior product is only
treated in the context of differential forms. Applications to wider topics in geom-
etry have been discussed by Hestenes (1991) and others. A useful summary in
provided in the proceedings of the conference Hermann Gunther Grassmann
(1809–1877), edited by Schubring (1996). Grassmann’s Lineale Ausdehnun-
gslehre is also finally available in English translation due to Kannenberg (1995).

For those with a deeper interest in the history of mathematics and the develop-
ment of vector algebra a good starting point is the set of books by Kline (1972).
There are also biographies available of many of the key protagonists. Perhaps
even more interesting is to return to their original papers and experience first
hand the robust and often humorous language employed at the time. The col-
lected works of J.W. Gibbs (1906) are particularly entertaining and enlightening,
and contain a good deal of valuable historical information.

1.8 Exercises

1.1 Suppose that the two sets {a1, . . . , am} and {b1, . . . , bn} form bases for
the same vector space, and suppose initially that m > n. By establishing
a contradiction, prove the basis theorem that all bases of a vector space
have the same number of elements.

1.2 Demonstrate that the following define vector spaces:

(a) the set of all polynomials of degree less than or equal to n;
(b) all solutions of a given linear homogeneous ordinary differential

equation;
(c) the set of all n × m matrices.

1.3 Prove that in Euclidean space |a + b| ≤ |a| + |b|. When does equality
hold?

1.4 Show that the unit quaternions {±1,±i,±j ± k} form a discrete group.
1.5 The unit quaternions i, j, k are generators of rotations about their re-

spective axes. Are rotations through either π or π/2 consistent with the
equation ijk = −1?

1.6 Prove the following:

(a) a·(b×c) = b·(c×a) = c·(a×b);
(b) a×(b×c) = a·c b − a·b c;
(c) |a×b| = |a| |b| sin(θ), where a·b = |a| |b| cos(θ).

1.7 Prove that the dimension of the space formed by the exterior product
of m vectors drawn from a space of dimension n is

n(n − 1) · · · (n − m + 1)
1 · 2 · · ·m =

n!
(n − m)!m!

.
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1.8 Prove that the n-fold exterior product of a set of n dependent vectors is
zero.

1.9 A convex polygon in a plane is specified by the ordered set of points
{x0, x1, . . . , xn}. Prove that the directed area of the polygon is given by

A = 1
2 (x0∧x1 + x1∧x2 + · · · + xn∧x0).

What is the significance of the sign? Can you extend the idea to a
triangulated surface in three dimensions?
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2

Geometric algebra in two and
three dimensions

Geometric algebra was introduced in the nineteenth century by the English math-
ematician William Kingdon Clifford (figure 2.1). Clifford appears to have been
one of the small number of mathematicians at the time to be significantly in-
fluenced by Grassmann’s work. Clifford introduced his geometric algebra by
uniting the inner and outer products into a single geometric product. This is
associative, like Grassmann’s product, but has the crucial extra feature of being
invertible, like Hamilton’s quaternion algebra. Indeed, Clifford’s original moti-
vation was to unite Grassmann’s and Hamilton’s work into a single structure.
In the mathematical literature one often sees this subject referred to as Clifford
algebra. We have chosen to follow the example of David Hestenes, and many
other modern researchers, by returning to Clifford’s original choice of name —
geometric algebra. One reason for this is that the first published definition of
the geometric product was due to Grassmann, who introduced it in the second
Ausdehnungslehre. It was Clifford, however, who realised the great potential of
this product and who was responsible for advancing the subject.

In this chapter we introduce the basics of geometric algebra in two and three
dimensions in a way that is intended to appear natural and geometric, if some-
what informal. A more formal, axiomatic approach is delayed until chapter 4,
where geometric algebra is defined in arbitrary dimensions. The meaning of the
various terms in the algebra we define will be illustrated with familiar examples
from geometry. In so doing we will also uncover how Hamilton’s quaternions
fit into geometric algebra, and understand where it was that Hamilton and his
followers went wrong in their treatment of three-dimensional geometry. One of
the most powerful applications of geometric algebra is to rotations, and these
are considered in some detail in this chapter. It is well known that rotations in
a plane can be efficiently handled with complex numbers. We will see how to
extend this idea to rotations in three-dimensional space. This representation has
many applications in classical and quantum physics.
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Figure 2.1 William Kingdon Clifford 1845–1879. Born in Exeter on 4 May
1845, his father was a justice of the peace and his mother died early in his
life. After school he went to King’s College, London and then obtained
a scholarship to Trinity College, Cambridge, where he followed the likes
of Thomson and Maxwell in becoming Second Wrangler. There he also
achieved a reputation as a daring athlete, despite his slight frame. He was
recommended for a fellowship at Trinity College by Maxwell, and in 1871
took the Professorship of Applied Mathematics at University College, Lon-
don. He was made a Fellow of the Royal Society at the extremely young
age of 29. He married Lucy in 1875, and their house became a fashion-
able meeting place for scientists and philosophers. As well as being one of
the foremost mathematicians of his day, he was an accomplished linguist,
philosopher and author of children’s stories. Sadly, his insatiable appetite
for physical and mental exercise was not matched by his physique, and in
1878 he was instructed to stop work and leave England for the Mediter-
ranean. He returned briefly, only for his health to deteriorate further in
the English climate. He left for Madeira, where he died on 3 March 1879
at the age of just 33. Further details of his life can be found in the book
Such Silver Currents (Chisholm, 2002). Portrait by John Collier ( c©The
Royal Society).

2.1 A new product for vectors

In chapter 1 we studied various products for vectors, including the symmetric
scalar (or inner) product and the antisymmetric exterior (or outer) product. In
two dimensions, we showed how to interpret the result of the complex product
zw∗ (section 1.3). The scalar term is the inner product of the two vectors rep-
resenting the points in the complex plane, and the imaginary term records their
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directed area. Furthermore, the scalar term is symmetric, and the imaginary
term is antisymmetric in the two arguments. Clifford’s powerful idea was to
generalise this product to arbitrary dimensions by replacing the imaginary term
with the outer product. The result is the geometric product and is written simply
as ab. The result is the sum of a scalar and a bivector, so

ab = a·b + a∧b. (2.1)

This sum of two distinct objects — a scalar and a bivector — looks strange at
first and goes against the rule that one should only add like objects. This is the
feature of geometric algebra that initially causes the greatest difficulty, in much
the same way that i2 = −1 initially unsettles most school children. So how is
the sum on the right-hand side of equation (2.1) to be viewed? The answer is
that it should be viewed in precisely the same way as the addition of a real and
an imaginary number. The result is neither purely real nor purely imaginary
— it is a mixture of two different objects which are combined to form a single
complex number. Similarly, the addition of a scalar to a bivector enables us
to keep track of the separate components of the product ab. The advantages of
this are precisely the same as the advantages of complex arithmetic over working
with the separate real and imaginary parts. This analogy between multivectors in
geometric algebra and complex numbers is more than a mere pedagogical device.
As we shall discover, geometric algebra encompasses both complex numbers and
quaternions. Indeed, Clifford’s achievement was to generalise complex arithmetic
to spaces of arbitrary dimensions.

From the symmetry and antisymmetry of the terms on the right-hand side of
equation (2.1) we see that

ba = b·a + b∧a = a·b − a∧b. (2.2)

It follows that

a·b = 1
2 (ab + ba) (2.3)

and

a∧b = 1
2 (ab − ba). (2.4)

We can thus define the inner and outer products in terms of the geometric
product. This forms the starting point for an axiomatic development of geometric
algebra, which is presented in chapter 4.

If we form the product of a and the parallel vector λa we obtain

a(λa) = λa·a + λa∧a = λa·a, (2.5)

which is therefore a pure scalar. It follows similarly that a2 is a scalar, so we
can write a2 = |a|2 for the square of the length of a vector. If instead a and b
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2.2 AN OUTLINE OF GEOMETRIC ALGEBRA

are perpendicular vectors, their product is

ab = a·b + a∧b = a∧b (2.6)

and so is a pure bivector. We also see that

ba = b·a + b∧a = −a∧b = −ab, (2.7)

which shows us that orthogonal vectors anticommute. The geometric product
between general vectors encodes the relative contributions of both their parallel
and perpendicular components, summarising these in the separate scalar and
bivector terms.

2.2 An outline of geometric algebra

Clifford went further than just allowing scalars to be added to bivectors. He
defined an algebra in which elements of any type could be added or multiplied
together. This is what he called a geometric algebra. Elements of a geometric
algebra are called multivectors and these form a linear space — scalars can be
added to bivectors, and vectors, etc. Geometric algebra is a graded algebra, and
elements of the algebra can be broken up into terms of different grade. The scalar
objects are assigned grade-0, the vectors grade-1, the bivectors grade-2 and so
on. Essentially, the grade of the object is the dimension of the hyperplane it
specifies. The term ‘grade’ is preferred to ‘dimension’, however, as the latter is
regularly employed for the size of a linear space. We denote the operation of
projecting onto the terms of a chosen grade by 〈 〉r, so 〈ab〉2 denotes the grade-2
(bivector) part of the geometric product ab. That is,

〈ab〉2 = a∧b. (2.8)

The subscript 0 on the scalar term is usually suppressed, so we also have

〈ab〉0 = 〈ab〉 = a·b. (2.9)

Arbitrary multivectors can also be multiplied together with the geometric
product. To do this we first extend the geometric product of two vectors to an
arbitrary number of vectors. This is achieved with the additional rule that the
geometric product is associative:

a(bc) = (ab)c = abc. (2.10)

The associativity property enables us to remove the brackets and write the prod-
uct as abc. Arbitrary multivectors can now be written as sums of products of
vectors. The geometric product of multivectors therefore inherits the two main
properties of the product for vectors, which is to say it is associative:

A(BC) = (AB)C = ABC, (2.11)
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GEOMETRIC ALGEBRA IN TWO AND THREE DIMENSIONS

and distributive over addition:

A(B + C) = AB + AC. (2.12)

Here A,B, . . . , C denote multivectors containing terms of arbitrary grade.
The associativity property ensures that it is now possible to divide by vectors,

thus realising Hamilton’s goal. Suppose that we know that ab = C, where C is
some combination of a scalar and bivector. We find that

Cb = (ab)b = a(bb) = ab2, (2.13)

so we can define b−1 = b/b2, and recover a from

a = Cb−1. (2.14)

This ability to divide by vectors gives the algebra considerable power.
As an example of these axioms in action, consider forming the square of the

bivector a∧b. The properties of the geometric product allow us to write

(a∧b)(a∧b) = (ab − a·b)(a·b − ba)

= −ab2a − (a·b)2 + a·b(ab + ba)

= (a·b)2 − a2b2

= −a2b2 sin2(θ), (2.15)

where we have assumed that a·b = |a| |b| cos(θ). The magnitude of the bivector
a∧b is therefore equal to the area of the parallelogram with sides defined by a

and b. Manipulations such as these are commonplace in geometric algebra, and
can provide simplified proofs of a number of useful results.

2.3 Geometric algebra of the plane

The easiest way to understand the geometric product is by example, so consider
a two-dimensional space (a plane) spanned by two orthonormal vectors e1 and
e2. These basis vectors satisfy

e1
2 = e2

2 = 1, e1 ·e2 = 0. (2.16)

The final entity present in the algebra is the bivector e1 ∧ e2. This is the highest
grade element in the algebra, since the outer product of a set of dependent vectors
is always zero. The highest grade element in a given algebra is usually called
the pseudoscalar, and its grade coincides with the dimension of the underlying
vector space.

The full algebra is spanned by the basis set

1 {e1, e2} e1 ∧ e2

1 scalar 2 vectors 1 bivector
. (2.17)
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2.3 GEOMETRIC ALGEBRA OF THE PLANE

We denote this algebra G2. Any multivector can be decomposed in this basis,
and sums and products can be calculated in terms of this basis. For example,
suppose that the multivectors A and B are given by

A = α0 + α1e1 + α2e2 + α3e1∧e2,

B = β0 + β1e1 + β2e2 + β3e1∧e2,

then their sum S = A + B is given by

S = (α0 + β0) + (α1 + β1)e1 + (α2 + β2)e2 + (α3 + β3)e1∧e2. (2.18)

This result for the addition of multivectors is straightforward and unsurprising.
Matters become more interesting, however, when we start forming products.

2.3.1 The bivector and its products

To study the properties of the bivector e1 ∧ e2 we first recall that for orthogonal
vectors the geometric product is a pure bivector:

e1e2 = e1 ·e2 + e1∧e2 = e1∧e2, (2.19)

and that orthogonal vectors anticommute:

e2e1 = e2∧e1 = −e1∧e2 = −e1e2. (2.20)

We can now form products in which e1e2 multiplies vectors from the left and the
right. First from the left we find that

(e1∧e2)e1 = (−e2e1)e1 = −e2e1e1 = −e2 (2.21)

and

(e1∧e2)e2 = (e1e2)e2 = e1e2e2 = e1. (2.22)

If we assume that e1 and e2 form a right-handed pair, we see that left-multipli-
cation by the bivector rotates vectors 90◦ clockwise (i.e. in a negative sense).
Similarly, acting from the right

e1(e1e2) = e2, e2(e1e2) = −e1. (2.23)

So right multiplication rotates 90◦ anticlockwise — a positive sense.
The final product in the algebra to consider is the square of the bivector e1∧e2:

(e1∧e2)2 = e1e2e1e2 = −e1e1e2e2 = −1. (2.24)

Geometric considerations have led naturally to a quantity which squares to −1.
This fits with the fact that two successive left (or right) multiplications of a vector
by e1e2 rotates the vector through 180◦, which is equivalent to multiplying by −1.
The fact that we now have a firm geometric picture for objects whose algebraic
square is −1 opens up the possibility of providing a geometric interpretation for
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GEOMETRIC ALGEBRA IN TWO AND THREE DIMENSIONS

the unit imaginary employed throughout physics, a theme which will be explored
further in this book.

2.3.2 Multiplying multivectors

Now that all of the individual products have been found, we can compute the
product of the two general multivectors A and B of equation (2.18),

AB = M = µ0 + µ1e1 + µ2e2 + µ3e1e2, (2.25)

where
µ0 = α0β0 + α1β1 + α2β2 − α3β3,

µ1 = α0β1 + α1β0 + α3β2 − α2β3,

µ2 = α0β2 + α2β0 + α1β3 − α3β1,

µ3 = α0β3 + α3β0 + α1β2 − α2β1.

(2.26)

The full product shown here is actually rarely used, but writing it out explicitly
does emphasise some of its key features. The product is always well defined,
and the algebra is closed under it. Indeed, the product could easily be made an
intrinsic part of a computer language, in the same way that complex arithmetic
is already intrinsic to some languages. The basis vectors can also be represented
with matrices, for example

E1 =
(

0 1
1 0

)
E2 =

(
1 0
0 −1

)
. (2.27)

(Verifying that these satisfy the required algebraic relations is left as an exercise.)
Geometric algebras in general are associative algebras, so it is always possible
to construct a matrix representation for them. The problem with this is that
the matrices hide the geometric content of the elements they represent. Much of
the mathematical literature does focus on matrix representations, and for this
work the term Clifford algebra is appropriate. For the applications in this book,
however, the underlying geometry is the important feature of the algebra and
matrix representations are usually redundant. Geometric algebra is a much more
appropriate name for this subject.

2.3.3 Connection with complex numbers

It is clear that there is a close relationship between geometric algebra in two
dimensions and the algebra of complex numbers. The unit bivector squares to
−1 and generates rotations through 90◦. The combination of a scalar and a
bivector, which is formed naturally via the geometric product, can therefore be
viewed as a complex number. We write this as

Z = u + ve1e2 = u + Iv, (2.28)
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u

v

Z

I

Rθ

Figure 2.2 The Argand diagram. The complex number Z = u + iv repre-
sents a vector in the complex plane, with Cartesian components u and v.
The polar decomposition into |Z| exp(iθ) can alternatively be viewed as an
instruction to rotate 1 through θ and dilate by |Z|.

where

I = e1∧e2, I2 = −1. (2.29)

Throughout we employ the symbol I for the pseudoscalar of the algebra of in-
terest. That is why we have used it here, rather than the tempting alternative
i. The latter is seen often in the literature, but the i symbol has the problem of
suggesting an element which commutes with all others, which is not necessarily
a property of the pseudoscalar.

Complex numbers serve a dual purpose in two dimensions. They generate
rotations and dilations through their polar decomposition |Z| exp(iθ), and they
also represent vectors as points on the Argand diagram (see figure 2.2). But
in the geometric algebra G2 complex numbers are replaced by scalar + bivector
combinations, whereas vectors are grade-1 objects,

x = ue1 + ve2. (2.30)

Is there a natural map between x and the multivector Z? The answer is simple
— pre-multiply by e1,

e1x = u + ve1e2 = u + Iv = Z. (2.31)

That is all there is to it! The role of the preferred vector e1 is clear — it is
the real axis. Using this product vectors in a plane can be interchanged with
complex numbers in a natural manner.

If we now consider the complex conjugate of Z, Z† = u − iv, we see that

Z† = u + ve2e1 = xe1, (2.32)
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which has simply reversed the order of the geometric product of x and e1. This
operation of reversing the order of products is one of the fundamental operations
performed in geometric algebra, and is called reversion (see section 2.5). Suppose
now that we introduce a second complex number W, with vector equivalent y:

W = e1y. (2.33)

The complex product ZW † = W †Z now becomes

W †Z = ye1e1x = yx, (2.34)

which returns the geometric product yx. This is as expected, as the complex
product was used to suggest the form of the geometric product.

2.3.4 Rotations

Since we know how to rotate complex numbers, we can use this to find a formula
for rotating vectors in a plane. We know that a positive rotation through an
angle φ for a complex number Z is achieved by

Z 
→ Z ′ = eiφZ, (2.35)

where i is the standard unit imaginary (see figure 2.3). Again, we now view Z

as a combination of a scalar and a pseudoscalar in G2 and so replace i with I.
The exponential of Iφ is defined by power series in the normal way, so we still
have

eIφ =
∞∑

n=0

(Iφ)n

n!
= cos φ + I sin φ. (2.36)

Suppose that Z ′ has the vector equivalent x′,

x′ = e1Z
′. (2.37)

We now have a means of rotating the vector directly by writing

x′ = e1eIφZ = e1eIφe1x. (2.38)

But

e1eIφe1 = e1(cos φ + I sinφ)e1

= cos φ − I sinφ = e−Iφ, (2.39)

where we have employed the result that I anticommutes with vectors. We there-
fore arrive at the formulae

x′ = e−Iφx = xeIφ, (2.40)

which achieve a rotation of the vector x in the I plane, through an angle φ.
In section 2.7 we show how to extend this idea to arbitrary dimensions. The
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Z = reiθZ′ = reiθ′

φ

I

R

Figure 2.3 A rotation in the complex plane. The complex number Z is
multiplied by the phase term exp(Iφ), the effect of which is to replace θ by
θ′ = θ + φ.

change of sign in the exponential acting from the left and right of the vector x

is to be expected. We saw earlier that left-multiplication by I generated left-
handed rotations, and right-multiplication generated right-handed rotations. As
the overall rotation is right-handed, the sign of I must be negative when acting
from the left.

This should illustrate that geometric algebra fully encompasses complex arith-
metic, and we will see later that complex analysis is fully incorporated as well.
The beauty of the geometric algebra formulation is that it shows immediately
how to extend the ideas of complex analysis to higher dimensions, a problem
which had troubled mathematicians for many years. The key to this is the
separation of the two roles of complex numbers by treating vectors as grade-1
objects, and the quantities acting on them (the complex numbers) as combina-
tions of grade-0 and grade-2 objects. These two roles generalise differently in
higher dimensions and, once one sees this, extending complex analysis becomes
straightforward.

2.4 The geometric algebra of space

The geometric algebra of three-dimensional space is a remarkably powerful tool
for solving problems in geometry and classical mechanics. It describes vectors,
planes and volumes in a single algebra, which contains all of the familiar vec-
tor operations. These include the vector cross product, which is revealed as a
disguised form of bivector. The algebra also provides a very clear and com-
pact method for encoding rotations, which is considerably more powerful than
working with matrices.

We have so far constructed the geometric algebra of a plane. We now add a
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third vector e3 to our two-dimensional set {e1, e2}. All three vectors are assumed
to be orthonormal, so they all anticommute. From these three basis vectors we
generate the independent bivectors

{e1e2, e2e3, e3e1}.

This is the expected number of independent planes in space. There is one further
term to consider, which is the product of all three vectors:

(e1e2)e3 = e1e2e3. (2.41)

This results in a grade-3 object, called a trivector. It corresponds to sweeping
the bivector e1∧e2 along the vector e3, resulting in a three-dimensional volume
element (see section 2.4.3). The trivector represents the unique volume element
in three dimensions. It is the highest grade element and is unique up to scale
(or volume) and handedness (sign). This is again called the pseudoscalar for the
algebra.

In three dimensions there are no further directions to add, so the algebra is
spanned by

1 {ei} {ei∧ej} e1e2e3

1 scalar 3 vectors 3 bivectors 1 trivector
(2.42)

This basis defines a graded linear space of total dimension 8 = 23. We call
this algebra G3. Notice that the dimensions of each subspace are given by the
binomial coefficients.

2.4.1 Products of vectors and bivectors

Our expanded algebra gives us a number of new products to consider. We start
by considering the product of a vector and a bivector. We have already looked
at this in two dimensions, and found that a normalised bivector rotates vectors
in its plane by 90◦. Each of the basis bivectors in equation (2.42) shares the
properties of the single bivector studied previously for two dimensions. So

(e1e2)2 = (e2e3)2 = (e3e1)2 = −1 (2.43)

and each bivector generates 90◦ rotations in its own plane.
The geometric product for vectors extends to all objects in the algebra, so we

can form expressions such as aB, where a is a vector and B is a bivector. Now
that our algebra contains a trivector e1(e2∧e3), we see that the result of the
product aB can contain both vector and trivector terms, the latter arising if a

does not lie fully in the B plane. To understand the properties of the product
aB we first decompose a into terms in and out of the plane,

a = a‖ + a⊥, (2.44)
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a‖

a⊥
a

B

b

Figure 2.4 A vector and a bivector. The vector a can be written as the
sum of a term in the plane B and a term perpendicular to the plane, so
that a = a‖ + a⊥. The bivector B can be written as a‖ ∧ b, where b is
perpendicular to a‖.

as shown in figure 2.4. We can now write aB = (a‖ + a⊥)B. Suppose that we
also write

B = a‖∧b = a‖b, (2.45)

where b is orthogonal to a‖ in the B plane. It is always possible to find such a
vector b. We now see that

a‖B = a‖(a‖b) = a‖
2b (2.46)

and so is a vector. This is clear in that the product of a plane with a vector in
the plane must remain in the plane. On the other hand

a⊥B = a⊥(a‖∧b) = a⊥a‖b, (2.47)

which is the product of three orthogonal (anticommuting) vectors and so is a
trivector. As expected, the product of a vector and a bivector will in general
contain vector and trivector terms.

To explore this further let us form the product of the vector a with the bivector
b ∧ c. From the associative and distributive properties of the geometric product
we have

a(b∧c) = a 1
2 (bc − cb) = 1

2 (abc − acb). (2.48)

We now use the rearrangement

ab = 2a·b − ba (2.49)
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to write

a(b∧c) = (a·b)c − (a·c)b − 1
2 (bac − cab)

= 2(a·b)c − 2(a·c)b + 1
2 (bc − cb)a, (2.50)

so that

a(b∧c) − (b∧c)a = 2(a·b)c − 2(a·c)b. (2.51)

The right-hand side of this equation is a vector, so the antisymmetrised product
of a vector with a bivector is another vector. Since this operation is grade-
lowering, we give it the dot symbol again and write

a·B = 1
2 (aB − Ba), (2.52)

where B is an arbitrary bivector. The preceding rearrangement means that we
have proved one of the most useful results in geometric algebra,

a·(b∧c) = a·b c − a·c b. (2.53)

Returning to equation (2.46) we see that we must have

a·B = a‖B = a‖ ·B. (2.54)

So the effect of taking the inner product of a vector with a bivector is to project
onto the component of the vector in the plane, and then rotate this through 90◦

and dilate by the magnitude of B. We can also confirm that

a·B = a‖
2b = −(a‖b)a‖ = −B ·a, (2.55)

as expected.
The remaining part of the product of a vector and a bivector returns a grade-3

trivector. This product is denoted with a wedge since it is grade-raising, so

a∧(b∧c) = 1
2

(
a(b∧c) + (b∧c)a

)
. (2.56)

A few lines of algebra confirm that this outer product is associative,

a∧(b∧c) = 1
2

(
a(b∧c) + (b∧c)a

)
= 1

4

(
abc − acb + bca − cba

)
= 1

4

(
2(a∧b)c + bac + bca + 2c(a∧b) − cab − acb

)
= 1

2

(
(a∧b)c + c(a∧b) + b(c·a) − (c·a)b

)
= (a∧b)∧c, (2.57)

so we can unambiguously write the result as a ∧ b ∧ c. The product a ∧ b ∧ c

is therefore associative and antisymmetric on all pairs of vectors, and so is pre-
cisely Grassmann’s exterior product (see section 1.6). This demonstrates that
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Grassmann’s exterior product sits naturally within geometric algebra. From
equation (2.47) we have

a∧B = a⊥B = a⊥∧B, (2.58)

so the effect of the exterior product with a bivector is to project onto the com-
ponent of the vector perpendicular to the plane, and return a volume element (a
trivector). We can confirm simply that this product is symmetric in its vector
and bivector arguments:

a∧B = a⊥∧a‖∧b = −a‖∧a⊥∧b = a‖∧b∧a⊥ = B∧a. (2.59)

The full product of a vector and a bivector can now be written as

aB = a·B + a∧B, (2.60)

where the dot is generalised to mean the lowest grade part of the product, while
the wedge means the highest grade part of the product. In a similar manner to
the geometric product of vectors, the separate dot and wedge products can be
written in terms of the geometric product as

a·B = 1
2 (aB − Ba),

a∧B = 1
2 (aB + Ba).

(2.61)

But pay close attention to the signs in these formulae, which are the opposite
way round to the case of two vectors. The full product of a vector and a bivector
wraps up the separate vector and trivector terms in the single product aB. The
advantage of this is again that the full product is invertible.

2.4.2 The bivector algebra

Our three independent bivectors also give us another new product to consider.
We already know that squaring a bivector results in a scalar. But if we multiply
together two bivectors representing orthogonal planes we find that, for example,

(e1∧e2)(e2∧e3) = e1e2e2e3 = e1e3, (2.62)

resulting in a third bivector. We also find that

(e2∧e3)(e1∧e2) = e3e2e2e1 = e3e1 = −e1e3, (2.63)

so the product of orthogonal bivectors is antisymmetric. The symmetric contri-
bution vanishes because the two planes are perpendicular.

If we introduce the following labelling for the basis bivectors:

B1 = e2e3, B2 = e3e1, B3 = e1e2, (2.64)

we find that their product satisfies

BiBj = −δij − εijkBk. (2.65)
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There is a clear analogy with the geometric product of vectors here, in that the
symmetric part is a scalar, whereas the antisymmetric part is a bivector. In
higher dimensions it turns out that the symmetrised product of two bivectors
can have grade-0 and grade-4 terms (which we will ultimately denote with the
dot and wedge symbols). The antisymmetrised product is always a bivector, and
bivectors form a closed algebra under this product.

The basis bivectors satisfy

B1
2 = B2

2 = B3
2 = −1 (2.66)

and

B1B2 = −B2B1, etc. (2.67)

These are the properties of the generators of the quaternion algebra (see sec-
tion 1.4). This observation helps to sort out some of the problems encountered
with the quaternions. Hamilton attempted to identify pure quaternions (null
scalar part) with vectors, but we now see that they are actually bivectors. This
causes problems when looking at how objects transform under reflections. Hamil-
ton also imposed the condition ijk = −1 on his unit quaternions, whereas we
have

B1B2B3 = e2e3e3e1e1e2 = +1. (2.68)

To set up an isomorphism we must flip a sign somewhere, for example in the y

component:

i ↔ B1, j ↔ −B2, k ↔ B3. (2.69)

This shows us that the quaternions are a left-handed set of bivectors, whereas
Hamilton and others attempted to view the i, j, k as a right-handed set of vectors.
Not surprisingly, this was a potential source of great confusion and meant one
had to be extremely careful when applying quaternions in vector algebra.

2.4.3 The trivector

Given three vectors, a, b and c, the trivector a∧ b∧ c is formed by sweeping a∧ b

along the vector c (see figure 2.5). The result can be represented pictorially as
an oriented parallelepiped. As with bivectors, however, the picture should not
be interpreted too literally. The trivector a ∧ b ∧ c does not contain any shape
information. It just records a volume and an orientation.

The various algebraic properties of trivectors have straightforward geometric
interpretations. The same oriented volume is obtained by sweeping a∧ b along c

or b ∧ c along a. The mathematical expression of this is that the outer product
is associative, a ∧ (b ∧ c) = (a ∧ b) ∧ c. The trivector a ∧ b ∧ c changes sign
under interchange of any pair of vectors, which follows immediately from the
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2.4 THE GEOMETRIC ALGEBRA OF SPACE

a

b
c

a

b

c

a∧b

b∧c

Figure 2.5 The trivector. The trivector a ∧ b ∧ c can be viewed as the
oriented parallelepiped obtained from sweeping the bivector a∧ b along the
vector c. In the left-hand diagram the bivector a ∧ b is swept along c. In
the right-hand one b ∧ c is swept along a. The result is the same in both
cases, demonstrating the equality a∧ b∧ c = b∧ c∧ a. The associativity of
the outer product is also clear from such diagrams.

antisymmetry of the exterior product. The geometric picture of this is that
swapping any two vectors reverses the orientation by which the volume is swept
out. Under two successive interchanges of pairs of vectors the trivector returns
to itself, so

a∧b∧c = c∧a∧b = b∧c∧a. (2.70)

This is also illustrated in figure 2.5.
The unit right-handed pseudoscalar for space is given the standard symbol I,

so

I = e1e2e3, (2.71)

where the {e1, e2, e3} are any right-handed frame of orthonormal vectors. If a
left-handed set of orthonormal vectors is multiplied together the result is −I.
Given an arbitrary set of three vectors we must have

a∧b∧c = αI, (2.72)

where α is a scalar. It is not hard to show that |α| is the volume of the paral-
lelepiped with sides defined by a, b and c. The sign of α encodes whether the
set {a, b, c} forms a right-handed or left-handed frame. In three dimensions this
fully accounts for the information in the trivector.

Now consider the product of the vector e1 and the pseudoscalar,

e1I = e1(e1e2e3) = e2e3. (2.73)

This returns a bivector — the plane perpendicular to the original vector (see
figure 2.6). The product of a grade-1 vector with the grade-3 pseudoscalar is
therefore a grade-2 bivector. Multiplying from the left we find that

Ie1 = e1e2e3e1 = −e1e2e1e3 = e2e3. (2.74)
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e1

e3

e2∧e3

I

Figure 2.6 A vector and a trivector. The result of multiplying the vector
e1 by the trivector I is the plane e1(e1e2e3) = e2e3. This is the plane
perpendicular to the e1 vector.

The result is therefore independent of order, and this holds for any basis vector.
It follows that the pseudoscalar commutes with all vectors in three dimensions:

Ia = aI. (2.75)

This is always the case for the pseudoscalar in spaces of odd dimension. In even
dimensions, the pseudoscalar anticommutes with all vectors, as we have already
seen in two dimensions.

We can now express each of our basis bivectors as the product of the pseudoscalar
and a dual vector:

e1e2 = Ie3, e2e3 = Ie1, e3e1 = Ie2. (2.76)

This operation of multiplying by the pseudoscalar is called a duality transforma-
tion and was originally introduced by Grassmann. Again, we can write

aI = a·I (2.77)

with the dot used to denote the lowest grade term in the product. The result
of this can be understood as a projection — projecting onto the component of I

perpendicular to a.
We next form the square of the pseudoscalar:

I2 = e1e2e3e1e2e3 = e1e2e1e2 = −1. (2.78)

So the pseudoscalar commutes with all elements and squares to −1. It is therefore
a further candidate for a unit imaginary. In some physical applications this is the
correct one to use, whereas for others it is one of the bivectors. The properties of
I in three dimensions make it particularly tempting to replace it with the symbol
i, and this is common practice in much of the literature. This convention can
still lead to confusion, however, and is not adopted in this book.
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2.4 THE GEOMETRIC ALGEBRA OF SPACE

Finally, we consider the product of a bivector and the pseudoscalar:

I(e1∧e2) = Ie1e2e3e3 = IIe3 = −e3. (2.79)

So the result of the product of I with the bivector formed from e1 and e2 is
−e3, that is, minus the vector perpendicular to the e1∧e2 plane. This provides
a definition of the vector cross product as

a×b = −I(a∧b). (2.80)

The vector cross product is largely redundant now that we have the exterior
product and duality at our disposal. For example, consider the result for the
double cross product. We form

a×(b×c) = −Ia∧(−I(b∧c))

= 1
2I
(
aI(b∧c) − (b∧c)Ia

)
= −a·(b∧c). (2.81)

We have already calculated the expansion of the final line, which turns out to
be the first example of a much more general, and very useful, formula.

Equation (2.80) shows how the cross product of two vectors is a disguised
bivector, the bivector being mapped to a vector by a duality operation. It is
now clear why the product only exists in three dimensions — this is the only
space for which the dual of a bivector is a vector. We will have little further
use for the cross product and will rarely employ it from now on. This means we
can also do away with the awkward distinction between polar and axial vectors.
Instead we just talk in terms of vectors and bivectors. Both may belong to
three-dimensional linear spaces, but they are quite different objects with distinct
algebraic properties.

2.4.4 The Pauli algebra

The full geometric product for vectors can be written

eiej = ei ·ej + ei∧ej = δij + Iεijkek. (2.82)

This may be familiar to many — it is the Pauli algebra of quantum mechan-
ics! The Pauli matrices therefore form a matrix representation of the geometric
algebra of space. The Pauli matrices are

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.83)

These matrices satisfy

σiσj = δij I + iεijkσk, (2.84)
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GEOMETRIC ALGEBRA IN TWO AND THREE DIMENSIONS

where I is the 2× 2 identity matrix. Historically, these matrices were discovered
by Pauli in his investigations of the quantum theory of spin. The link with
geometric algebra (‘Clifford algebra’ in the quantum theory textbooks) was only
made later.

Surprisingly, though the link with the geometric algebra of space is now well
established, one seldom sees the Pauli matrices referred to as a representation
for the algebra of a set of vectors. Instead they are almost universally referred
to as the components of a single vector in ‘isospace’. A handful of authors (most
notably David Hestenes) have pointed out the curious nature of this interpreta-
tion. Such discussion remains controversial, however, and will only be touched
on in this book. As with all arguments over interpretations of quantum mechan-
ics, how one views the Pauli matrices has little effect on the predictions of the
theory.

The fact that the Pauli matrices form a matrix representation of G3 provides an
alternative way of performing multivector manipulations. This method is usually
slower, but can sometimes be used to advantage, particularly in programming
languages where complex arithmetic is built in. Working directly with matrices
does obscure geometric meaning, and is usually best avoided.

2.5 Conventions

A number of conventions help to simplify expressions in geometric algebra. For
example, expressions such as (a · b)c and I(a ∧ b) demonstrate that it would be
useful to have a convention which allows us to remove the brackets. We thus
introduce the operator ordering convention that in the absence of brackets, inner
and outer products are performed before geometric products. This can remove
significant numbers of unnecessary brackets. For example, we can safely write

I(a∧b) = I a∧b. (2.85)

and

(a·b)c = a·b c. (2.86)

In addition, unless brackets specify otherwise, inner products are performed
before outer products,

a·b c∧d = (a·b)c∧d. (2.87)

A simple notation for the result of projecting out the elements of a multivector
that have a given grade is also invaluable. We denote this with angled brackets
〈 〉r, where r is the grade onto which we want to project. With this notation we
can write, for example,

a∧b = 〈a∧b〉2 = 〈ab〉2. (2.88)

The final expression holds because a ∧ b is the sole grade-2 component of the
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2.5 CONVENTIONS

geometric product ab. This notation can be extremely useful as it often enables
inner and outer products to be replaced by geometric products, which are usually
simpler to manipulate. The operation of taking the scalar part of a product is
often needed, and it is conventional for this to drop the subscript zero and simply
write

〈M〉 = 〈M〉0. (2.89)

The scalar part of any pair of multivectors is symmetric:

〈AB〉 = 〈BA〉. (2.90)

It follows that the scalar part satisfies the cyclic reordering property

〈AB · · ·C〉 = 〈B · · ·CA〉, (2.91)

which is frequently employed in manipulations.
An important operation in geometric algebra is that of reversion, which re-

verses the order of vectors in any product. There are two conventions for this in
common usage. One is the dagger symbol, A†, used for Hermitian conjugation
in matrix algebra. The other is to use a tilde, Ã. In three-dimensional applica-
tions the dagger symbol is often employed, as the reverse operation returns the
same result as Hermitian conjugation of the Pauli matrix representation of the
algebra. In spacetime physics, however, the tilde symbol is the better choice as
the dagger is reserved for a different (frame-dependent) operation in relativistic
quantum mechanics. For the remainder of this chapter we will use the dagger
symbol, as we will concentrate on applications in three dimensions.

Scalars and vectors are invariant under reversion, but bivectors change sign:

(e1e2)† = e2e1 = −e1e2. (2.92)

Similarly, we see that

I† = e3e2e1 = e1e3e2 = −e1e2e3 = −I. (2.93)

A general multivector in G3 can be written

M = α + a + B + βI, (2.94)

where a is a vector, B is a bivector and α and β are scalars. From the above we
see that the reverse of M , M†, is

M† = α + a − B − βI. (2.95)

As stated above, this operation has the same effect as Hermitian conjugation
applied to the Pauli matrices.

We have now introduced a number of terms, some of which have overlapping
meaning. It is useful at this point to refer to multivectors which only contain
terms of a single grade as homogeneous. The term inner product is reserved for
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GEOMETRIC ALGEBRA IN TWO AND THREE DIMENSIONS

the lowest grade part of the geometric product of two homogeneous multivectors.
For two homogeneous multivectors of the same grade the inner product and scalar
product reduce to the same thing. The terms exterior and outer products are
interchangeable, though we will tend to prefer the latter for its symmetry with
the inner product. The inner and outer products are also referred to colloquially
as the dot and wedge products. We have followed convention in referring to
the highest grade element in a geometric algebra as the pseudoscalar. This is
a convenient name, though one must be wary that in tensor analysis the term
can mean something subtly different. Both directed volume element and volume
form are good alternative names, but we will stick with pseudoscalar in this
book.

2.6 Reflections

The full power of geometric algebra begins to emerge when we consider reflections
and rotations. We start with an arbitrary vector a and a unit vector n (n2 = 1),
and resolve a into parts parallel and perpendicular to n. This is achieved simply
by forming

a = n2a

= n(n·a + n∧a)

= a‖ + a⊥, (2.96)

where

a‖ = a·nn, a⊥ = nn∧a. (2.97)

The formula for a‖ is certainly the projection of a onto n, and the remaining
term must be the perpendicular component (sometimes called the rejection). We
can check that a⊥ is perpendicular to n quite simply:

n·a⊥ = 〈nnn∧a〉 = 〈n∧a〉 = 0. (2.98)

This is a simple example of how using the projection onto grade operator to re-
place inner and outer products with geometric products can simplify derivations.

The result of reflecting a in the plane orthogonal to n is the vector a′ = a⊥−a‖
(see figure 2.7). This can be written

a′ = a⊥ − a‖ = nn∧a − a·nn

= −n·an − n∧an

= −nan. (2.99)

This formula is already more compact than can be written down without the
geometric product. The best one can do with just the inner product is the
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a

a′

n

a‖

a⊥
−a‖

Figure 2.7 A reflection. The vector a is reflected in the (hyper)plane per-
pendicular to n. This is the way to describe reflections in arbitrary dimen-
sions. The result a′ is formed by reversing the sign of a‖, the component
of a in the n direction.

equivalent expression

a′ = a − 2a·nn. (2.100)

The compression afforded by the geometric product becomes increasingly im-
pressive as reflections are compounded together. The formula

a′ = −nan (2.101)

is valid is spaces of any dimension — it is a quite general formula for a reflection.
We should check that our formula for the reflection has the desired property

of leaving lengths and angles unchanged. To do this we need only verify that
the scalar product between vectors is unchanged if both are reflected, which is
achieved with a simple rearrangement:

(−nan)·(−nbn) = 〈(−nan)(−nbn)〉 = 〈nabn〉 = 〈abnn〉 = a·b. (2.102)

In this manipulation we have made use of the cyclic reordering property of the
scalar part of a geometric product, as defined in equation (2.91).

2.6.1 Complex conjugation

In two dimensions we saw that the vector x is mapped to a complex number Z

by

Z = e1x, x = e1Z. (2.103)
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The complex conjugate Z† is the reverse of this, Z† = xe1, so maps to the vector

x′ = e1Z
† = e1xe1. (2.104)

This can be converted into the formula for a reflection if we remember that
the two-dimensional pseudoscalar I = e1e2 anticommutes with all vectors and
squares to −1. We therefore have

x′ = −e1IIxe1 = −e1Ixe1I = −e2xe2. (2.105)

This is precisely the expected relation for a reflection in the line perpendicular
to e2, which is to say a reflection in the real axis.

2.6.2 Reflecting bivectors

Now suppose that we form the bivector B = a ∧ b and reflect both of these
vectors in the plane perpendicular to n. The result is

B′ = (−nan)∧(−nbn). (2.106)

This simplifies as follows:

(−nan)∧(−nbn) = 1
2 (nannbn − nbnnan)

= 1
2n(ab − ba)n

= nBn. (2.107)

The effect of sandwiching a multivector between a vector, nMn, always preserves
the grade of the multivector M . We will see how to prove this in general when
we have derived a few more results for manipulating inner and outer products.
The resulting formula nBn shows that bivectors are subject to the same trans-
formation law as vectors, except for a change in sign. This is the origin of the
conventional distinction between polar and axial vectors. Axial vectors are usu-
ally generated by the cross product, and we saw in section 2.4.3 that the cross
product generates a bivector, and then dualises it back to a vector. But when the
two vectors in the cross product are reflected, the bivector they form is reflected
according to (2.107). The dual vector IB is subject to the same transformation
law, since

I(nBn) = n(IB)n, (2.108)

and so does not transform as a (polar) vector. In many texts this can be a source
of much confusion. But now we have a much healthier alternative: banish all
talk of axial vectors in favour of bivectors. We will see in later chapters that
all of the main examples of ‘axial’ vectors in physics (angular velocity, angular
momentum, the magnetic field etc.) are better viewed as bivectors.
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2.6.3 Trivectors and handedness

The final object to try reflecting in three dimensions is the trivector a ∧ b ∧ c.
We first write

(−nan)∧(−nbn)∧(−ncn) = 〈(−nan)(−nbn)(−ncn)〉3
= −〈nabcn〉3, (2.109)

which follows because the only way to form a trivector from the geometric prod-
uct of three vectors is through the exterior product of all three. Now the product
abc can only contain a vector and trivector term. The former cannot give rise to
an overall trivector, so we are left with

(−nan)∧(−nbn)∧(−ncn) = −〈na∧b∧cn〉3. (2.110)

But any trivector in three dimensions is a multiple of the pseudoscalar I, which
commutes with all vectors, so we are left with

(−nan)∧(−nbn)∧(−ncn) = −a∧b∧c. (2.111)

The overall effect is simply to flip the sign of the trivector, which is a way of
stating that reflections have determinant −1. This means that if all three vectors
in a right-handed triplet are reflected in some plane, the resulting triplet is left
handed (and vice versa).

2.7 Rotations

Our starting point for the treatment of rotations is the result that a rotation
in the plane generated by two unit vectors m and n is achieved by successive
reflections in the (hyper)planes perpendicular to m and n. This is illustrated in
figure 2.8. Any component of a perpendicular to the m∧n plane is unaffected,
and simple trigonometry confirms that the angle between the initial vector a

and the final vector c is twice the angle between m and n. (The proof of this is
left as an exercise.) The result of the successive reflections is therefore to rotate
through 2θ in the m∧n plane, where m·n = cos(θ).

So how does this look using geometric algebra? We first form

b = −mam (2.112)

and then perform a second reflection to obtain

c = −nbn = −n(−mam)n = nmamn. (2.113)

This is starting to look extremely simple! We define

R = nm, (2.114)
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ab

c

m

n

m∧n

Figure 2.8 A rotation from two reflections. The vector b is the result of
reflecting a in the plane perpendicular to m, and c is the result of reflecting
b in the plane perpendicular to n.

so that we can now write the result of the rotation as

c = RaR†. (2.115)

This transformation a 
→ RaR† is a totally general way of handling rotations.
In deriving this transformation the dimensionality of the space of vectors was
never specified, so the transformation law must work in all spaces, whatever their
dimension. The rule also works for any grade of multivector!

2.7.1 Rotors

The quantity R = nm is called a rotor and is one of the most important objects
in applications of geometric algebra. Immediately, one can see the importance
of the geometric product in both (2.114) and (2.115), which tells us that rotors
provide a way of handling rotations that is unique to geometric algebra. To
study the properties of the rotor R we first write

R = nm = n·m + n∧m = cos(θ) + n∧m. (2.116)
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We already calculated the magnitude of the bivector m ∧ n in equation (2.15),
where we obtained

(n∧m)(n∧m) = − sin2(θ). (2.117)

We therefore define the unit bivector B in the m∧n plane by

B =
m∧n

sin(θ)
, B2 = −1. (2.118)

The reason for this choice of orientation (m ∧ n rather than n ∧ m) is to ensure
that the rotation has the orientation specified by the generating bivector, as can
be seen in figure 2.8. In terms of the bivector B we now have

R = cos(θ) − B sin(θ), (2.119)

which is simply the polar decomposition of a complex number, with the unit
imaginary replaced by the unit bivector B. We can therefore write

R = exp(−Bθ), (2.120)

with the exponential defined in terms of its power series in the normal way. (The
power series for the exponential is absolutely convergent for any multivector
argument.)

Now recall that our formula was for a rotation through 2θ. If we want to
rotate through θ, the appropriate rotor is

R = exp(−Bθ/2), (2.121)

which gives the formula

a 
→ a′ = e−Bθ/2aeBθ/2 (2.122)

for a rotation through θ in the B plane, with handedness determined by B (see
figure 2.9). This description encourages us to think of rotations taking place
in a plane, and as such gives equations which are valid in any dimension. The
more traditional idea of rotations taking place around an axis is an entirely
three-dimensional concept which does not generalise.

Since the rotor R is a geometric product of two unit vectors, we see immedi-
ately that

RR† = nm(nm)† = nmmn = 1 = R†R. (2.123)

This provides a quick proof that our formula has the correct property of preserv-
ing lengths and angles. Suppose that a′ = RaR† and b′ = RbR†, then

a′ ·b′ = 1
2 (RaR†RbR† + RbR†RaR†)

= 1
2R(ab + ba)R†

= a·bRR†

= a·b. (2.124)
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a a′

B
θ

Figure 2.9 A rotation in three dimensions. The vector a is rotated to
a′ = RaR†. The rotor R is defined by R = exp(−Bθ/2), which describes
the rotation directly in terms of the plane and angle. The rotation has the
orientation specified by the bivector B.

We can also see that the inverse transformation is given by

a = R†a′R. (2.125)

The proof is straightforward:

R†a′R = R†RaR†R = a. (2.126)

The usefulness of rotors provides ample justification for adding up terms of
different grades. The rotor R on its own has no geometric significance, which is
to say that no meaning should be attached to the separate scalar and bivector
terms. When R is written in the form R = exp(−Bθ/2), however, the bivector
B has clear geometric significance, as does the vector formed from RaR†. This
illustrates a central feature of geometric algebra, which is that both geometrically
meaningful objects (vectors, planes etc.) and the elements that act on them (in
this case rotors) are represented in the same algebra.

2.7.2 Constructing a rotor

Suppose that we wish to rotate the unit vector a into another unit vector b,
leaving all vectors perpendicular to a and b unchanged. This is accomplished by
a reflection perpendicular to the unit vector n half-way between a and b followed
by a reflection in the plane perpendicular to b (see figure 2.10). The vector n is
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a

b

n

−nan

Figure 2.10 A rotation from a to b. The vector a is rotated onto b by first
reflecting in the plane perpendicular to n, and then in the plane perpen-
dicular to b. The vectors a, b and n all have unit length.

given by

n =
(a + b)
|a + b| , (2.127)

which reflects a into −b. Combining this with the reflection in the plane perpen-
dicular to b we arrive at the rotor

R = bn =
1 + ba

|a + b| =
1 + ba√

2(1 + b·a)
, (2.128)

which represents a simple rotation in the a∧b plane. This formula shows us that

Ra =
a + b√

2(1 + b·a)
= a

1 + ab√
2(1 + b·a)

= aR†. (2.129)

It follows that we can write

RaR† = R2a = aR†2. (2.130)

This is always possible for vectors in the plane of rotation. Returning to the
polar form R = exp(−Bθ/2), where B is the a ∧ b plane, we see that

R2 = exp(−Bθ), (2.131)

so we can rotate a onto b with the formula

b = e−Bθa = aeBθ. (2.132)

This is precisely the form found in the plane using complex numbers, and was
the source of much of the confusion over the use of quaternions for rotations.
Hamilton thought that a single-sided transformation law of the form a 
→ Ra

should be the correct way to encode a rotation, with the full angle appearing
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in the exponential. He thought that this was the natural generalisation of the
complex number representation. But we can see now that this formula only
works for vectors in the plane of rotation. The correct formula for all vectors is
the double-sided, half-angle formula a 
→ RaR†. This formula ensures that given
a vector c perpendicular to the a ∧ b plane we have

Rc = c
1 + ba√

2(1 + b·a)
=

1 + ba√
2(1 + b·a)

c = Rc, (2.133)

so that

RcR† = cRR† = c, (2.134)

and the vector is unrotated. The single-sided law does not have this property.
Correctly identifying the double-sided transformation law means that unit bivec-
tors such as

e1e2 = ee1e2π/2 (2.135)

are generators of rotations through π, and not π/2. The fact that unit bivectors
square to −1 is consistent with this because, acting double sidedly, the rotor −1
is the identity operation. More generally, R and −R generate the same rotation,
so there is a two-to-one map between rotors and rotations. (Mathematicians talk
of the rotors providing a double-cover representation of the rotation group.)

2.7.3 Rotating multivectors

Suppose that the two vectors forming the bivector B = a∧b are both rotated.
What is the expression for the resulting bivector? To find this we form

B′ = a′∧b′ = 1
2 (RaR†RbR† − RbR†RaR†)

= 1
2R(ab − ba)R†

= Ra∧bR†

= RBR†, (2.136)

where we have used the rotor normalisation formula R†R = 1. Bivectors are
rotated using precisely the same formula as vectors! The same turns out to be
true for all geometric multivectors, and this is one of the most attractive features
of geometric algebra. In section 4.2 we prove that the transformation A 
→ RAR†

preserves the grade of the multivector on which the rotors act. For applications
in three dimensions we only need check this result for the trivector case, as we
have already demonstrated it for vectors and bivectors. The pseudoscalar in
three dimensions, I, commutes with all other terms in the algebra, so we have

RIR† = IRR† = I, (2.137)
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2.7 ROTATIONS

which is certainly grade-preserving. This result is one way of saying that ro-
tations have determinant +1. We now have a means of rotating all geometric
objects in three dimensions. In chapter 3 we will take full advantage of this when
studying rigid-body dynamics.

2.7.4 Rotor composition law

Having seen how individual rotors are used to represent rotations, we now look
at their composition law. Let the rotor R1 transform the vector a into a vector b:

b = R1aR†
1. (2.138)

Now rotate b into another vector c, using a rotor R2. This requires

c = R2bR
†
2 = R2R1aR†

1R
†
2 = R2R1a(R2R1)†, (2.139)

so that if we write

c = RaR†, (2.140)

then the composite rotor is given by

R = R2R1. (2.141)

This is the group combination rule for rotors. Rotors form a group because the
product of two rotors is a third rotor, as can be checked from

R2R1(R2R1)† = R2R1R
†
1R

†
2 = R2R

†
2 = 1. (2.142)

In three dimensions the fact that the multivector R contains only even-grade
elements and satisfies RR† = 1 is sufficient to ensure that R is a rotor. The
fact that rotors form a continuous group (called a Lie group) is a subject we will
return to later in this book.

Rotors are the exception to the rule that all multivectors are subject to a
double-sided transformation law. Rotors are already mixed-grade objects, so
multiplying on the left (or right) by another rotor does not take us out of the
space of rotors. All geometric entities, such as lines and planes, are single-grade
objects, and their grades cannot be changed by a rotation. They are therefore
all subject to a double-sided transformation law. Again, this brings us back to
the central theme that both geometric objects and the operators acting on them
are contained in a single algebra.

The composition rule (2.141) has a surprising consequence. Suppose that the
rotor R1 is kept fixed, and we set R2 = exp(−Bθ/2). We now take the vector c

on a 2π excursion back to itself. The final rotor R is

R = e−BπR1 = −R1. (2.143)

The rotor has changed sign under a 2π rotation! This is usually viewed as
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GEOMETRIC ALGEBRA IN TWO AND THREE DIMENSIONS

a quantum-mechanical phenomenon related to the existence of fermions. But
we can now see that the result is classical and is simply a consequence of our
rotor description of rotations. (The relationship between rotors and fermion
wavefunctions is discussed in chapter 8.) A geometric interpretation of the dis-
tinction between R and −R is provided by the direction in which a rotation is
performed. Suppose we want to rotate e1 onto e2. The rotor to achieve this is

R(θ) = e−e1e2θ/2. (2.144)

If we rotate in a positive sense through π/2 the final rotor is given by

R(π/2) =
1√
2
(1 − e1e2). (2.145)

If we rotate in the negative (clockwise) sense, however, the final rotor is

R(−3π/2) = − 1√
2
(1 − e1e2) = −R(π/2). (2.146)

So, while R and −R define the same absolute rotation (and the same rotation
matrix), their different signs can be employed to record information about the
handedness of the rotation.

The rotor composition rule provides a simple formula for the compound effect
of two rotations. Suppose that we have

R1 = e−B1θ1/2, R2 = e−B2θ2/2, (2.147)

where both B1 and B2 are unit bivectors. The product rotor is

R =
(
cos(θ2/2) − sin(θ2/2)B2

)(
cos(θ1/2) − sin(θ1/2)B1

)
= cos(θ2/2) cos(θ1/2) −

(
cos(θ2/2) sin(θ1/2)B1 + cos(θ1/2) sin(θ2/2)B2

)
+ sin(θ2/2) sin(θ1/2)B1B2. (2.148)

So if we write R = R2R1 = exp(−Bθ/2), where B is a new unit bivector, we
immediately see that

cos(θ/2) = cos(θ2/2) cos(θ1/2) + sin(θ2/2) sin(θ1/2)〈B1B2〉 (2.149)

and

sin(θ/2)B = cos(θ2/2) sin(θ1/2)B1 + cos(θ1/2) sin(θ2/2)B2

− sin(θ2/2) sin(θ1/2)〈B1B2〉2. (2.150)

These half-angle relations for rotations were first discovered by the mathemati-
cian Rodriguez, three years before the invention of the quaternions! It is well
known that these provide a simple means of calculating the compound effect of
two rotations. Numerically, it is usually even simpler to just multiply the rotors
directly and not worry about calculating any trigonometric functions.

50

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.004
https:/www.cambridge.org/core


2.8 NOTES

2.7.5 Euler angles

A standard way to parameterise rotations is via the three Euler angles {φ, θ, ψ}.
These are defined to rotate an initial set of axes, {e1, e2, e3}, onto a new set
{e′1, e′2, e′3} (often denoted x, y, z and x′, y′, z′ respectively). First we rotate
about the e3 axis — i.e. in the e1e2 plane — anticlockwise through an angle φ.
The rotor for this is

Rφ = e−e1e2φ/2. (2.151)

Next we rotate about the axis formed by the transformed e1 axis through an
amount θ. The plane for this is

IRφe1R
†
φ = Rφe2e3R

†
φ. (2.152)

The rotor is therefore

Rθ = exp
(
−Rφe2e3R

†
φθ/2

)
= Rφe−e2e3θ/2R†

φ. (2.153)

The intermediate rotor is now

R′ = RθRφ = e−e1e2φ/2e−e2e3θ/2. (2.154)

Note the order! Finally, we rotate about the transformed e3 axis through an
angle ψ. The appropriate plane is now

IR′e3R
′† = R′e1e2R

′† (2.155)

and the rotor is

Rψ = exp
(
−R′e1e2R

′†ψ/2
)

= R′e−e1e2ψ/2R′†. (2.156)

The resultant rotor is therefore

R = RψR′ = e−e1e2φ/2e−e2e3θ/2e−e1e2ψ/2, (2.157)

which has decoupled very nicely and is really quite simple — it is much easier to
visualise and work with than the equivalent matrix formula! Now that we have
geometric algebra at our disposal we will, in fact, have little cause to use the
Euler angles in calculations.

2.8 Notes

In this chapter we have given a lengthy introduction to geometric algebra in two
and three dimensions. The latter algebra is generated entirely by three basis
vectors {e1, e2, e3} subject to the rule that eiej + ejei = 2δij . This simple rule
generates an algebra of remarkable power and richness which we will explore in
following chapters.

There is a large literature on the geometric algebra of three-dimensional space
and its applications in physics. The most complete text is New Foundations
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for Classical Mechanics by David Hestenes (1999). Hestenes has also written
many papers on the subject, most of which are listed in the bibliography at
the end of this book. Other introductory papers have been written by Gull,
Lasenby and Doran (1993a), Doran et al. (1996a) and Vold (1993a, 1993b).
Clifford’s Mathematical Papers (1882) are also of considerable interest. The
use of geometric algebra for handling rotations is very common in the fields
of engineering and computer science, though often purely in the guise of the
quaternion algebra. Searching one of the standard scientific databases with the
keyword ‘quaternions’ returns too many papers to begin to list here.

2.9 Exercises

2.1 From the properties of the geometric product, show that the symmet-
rised product of two vectors satisfies the properties of a scalar product,
as listed in section 1.2.

2.2 By expanding the bivector a∧b in terms of geometric products, prove
that it anticommutes with both a and b, but commutes with any vector
perpendicular to the a∧b plane.

2.3 Verify that the E1 and E2 matrices of equation (2.27) satisfy the correct
multiplication relations to form a representation of G2. Use these to
verify equations (2.26).

2.4 Construct the multiplication table generated by the orthonormal vectors
e1, e2 and e3. Do these generate a (finite) group?

2.5 Prove that all of the following forms are equivalent expressions of the
vector cross product:

a×b = −Ia∧b = b·(Ia) = −a·(Ib).

Interpret each form geometrically. Hence establish that

a×(b×c) = −a·(b∧c) = −(a·b c − a·c b)

and

a·(b×c) = [a, b, c] = a∧b∧c I−1.

2.6 Prove that the effect of successive reflections in the planes perpendicular
to the vectors m and n results in a rotation through twice the angle
between m and n.

2.7 What is the reverse of RaR†, where a is a vector? Which objects in
three dimensions have this property, and why must the result be another
vector?

2.8 Show that the rotor

R =
1 + ba

|a + b|
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2.9 EXERCISES

can also be written as exp(−Bθ/2), where B is the unit bivector in the
a ∧ b plane and θ is the angle between a and b.

2.9 The Cayley–Klein parameters are a set of four real numbers α, β, γ and
δ subject to the normalisation condition

α2 + β2 + γ2 + δ2 = 1.

These can be used to paramaterise an arbitrary rotation matrix as fol-
lows:

U =


α2 + β2 − γ2 − δ2 2(βγ + αδ) 2(βδ − αγ)

2(βγ − αδ) α2 − β2 + γ2 − δ2 2(γδ + αβ)
2(βδ + αγ) 2(γδ − αβ) α2 − β2 − γ2 + δ2


 .

Can you relate the Cayley–Klein parameters to the rotor description?
2.10 Show that the set of all rotors forms a continuous group. Can you

identify the group manifold?
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3

Classical mechanics

In this chapter we study the use of geometric algebra in classical mechanics.
We will assume that readers already have a basic understanding of the subject,
as a complete presentation of classical mechanics with geometric algebra would
require an entire book. Such a book has been written, New Foundations for Clas-
sical Mechanics by David Hestenes (1999), which looks in detail at many of the
topics discussed here. Our main focus in this chapter is to areas where geometric
algebra offers some immediate benefits over traditional methods. These include
motion in a central force and rigid-body rotations, both of which are dealt with
in some detail. More advanced topics in Lagrangian and Hamiltonian dynamics
are covered in chapter 12, and relativistic dynamics is covered in chapter 5.

Classical mechanics was one of the areas of physics that prompted the devel-
opment of many of the mathematical techniques routinely used today. This is
particularly true of vector analysis, and it is now common to see classical me-
chanics described using an abstract vector notation. Many of the formulae in this
chapter should be completely familiar from such treatments. A key difference
comes in adopting the outer product of vectors in place of the cross product. This
means, for example, that angular momentum and torque both become bivectors.
The outer product is clearer conceptually, but on its own it does not bring any
calculational advantages. The main new computational tool we have at our dis-
posal is the geometric product, and here we highlight a number of examples of
its use.

In this chapter we have chosen to write all vectors in a bold font. This is
conventional for three-dimensional physics and many of the formulae presented
below look unnatural if this notation is not followed. Bivectors and other general
multivectors are left in regular font, which helps to distinguish them from vectors.
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3.1 ELEMENTARY PRINCIPLES

3.1 Elementary principles

We start by considering a point particle with a trajectory x(t) described as a
function of time. Here x is the position vector relative to some origin and the
time t is taken as some absolute ‘Newtonian’ standard on which all observers
agree. The particle has velocity

v = ẋ =
dx

dt
, (3.1)

where the overdot denotes differentiation with respect to time t. If the particle
has mass m, then the momentum p is defined by p = mv. Newton’s second law
of motion states that

ṗ = f , (3.2)

where the vector f is the force acting on the particle. Usually the mass m

is constant and we recover the familiar expression f = ma, where a is the
acceleration

a =
d2x

dt2
. (3.3)

The case of constant mass is assumed throughout this chapter. The path for
a single particle is then determined by a second-order differential equation (as-
suming f does not depend on higher derivatives).

The work done by the force f on a particle is defined by the line integral

W12 =
∫ t2

t1

f ·v dt =
∫ 2

1

f ·ds. (3.4)

The final form here illustrates that the integral is independent of how the path
is parameterised. From Newton’s second law we have

W12 = m

∫ t2

t1

v̇ ·v dt =
m

2

∫ t2

t1

d

dt
(v2) dt, (3.5)

where v = |v| =
√

(v2). It follows that the work done is equal to the change in
kinetic energy T , where

T = 1
2mv2. (3.6)

In the case where the work is independent of the path from point 1 to point 2 the
force is said to be conservative, and can be written as the gradient of a potential:

f = −∇V. (3.7)

For conservative forces the work also evaluates to

W12 = −
∫ 2

1

ds·∇V = V1 − V2 (3.8)

and the total energy E = T + V is conserved.
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CLASSICAL MECHANICS

x

L
p

Figure 3.1 Angular momentum. The particle sweeps out the plane L =
x∧p. The angular momentum should be directly related to the area swept
out (cf. Kepler’s second law), so is naturally encoded as a bivector. The
position vector x depends on the choice of origin.

3.1.1 Angular momentum

Angular momentum is traditionally discussed in terms of the cross product, even
though it is quite clear that what is required is a way of encoding the area swept
out by a particle as it moves relative to some origin (see figure 3.1). We saw in
chapter 2 that the exterior product provides this, and that the more traditional
cross product is a derived concept based on the three-dimensional result that
every directed plane has a unique normal. We therefore have no hesitation
in dispensing with the traditional definition of angular momentum as an axial
vector, and replace it with a bivector. So, if a particle has momentum p and
position vector x from some origin, we define the angular momentum of the
particle about the origin as the bivector

L = x∧p. (3.9)

This definition does not alter the steps involved in computing L since the com-
ponents are the same as those of the cross product. We will see, however, that
the freedom we have to now use the geometric product can speed up derivations.
The definition of angular momentum as a bivector maintains a clear distinction
with vector quantities such as position and velocity, removing the need for the
rather awkward definitions of polar and axial vectors. The definition of L as a
bivector also fits neatly with the rotor description of rotations, as we shall see
later in this chapter.

If we differentiate L we obtain

dL

dt
= v∧(mv) + x∧(ma) = x∧f . (3.10)
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3.1 ELEMENTARY PRINCIPLES

We define the torque N about the origin as the bivector

N = x∧f , (3.11)

so that the torque and angular momentum are related by

dL

dt
= N. (3.12)

The idea of the torque being a bivector is also natural as torques act over a
plane. The plane in question is defined by the vector f and the chosen origin,
so both L and N depend on the origin. Recall also that bivectors are additive,
much like vectors, so the result of applying two torques is found by adding the
respective bivectors.

The angular momentum bivector can be written in an alternative way by first
defining r = |x| and writing

x = rx̂. (3.13)

We therefore have

ẋ =
d

dt
(rx̂) = ṙx̂ + r ˙̂x, (3.14)

so that

L = mx∧(ṙx̂ + r ˙̂x) = mrx̂∧(ṙx̂ + r ˙̂x) = mr2 x̂∧ ˙̂x. (3.15)

But since x̂2 = 1 we must have

0 =
d

dt
x̂2 = 2x̂· ˙̂x. (3.16)

We can therefore eliminate the outer product in equation (3.15) and write

L = mr2x̂ ˙̂x = −mr2 ˙̂xx̂, (3.17)

which is useful in a number of problems.

3.1.2 Systems of particles

The preceding definitions generalise easily to systems of particles. For these it
is convenient to distinguish between internal and external forces, so the force on
the ith particles is ∑

j

f ji + fe
i = ṗi. (3.18)

Here fe
i is the external force and f ij is the force on the jth particle due to the

ith particle. We assume that f ii = 0. Newton’s third law (in its weak form)
states that

f ij = −f ji. (3.19)
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CLASSICAL MECHANICS

This is not obeyed by all forces, but is assumed to hold for the forces considered
in this chapter. Summing the force equation over all particles we find that∑

i

miai =
∑

i

fe
i +

∑
i,j

f ij =
∑

i

fe
i . (3.20)

All of the internal forces cancel as a consequence of the third law. We define the
centre of mass X by

X =
1
M

∑
i

mixi, (3.21)

where M is the total mass

M =
∑

i

mi. (3.22)

The position of the centre of mass is governed by the force law

M
d2X

dt2
=
∑

i

fe
i = fe (3.23)

and so only responds to the total external force on the system. The total mo-
mentum of the system is defined by

P =
∑

i

pi = M
dX

dt
(3.24)

and is conserved if the total external force is zero.
The total angular momentum about the chosen origin is found by summing

the individual bivector contributions,

L =
∑

i

xi∧pi. (3.25)

The rate of change of L is governed by

L̇ =
∑

i

xi∧ṗi =
∑

i

xi∧fe
i +

∑
i,j

xi∧f ji. (3.26)

The final term is a double sum containing pairs of terms going as

xi∧f ji + xj∧f ij = (xi − xj)∧f ji. (3.27)

The strong form of Newton’s third law states that the interparticle force f ij is
directed along the vector xi − xj between the two particles. This law is obeyed
by a sufficiently wide range of forces to make it a useful restriction. (The most
notable exception to this law is electromagnetism.) Under this restriction the
total angular momentum satisfies

dL

dt
= Ne, (3.28)

where Ne is the total external torque. If the applied external torque is zero, and
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3.2 TWO-BODY CENTRAL FORCE INTERACTIONS

the strong law of action and reaction is obeyed, then the total angular momentum
is conserved.

A useful expression for the angular momentum is obtained by introducing a
set of position vectors relative to the centre of mass. We write

xi = x′
i + X, (3.29)

so that ∑
i

mix
′
i = 0. (3.30)

The velocity of the ith particle is now

vi = v′
i + v, (3.31)

where v = Ẋ is the velocity of the centre of mass. The total angular momentum
contains four terms:

L =
∑

i

(
X∧miv + x′

i∧miv
′
i + mix

′
i∧v + X∧miv

′
i

)
. (3.32)

The final two terms both contain factors of
∑

mix
′
i and so vanish, leaving

L = X∧P +
∑

i

x′
i∧p′

i. (3.33)

The total angular momentum is therefore the sum of the angular momentum of
the centre of mass about the origin, plus the angular momentum of the system
about the centre of mass. In many cases it is possible to chose the origin so
that the centre of mass is at rest, in which case L is simply the total angular
momentum about the centre of mass. Similar considerations hold for the kinetic
energy, and it is straightforward to show that

T =
∑

i

1
2miv

2
i = 1

2Mv2 + 1
2

∑
i

miv
′
i
2
. (3.34)

3.2 Two-body central force interactions

One of the most significant applications of the preceding ideas is to a system
of two point masses moving under the influence of each other. The force acting
between the particles is directed along the vector between them, and all external
forces are assumed to vanish. It follows that both the total momentum P and
angular momentum L are conserved.

We suppose that the particles have positions x1 and x2, and masses m1 and
m2. Newton’s second law for the central force problem takes the form

m1ẍ1 = f , (3.35)

m2ẍ2 = −f , (3.36)
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CLASSICAL MECHANICS

where f is the interparticle force. We define the relative separation vector x by

x = x1 − x2. (3.37)

This vector satisfies

m1m2ẍ = (m1 + m2)f . (3.38)

We accordingly define the reduced mass µ by

1
µ

=
1

m1
+

1
m2

, (3.39)

so that the final force equation can be written as

µẍ = f . (3.40)

The two-body problem has now been reduced to an equivalent single-body equa-
tion. The strong form of the third law assumed here means that the force f is
directed along x, so we can write f as f x̂.

We next re-express the total angular momentum in terms of the centre of mass
X and the relative vector x. We start by writing

m1x1 = m1X + µx, m2x2 = m2X − µx. (3.41)

It follows that the total angular momentum Lt is given by

Lt = m1x1∧ẋ1 + m2x2∧ẋ2

= MX∧Ẋ + µx∧ẋ. (3.42)

We have assumed that there are no external forces acting, so both Lt and P are
conserved. It follows that the internal angular momentum is also conserved and
we write this as

L = µx∧ẋ. (3.43)

Since L is constant, the motion of the particles is confined to the L plane. The
trajectory of x must also sweep out area at a constant rate, since this is how
L is defined. For planetary motion this is Kepler’s second law, though he did
not state it in quite this form. Kepler treated the sun as the origin, whereas L

should be defined relative to the centre of mass.
The internal kinetic energy is

T = 1
2µẋ2 = 1

2µ(ṙx̂ + r ˙̂x)2 = 1
2µṙ2 + 1

2µr2 ˙̂x2. (3.44)

From equation (3.17) we see that

L2 = −µ2r4x̂ ˙̂x ˙̂xx̂ = −µ2r4 ˙̂x2. (3.45)

We therefore define the constant l as the magnitude of L, so

l = µr2| ˙̂x|. (3.46)
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3.2 TWO-BODY CENTRAL FORCE INTERACTIONS

The kinetic energy can now be written as a function of r and ṙ only:

T =
µṙ2

2
+

l2

2µr2
. (3.47)

The force f is conservative and can be written in terms of a potential V (r) as

f = f x̂ = −∇V (r), (3.48)

where

f = −dV

dr
. (3.49)

Since the force is conservative the total energy is conserved, so

E =
µṙ2

2
+

l2

2µr2
+ V (r) (3.50)

is a constant. For a given potential V (r) this equation can be integrated to find
the evolution of r. The full motion can then be recovered from L.

3.2.1 Inverse-square forces

The most important example of a two-body central force interaction is that
described by an inverse-square force law. This case is encountered in gravitation
and electrostatics and has been analysed in considerable detail by many authors
(see the end of this chapter for suggested additional reading). In this section
we review some of the key features of this system, highlighting the places where
geometric algebra offers something new. An alternative approach to this problem
is discussed in section 3.3.

Writing f = −k/r2 the basic equation to solve is

µẍ = − k

r2
x̂ = − k

r3
x. (3.51)

The sign of k determines whether the force is attractive or repulsive (positive
for attractive). This is a second-order vector differential equation, so we expect
there to be two constant vectors in the solution — one for the initial position
and one for the velocity. We already know that the angular momentum L is a
constant of motion, and we can write this as

L = µr2x̂ ˙̂x = −µr2 ˙̂xx̂. (3.52)

It follows that

Lv̇ = − k

µr2
Lx̂ = k ˙̂x, (3.53)

which we can write in the form
d

dt
(Lv − kx̂) = 0. (3.54)
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Eccentricity Energy Orbit

e > 1 E > 0 Hyperbola
e = 1 E = 0 Parabola
e < 1 E < 0 Ellipse
e = 0 E = −µk2/(2l2) Circle

Table 3.1 Classification of orbits for an inverse-square force law.

The motion is therefore described by the simple equation

Lv = k(x̂ + e), (3.55)

where the eccentricity vector e is a second vector constant of motion. This vector
is also known in various contexts as the Laplace vector and as the Runge–Lenz
vector. From its definition we can see that e must lie in the L plane.

To find a direct equation for the trajectory we first write

Lvx = L(v ·x + v∧x) =
1
µ

LL̃ + v ·x L = k(r + ex). (3.56)

The scalar part of this equation gives

r =
l2

kµ(1 + e·x̂)
. (3.57)

This equation specifies a conic surface in three dimensions with symmetry axis
e. The surface is formed by rotating a two-dimensional conic about this axis.
Since the motion takes place entirely within the L plane the motion is described
by a conic. That is, the trajectory x(t) is one of a hyperbola, parabola, ellipse
or circle. The generic cases are ellipses for bound orbits and hyperbolae for free
states. The cases of parabolic and circular orbits are exceptional as they require
precise values of |e| (table 3.1).

In L and e we have found five of the six constants of motion (we only have
two arbitrary constants in e as it is constrained to lie in the L plane). The
final constant specifies where on the conic we start at time t = 0. We know
that the energy is also a constant of motion, so it should be possible to express
the energy directly in terms of L and e. From equation (3.51) we see that the
potential energy must go as k/r, provided we set the arbitrary constant so that
V = 0 at infinity. The full energy is therefore given by

E =
µ

2
v2 − k

r
. (3.58)

To simplify this we first form

LvvL̃ = l2v2 = k2(x̂ + e)2. (3.59)
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It follows that

E =
µk2

2l2
(e2 + 1 + 2x̂·e) − k

r
=

µk2

2l2
(e2 − 1), (3.60)

where e = |e| is the eccentricity. The sign of the energy is governed entirely by e.
Since the potential is set to zero at infinity, all bound states must have negative
energy and hence an eccentricity e < 1. The limiting case of e = 1 describes a
parabola (table 3.1).

3.2.2 Motion in time for elliptic orbits

Many methods can be used to find the trajectory as a function of time and these
are discussed widely in the literature. Here we describe one of the simplest, which
serves to highlight the essential difficulty of this problem. An alternative solution,
which more fully exploits the techniques of geometric algebra, is described in
section 3.3. From the energy equation we see that

µ2ṙ2 = 2µE − l2

r2
+

2µk

r
, (3.61)

so t is given by

t = µ

∫ r1

r0

r dr

(2µkr + 2µEr2 − l2)1/2
. (3.62)

Evaluating this integral results in a rather complicated function of r, the general
form of which is hard to invert and not very helpful. More useful formulae
are obtained by specialising to one form of orbit. For bound problems we are
interested in elliptic orbits for which E is negative. For these orbits it is useful
to introduce the semi-major axis a defined by

a = 1
2 (r1 + r2) = − k

2E
, (3.63)

where r1 and r2 are the maximum and minimum values of r respectively. In
terms of this we can write

2µkr + 2µEr2 − l2 = −µk

a
(r2 − 2ar) − l2 =

µk

a

(
a2e2 − (r − a)2). (3.64)

We now introduce a new variable Ψ, the eccentric anomaly, defined by

r = a
(
1 − e cos(Ψ)

)
. (3.65)

In terms of this we find

t =
(

µa3

k

)1/2 ∫ Ψ1

Ψ0

(
1 − e cos(Ψ)

)
dΨ, (3.66)

so if we choose t = 0 to correspond to closest approach we have

ωt = Ψ − e sin(Ψ), (3.67)
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where

ω2 =
k

µa3
. (3.68)

Equations (3.65) and (3.67) provide a parametric solution relating r and t. This
solution highlights the fact that the equation relating t and r is transcendental
and does not have a simple closed form. The time taken for one orbit is 2π/ω,
so the orbital period τ is related to the major axis a by

τ2 =
4π2µ

k
a3. (3.69)

This gives us the third of Kepler’s three laws of planetary motion, that the square
of the period is proportional to the cube of the major axis.

3.3 Celestial mechanics and perturbations

By far the most important application of the Newtonian theory of gravitation is
to the motion of the planets in the solar system. This is a complicated subject
of considerable historical and current importance, and we will only touch on a
few applications. Detailed calculation of the motions of all of the planets in the
solar system still represents a major computational challenge. Aside from the
obvious problem of having to calculate the gravitational effects of every planet on
every other planet, further effects must also be incorporated. These can include
deviations of the shapes of the planets from spherical, the effects of tidal forces
and ultimately general relativistic corrections.

A significant number of problems in celestial mechanics are best treated us-
ing perturbation theory. In this technique orbits are calculated as a series of
ever smaller deviations from Kepler orbits. Since the Kepler orbit is specified
entirely by L and e, we should first form equations for these in the presence of
a perturbing force. We modify the force law to read

µẍ = − k

r3
x + f , (3.70)

and assume that f is always small compared with the inverse-square term. The
angular momentum L now satisfies

L̇ = x∧f , (3.71)

so L is now only conserved if f is also a central force. With the eccentricity
vector still defined by equation (3.55), we find that

kė = L̇·v +
1
µ

L·f . (3.72)

Only five of the six equations for L and e are independent, as we always have
L∧e = 0.
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For many problems the variation in L and e is slow compared to the orbital
period. For these a useful approximation is obtained by finding the orbital
average of f over one cycle, with L and e held constant. The quantities L and e

are then assumed to vary slowly under the influence of the time-averaged force.
Results for the orbital averages of numerous quantities can be found tabulated
in many textbooks and are discussed in the exercises at the end of this chapter.

3.3.1 Example — general relativistic perturbations

Later in this book we will study how general relativity modifies the Newtonian
view of gravity. For particles moving in a central potential, the modification
is quite simple and can be handled efficiently using perturbation theory. The
modified force law is

ẍ = −GM

r2

(
1 +

3l2

µ2c2r2

)
x̂, (3.73)

where c is the speed of light and we have replaced k by the gravitational expres-
sion GMµ. (A small subtlety is that the derivatives here are with respect to
proper time, but this does not affect our reasoning.) The force is still central, so
the angular momentum L is still conserved. The eccentricity vector satisfies the
simple equation

ė =
3l2

µ3c2r4
L·x̂. (3.74)

For bound orbits this gives rise to a precession of the major axis (see figure 3.2).
The quantity of most interest is the amount e changes in one orbit. To get an
approximate result for this we use the time-averaging idea and assume that the
orbit is precisely elliptical. We therefore have

∆e = − 3l2

µ3c2
L

∫ T

0

dt
x̂

r4
, (3.75)

where T is the orbital period. Evaluating this integral is left as an exercise, and
the final result is

∆e =
6πGM

a(1 − e2)c2
e·L̂, (3.76)

where L̂ = L/l. This gives a precession of e with the orientation of L, which
corresponds to an advance (figure 3.2). For Mercury this gives rise to the fa-
mous advance in the perihelion of 43 arcseconds per century, which was finally
explained by general relativity.
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-1-2-3-4

1

-1

-2

Figure 3.2 Orbital precession. The plot shows a modified orbit as pre-
dicted by general relativity. The ellipse precesses round in the same direc-
tion as the orbital motion. The parameters have been chosen to exaggerate
the precession effect.

3.3.2 Spinor equations

An alternative method for analysing the Kepler problem is through the use of
‘spinors’. These will be defined more carefully in later chapters, but in two and
three dimensions they can be viewed as elements of the subalgebra of G2 and G3

consisting entirely of even elements. In two dimensions a spinor can therefore be
identified with a complex number. The position vector x in two dimensions can
be formed through a rotation and dilation via the polar decomposition

x = e1r exp(θe1e2) = r exp(−θe1e2)e1, (3.77)

where {e1, e2} denote a right-handed orthonormal frame and we assume that the
vector lies in the e1e2 plane. We know from chapter 2 that the rotation formula
only extends to higher dimensions if a double-sided prescription is adopted, so
we write the vector x as

x = Ue1U
† = U2e1 = e1U

†2. (3.78)

In writing this we have placed all of the dynamics in the complex number U .
For the Kepler problem it turns out that the equation for U is considerably

easier than that for x. We assume that the plane of L is given by e1e2, and start
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by forming

r = |x| = UU†. (3.79)

(Recall that, for a scalar + bivector combination in two dimensions, the reverse
operator is the same as complex conjugation.) On differentiating we find that

ẋ = 2U̇Ue1, (3.80)

hence

2rU̇ = ẋe1U
† = ẋUe1. (3.81)

We now introduce the new variable s defined by

d

ds
= r

d

dt
,

dt

ds
= r. (3.82)

In terms of this

2
dU

ds
= ẋUe1 (3.83)

and

2
d2U

ds2
= rẍUe1 + ẋ

dU

ds
e1 = U

(
ẍx + 1

2 ẋ2
)
. (3.84)

Now suppose we have motion in a central inverse-square force:

µẍ = −k
x

r3
. (3.85)

The equation for U becomes

d2U

ds2
=

1
2µ

U

(
1
2µẋ2 − k

r

)
=

E

2µ
U, (3.86)

which is simply the equation for harmonic motion! This has a number of advan-
tages. First of all, the equation is easy to solve. If we set

ω2 = − E

2µ
(3.87)

then the general solution is

U = A exp(L̂ωs) + B exp(−L̂ωs), (3.88)

where A and B are constants and L̂ is the unit bivector for the plane of motion.
The motion is illustrated in figure 3.3. The particle trajectory maps out an
ellipse with the origin at one focus, whereas U defines an ellipse with the origin
at the centre. The particle completes two orbits for each full cycle of U .

Further advantages of formulating the dynamics in terms of U are that the
equation for U is linear, so is better suited to perturbation theory, and that there
is no singularity at r = 0, which provides better numerical stability. (Removing
this singularity is called ‘regularization’.) In addition, equation (3.86) is universal
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r
U

Figure 3.3 Solution to the Kepler problem. The particle orbit is shown on
the left, and the corresponding spinor on the right. The particle completes
two orbits every time U completes one cycle, since U and −U describe the
same position.

— it holds for E > 0 and E < 0. The solution when E > 0 simply has
trigonometric functions replaced by exponentials. This universality is important,
because perturbations can often send bound orbits into unbound ones.

For the method to be truly powerful, however, it must extend to three dimen-
sions. The relevant formula in three dimensions is

x = Ue1U
†, (3.89)

where U is a general even element. This means that U has four degrees of
freedom now, whereas only three are required to specify x. We are therefore free
to impose a further additional constraint on U , which we will use to ensure the
equations take on a convenient form. The quantity UU† is still a scalar in three
dimensions, so we have

r = UU† = U†U. (3.90)

We next form ẋ:

ẋ = U̇e1U
† + Ue1U̇†. (3.91)

We would like this to equal 2U̇e1U
† for the preceding analysis to follow through.

For this to hold we require

U̇e1U
† − Ue1U̇† = U̇e1U

† − (U̇e1U
†)† = 0. (3.92)

The quantity U̇e1U
† only contains odd grade terms (grade-1 and grade-3). If we

subtract its reverse, all that remains is the trivector (pseudoscalar) term. We
therefore require that

〈U̇e1U
†〉3 = 0, (3.93)

which we adopt as our extra condition on U . With this condition satisfied we
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have

2
dU

ds
= ẋUe1 (3.94)

and

2
d2U

ds2
=
(
ẍx + 1

2 ẋ2
)
U. (3.95)

For an inverse-square force law we therefore recover the same harmonic oscillator
equation. In the presence of a perturbing force we have

2µ
d2U

ds2
− EU = fxU = rfUe1. (3.96)

This equation for U can be handled using standard techniques from perturbation
theory. The equation was first found (in matrix form) by Kustaanheimo and
Stiefel in 1964 . The analysis was refined and cast in its present form by Hestenes
(1999).

3.4 Rotating systems and rigid-body motion

Rigid bodies can be viewed as another example of a system of particles, where
now the effect of the internal forces is to keep all of the interparticle distances
fixed. For such systems the internal forces can be ignored once one has found a
set of dynamical variables that enforce the rigid-body constraint. The problem
then reduces to solving for the motion of the centre of mass and for the angular
momentum in the presence of any external forces or torques. Suitable variables
are a vector x(t) for the centre of mass, and a set of variables to describe the
attitude of the rigid body in space. Many forms exist for the latter variables,
but here we will concentrate on parameterising the attitude of the rigid body
with a rotor. Before applying this idea to rigid-body motion, we first look at the
description of rotating frames with rotors.

3.4.1 Rotating frames

Suppose that the frame of vectors {fk} is rotating in space. These can be related
to a fixed orthonormal frame {ek} by the time-dependent rotor R(t):

fk(t) = R(t)ekR†(t). (3.97)

The angular velocity vector ω is traditionally defined by the formula

ḟk = ω×fk, (3.98)

where the cross denotes the vector cross product. From section 2.4.3 we know
that the cross product is related to the inner product with a bivector by

ω×fk = (−Iω)·fk = fk ·(Iω). (3.99)
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We are now used to the idea that angular momentum is best viewed as a bivector,
and we must expect the same to be true for angular velocity. We therefore define
the angular velocity bivector Ω by

Ω = Iω. (3.100)

This choice ensures that the rotation has the orientation implied by Ω.
To see how Ω is related to the rotor R we start by differentiating equa-

tion (3.97):

ḟk = ṘekR† + RekṘ† = ṘR†fk + fkRṘ†. (3.101)

From the normalisation equation RR† = 1 we find that

0 =
d

dt
(RR†) = ṘR† + RṘ†. (3.102)

Since differentiation and reversion are interchangeable operations we now have

ṘR† = −RṘ† = −(ṘR†)†. (3.103)

The quantity ṘR† is equal to minus its own reverse and has even grade, so must
be a pure bivector. The equation for fk now becomes

ḟk = ṘR†fk − fkṘR† = (2ṘR†)·fk. (3.104)

Comparing this with equation (3.99) and equation (3.100) we see that 2ṘR†

must equal minus the angular velocity bivector Ω, so

2ṘR† = −Ω. (3.105)

The dynamics is therefore contained in the single rotor equation

Ṙ = − 1
2ΩR. (3.106)

The reversed form of this is also useful:

Ṙ† = 1
2R†Ω. (3.107)

Equations of this type are surprisingly ubiquitous in physics. In the more general
setting, rotors are viewed as elements of a Lie group, and the bivectors form their
Lie algebra. We will have more to say about this in chapter 11.

3.4.2 Constant Ω

For the case of constant Ω equation (3.106) integrates immediately to give

R = e−Ωt/2R0, (3.108)

which is the rotor for a constant frequency rotation in the positive sense in the
Ω plane. The frame rotates according to

fk(t) = e−Ωt/2R0ekR†
0e

Ωt/2. (3.109)
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e3 = f3

f1

ḟ1

f2

Ω

Figure 3.4 Orientation of the angular velocity bivector. Ω has the orien-
tation of f1∧ ḟ1. It must therefore have orientation +e1∧e2 when ω = e3.

The constant term R0 describes the orientation of the frame at t = 0, relative to
the {ek} frame.

As an example, consider the case of motion about the e3 axis (figure 3.4). We
have

Ω = ωIe3 = ωe1e2, (3.110)

and for convenience we set R0 = 1. The motion is described by

fk(t) = exp
(
−1

2e1e2ωt
)
ek exp

(
1
2e1e2ωt

)
, (3.111)

so that the f1 axis rotates as

f1 = e1 exp(e1e2ωt) = cos(ωt)e1 + sin(ωt)e2. (3.112)

This defines a right-handed (anticlockwise) rotation in the e1e2 plane, as pre-
scribed by the orientation of Ω.

3.4.3 Rigid-body motion

Suppose that a rigid body is moving through space. To describe the position
in space of any part of the body, we need to specify the position of the centre
of mass, and the vector to the point in the body from the centre of mass. The
latter can be encoded in terms of a rotation from a fixed ‘reference’ body onto
the body in space (figure 3.5). We let x0 denote the position of the centre of
mass and yi(t) denote the position (in space) of a point in the body. These are
related by

yi(t) = R(t)xiR
†(t) + x0(t), (3.113)

71

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.005
https:/www.cambridge.org/core


CLASSICAL MECHANICS

x

x0(t)

R(t)

y(t)

Figure 3.5 Description of a rigid body. The vector x0(t) specifies the
position of the centre of mass, relative to the origin. The rotor R(t) defines
the orientation of the body, relative to a fixed copy imagined to be placed
at the origin. x is a vector in the reference body, and y is the vector in
space of the equivalent point on the moving body.

where xi is a fixed constant vector in the reference copy of the body. In this
manner we have placed all of the rotational motion in the time-dependent rotor
R(t).

The velocity of the point y = RxR† + x0 is

v(t) = ṘxR† + RxṘ† + ẋ0

= − 1
2ΩRxR† + 1

2RxR†Ω + v0

= (RxR†)·Ω + v0, (3.114)

where v0 is the velocity of the centre of mass. The bivector Ω defines the plane of
rotation in space. This plane will lie at some orientation relative to the current
position of the rigid body. For studying the motion it turns out to be extremely
useful to transform the rotation plane back into the fixed, reference copy of the
body. Since bivectors are subject to the same rotor transformation law as vectors
we define the ‘body’ angular velocity ΩB by

ΩB = R†ΩR. (3.115)

In terms of the body angular velocity the rotor equation becomes

Ṙ = − 1
2ΩR = − 1

2RΩB, Ṙ† = 1
2ΩBR†. (3.116)

The velocity of the body is now re-expressed as

v(t) = R x·ΩB R† + v0, (3.117)

which will turn out to be the more convenient form. (We have used the operator
ordering conventions of section 2.5 to suppress unnecessary brackets in writing
R x·ΩB R† in place of R(x·ΩB)R†.)
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To calculate the momentum of the rigid body we need the masses of each
of the constituent particles. It is easier at this point to go to a continuum
approximation and introduce a density ρ = ρ(x). The position vector x is taken
relative to the centre of mass, so we have∫

d3x ρ = M and
∫

d3x ρx = 0. (3.118)

The momentum of the rigid body is simply∫
d3x ρv =

∫
d3x ρ(R x·ΩB R† + v0) = Mv0, (3.119)

so is specified entirely by the motion of the centre of mass. This is the continuum
version of the result of section 3.1.2.

3.4.4 The inertia tensor

The next quantity we require is the angular momentum bivector L for the body
about its centre of mass. We therefore form

L =
∫

d3x ρ(y − x0)∧v

=
∫

d3x ρ(RxR†)∧(R x·ΩB R† + v0)

= R

(∫
d3x ρx∧(x·ΩB)

)
R†. (3.120)

The integral inside the brackets refers only to the fixed copy and so defines a
time-independent function of ΩB . This is the reason for working with ΩB instead
of the space angular velocity Ω. We define the inertia tensor I(B) by

I(B) =
∫

d3x ρx∧(x·B). (3.121)

This is a linear function mapping bivectors to bivectors. This way of writing
linear functions may be unfamiliar to those used to seeing tensors labelled with
indices, but the notation is the natural extension to linear functions of the index-
free approach advocated in this book. The linearity of the map is easy to check:

I(λA + µB) =
∫

d3x ρx∧
(
x·(λA + µB)

)
=
∫

d3x ρ
(
λx∧(x·A) + µx∧(x·B)

)
= λI(A) + µI(B). (3.122)

The fact that the inertia tensor maps bivectors to bivectors, rather than vectors
to vectors, is also a break from tradition. This viewpoint is very natural given our
earlier comments about the merits of bivectors over axial vectors, and provides a
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x

x

B B
x·B

x∧(x·B)

Figure 3.6 The inertia tensor. The inertia tensor I(B) is a linear function
mapping its bivector argument B onto a bivector. It returns the total
angular momentum about the centre of mass for rotation in the B plane.

clear geometric picture of the tensor (figure 3.6). Since both vectors and bivectors
belong to a three-dimensional linear space, there is no additional complexity
introduced in this new picture.

To understand the effect of the inertia tensor, suppose that the body rotates
in the B plane at a fixed rate |B|, and we place the origin at the centre of mass
(which is fixed). The velocity of the vector x is simply x·B, and the momentum
density at this point is ρx ·B, as shown in figure 3.6. The angular momentum
density bivector is therefore x∧(ρx·B), and integrating this over the entire body
returns the total angular momentum bivector for rotation in the B plane.

In general, the total angular momentum will not lie in the same plane as the
angular velocity. This is one reason why rigid-body dynamics can often seem
quite counterintuitive. When we see a body rotating, our eyes naturally pick out
the angular velocity by focusing on the vector the body rotates around. Deciding
the plane of the angular momentum is less easy, particularly if the internal mass
distribution is hidden from us. But it is the angular momentum that responds
directly to external torques, not the angular velocity, and this can have some
unexpected consequences.

We have calculated the inertia tensor about the centre of mass, but bodies
rotating around a fixed axis can be forced to rotate about any point. A useful
theorem relates the inertia tensor about an arbitrary point to one about the
centre of mass. Suppose that we want the inertia tensor relative to the point a,
where a is a vector taken from the centre of mass. Returning to the definition
of equation (3.121) we see that we need to compute

Ia(B) =
∫

d3x ρ(x − a)∧
(
(x − a)·B

)
. (3.123)
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This integral evaluates to give

Ia(B) =
∫

d3x ρ
(
x∧(x·B) − x∧(a·B) − a∧(x·B) + a∧(a·B)

)
= I(B) + Ma∧(a·B). (3.124)

The inertia tensor relative to a is simply the inertia tensor about the centre of
mass, plus the tensor for a point mass M at position a.

3.4.5 Principal axes

So far we have only given an abstract specification of the inertia tensor. For
most calculations it is necessary to introduce a set of basis vectors fixed in the
body. As we are free to choose the directions of these vectors, we should ensure
that this choice simplifies the equations of motion as much as possible. To see
how to do this, consider the {ei} frame and define the matrix Iij by

Iij = −(Iei)·I(Iej). (3.125)

This defines a symmetric matrix, as follows from the result

A·(x∧(x·B)) = 〈Ax(x·B)〉 = 〈(A·x)xB〉 = B ·(x∧(x·A)). (3.126)

(This sort of manipulation, where one uses the projection onto grade to replace
inner and outer products by geometric products, is very common in geometric
algebra.) This result ensures that

Iij = −
∫

d3x ρ(Iei)·
(
x∧(x·(Iej))

)
= −

∫
d3x ρ(Iej)·

(
x∧(x·(Iei))

)
= Iji. (3.127)

It follows that the matrix Iij will be diagonal if the {ei} frame is chosen to
coincide with the eigendirections of the inertia tensor. These directions are
called the principal axes, and we always choose our frame along these directions.

The matrix Iij is also positive-(semi)definite, as can be seen from

aiajIij = −
∫

d3x ρ(Ia)·
(
x∧(x·(Ia))

)
=
∫

d3x ρ
(
x·(Ia)

)2 ≥ 0. (3.128)

It follows that all of the eigenvalues of Iij must be positive (or possibly zero for
the case of point or line masses). These eigenvalues are the principal moments
of inertia and are crucial in specifying the properties of a rigid body. We denote
these {i1, i2, i3}, so that

Ijk = δjkik (no sum). (3.129)
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(It is more traditional to use a capital I for the moments of inertia, but this
symbol is already employed for the pseudoscalar.) If two or three of the principal
moments are the same the principal axes are not uniquely specified. In this case
one simply chooses one orthonormal set of eigenvectors from the degenerate
family of possibilities.

Returning to the index-free presentation, we see that the principal axes satisfy

I(Iej) = IekIjk = ijIej , (3.130)

where again there is no sum implied between eigenvectors and their associated
eigenvalue in the final expression. To calculate the effect of the inertia tensor on
an arbitrary bivector B we decompose B in terms of the principal axes as

B = BjIej . (3.131)

It follows that

I(B) =
3∑

j=1

ijBjIej = i1B1e2e3 + i2B2e3e1 + i3B3e1e2. (3.132)

The fact that for most bodies the principal moments are not equal demonstrates
that I(B) will not lie in the same plane as B, unless B is perpendicular to one
of the principal axes.

A useful result for calculating the inertia tensor is that the principal axes of
a body always coincide with symmetry axes, if any are present. This simplifies
the calculation of the inertia tensor for a range of standard bodies, the results
for which can be found in some of the books listed at the end of this chapter.

3.4.6 Kinetic energy and angular momentum

To calculate the kinetic energy of the body from the velocity of equation (3.114)
we form the integral

T = 1
2

∫
d3x ρ(R x·ΩB R† + v0)2

= 1
2

∫
d3x ρ

(
(x·ΩB)2 + 2v0 ·(R x·ΩB R†) + v2

0

)
= 1

2

∫
d3x ρ(x·ΩB)2 + Mv2

0. (3.133)

Again, there is a clean split into a rotational contribution and a term due to
the motion of the centre of mass. Concentrating on the former, we use the
manipulation

(x·ΩB)2 = 〈x·ΩBxΩB〉 = −ΩB ·
(
x∧(x·ΩB)

)
(3.134)
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to write the rotational contribution as

− 1
2ΩB ·

(∫
d3x ρx∧(x·ΩB)

)
= − 1

2ΩB ·I(ΩB). (3.135)

The minus sign is to be expected because bivectors all have negative squares.
The sign can be removed by reversing one of the bivectors to construct a positive-
definite product. The total kinetic energy is therefore

T = 1
2Mv2

0 + 1
2Ω†

B ·I(ΩB). (3.136)

The inertia tensor is constructed from the point of view of the fixed body.
From equation (3.120) we see that the angular momentum in space is obtained
by rotating the body angular momentum I(ΩB) onto the space configuration,
that is,

L = R I(ΩB)R†. (3.137)

We can understand this expression as follows. Suppose that a body rotates in
space with angular velocity Ω. At a given instant we carry out a fixed rotation
to align everything back with the fixed reference configuration. This reference
copy then has angular velocity ΩB = R†ΩR. The inertia tensor (fixed in the
reference copy) returns the angular momentum, given an input angular velocity.
The result of this is then rotated forwards onto the body in space, to return L.

The space and body angular velocities are related by Ω = RΩBR†, so the
kinetic energy can be written in the form

T = 1
2Mv2

0 + 1
2Ω† ·L. (3.138)

We now introduce components {ωk} for both Ω and ΩB by writing

Ω =
3∑

k=1

ωkIfk, ΩB =
3∑

k=1

ωkIek. (3.139)

In terms of these we recover the standard expression

T = 1
2Mv2

0 +
3∑

k=1

1
2 ikω2

k. (3.140)

3.4.7 Equations of motion

The equations of motion are L̇ = N , where N is the external torque. The inertia
tensor is time-independent since it only refers to the static ‘reference’ copy of
the rigid body, so we find that

L̇ = ṘI(ΩB)R† + RI(ΩB)Ṙ† + RI(Ω̇B)R†

= R
(
I(Ω̇B) − 1

2ΩBI(ΩB) + 1
2I(ΩB)ΩB

)
R†. (3.141)
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At this point it is extremely useful to have a symbol to denote one-half of the
commutator of two bivectors. The standard symbol for this is the cross, ×, so
we define the commutator product by

A×B = 1
2 (AB − BA). (3.142)

This notation does raise the possibility of confusion with the vector cross prod-
uct, but as the latter is not needed any more this should not pose a problem.
The commutator product is so ubiquitous in applications that it needs its own
symbol, and the cross is particularly convenient as it correctly conveys the anti-
symmetry of the product. In section 4.1.3 we prove that the commutator of
any two bivectors results in a third bivector. This is easily confirmed in three
dimensions by expressing both bivectors in terms of their dual vectors.

With the commutator product at our disposal the equations of motion are now
written concisely as

L̇ = R
(
I(Ω̇B) − ΩB×I(ΩB)

)
R†. (3.143)

The typical form of the rigid-body equations is recovered by expanding in terms
of components. In terms of these we have

L̇ = R


 3∑

k=1

ikω̇kIek −
3∑

j,k=1

ikωjωk(Iej)×(Iek)


R†

=
3∑

k=1

ω̇kIfk +
3∑

j,k,l=1

εjklikωjωkIfl. (3.144)

If we let Nk denote the components of the torque N in the rotating fk frame,

N =
3∑

k=1

NkIfk, (3.145)

we recover the Euler equations of motion for a rigid body:

i1ω̇1 − ω2ω3(i2 − i3) = N1,

i2ω̇2 − ω3ω1(i3 − i1) = N2, (3.146)

i3ω̇3 − ω1ω2(i1 − i2) = N3.

Various methods can be used to solve these equations and are described in most
mechanics textbooks. Here we will simply illustrate some features of the equa-
tions, and describe a solution method which does not resort to the explicit co-
ordinate equations.
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3.4.8 Torque-free motion

The torque-free equation L̇ = 0 reduces to

I(Ω̇B) − ΩB×I(ΩB) = 0. (3.147)

This is a first-order constant coefficient differential equation for the bivector ΩB .
Closed form solutions exist, but before discussing some of these it is useful to
consider the conserved quantities. Throughout this section we ignore any overall
motion of the centre of mass of the rigid body. Since L̇ = 0 both the kinetic
energy and the magnitude of L are constant. To exploit this we introduce the
components

Lk = ikωk, L =
3∑

k=1

LkIfk. (3.148)

These are the components of L in the rotating fk frame. So, even though L is
constant, the components Lk are time-dependent. In terms of these components
the magnitude of L is

LL† = L2
1 + L2

2 + L3
3 (3.149)

and the kinetic energy is

T =
L2

1

2i1
+

L2
2

2i2
+

L2
3

2i3
. (3.150)

Both |L| and T are constants of motion, which imposes two constraints on the
three components Lk. A useful way to visualise this is to think in terms of a
vector l with components Lk:

l =
3∑

k=1

Lkek = −IR†LR. (3.151)

This is the vector perpendicular to R†LR — a rotating vector in the fixed ref-
erence body. Conservation of |L| means that l is constrained to lie on a sphere,
and conservation of T restricts l to the surface of an ellipsoid. Possible paths
for l for a given rigid body are therefore defined by the intersections of a sphere
with a family of ellipsoids (governed by T ). For the case of unequal principal
moments these orbits are non-degenerate. Examples of these orbits are shown in
figure 3.7. This figure shows that orbits around the axes with the smallest and
largest principal moments are stable, whereas around the middle axis the orbits
are unstable. Any small change in the energy of the body will tend to throw it
into a very different orbit if the orbit of l approaches close to e2.
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e1
e2

e3

Figure 3.7 Angular momentum orbits. The point described by the vector
l simultaneously lies on the surface of a sphere and an ellipse. The figure
shows possible paths on the sphere for l in the case of i1 < i2 < i3, with
the 3 axis vertical.

3.4.9 The symmetric top

The full analytic solution for torque-free motion is complicated and requires
elliptic functions. If the body has a single symmetry axis, however, the solution
is quite straightforward. In this case the body has two equal moments of inertia,
i1 = i2, and the third principal moment i3 is assumed to be different. With this
assignment e3 is the symmetry axis of the body. The action of the inertia tensor
on ΩB is

I(ΩB) = i1ω1e2e3 + i1ω2e3e1 + i3ω3e1e2

= i1ΩB + (i3 − i1)ω3Ie3, (3.152)

so we can write I(ΩB) in the compact form

I(ΩB) = i1ΩB + (i3 − i1)(ΩB∧e3)e3. (3.153)

(This type of expression offers many advantages over the alternative ‘dyad’ no-
tation.) The torque-free equations of motion are now

I(Ω̇B) = ΩB×I(ΩB) = (i3 − i1)ΩB×
(
(ΩB∧e3)e3

)
. (3.154)

Since ΩB∧e3 is a trivector, we can dualise the final term and write

I(Ω̇B) = −(i3 − i1)e3∧
(
(ΩB∧e3)ΩB

)
. (3.155)

It follows that

e3∧I(Ω̇B) = 0 = i3ω̇3I, (3.156)
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which shows that ω3 is a constant. This result can be read off directly from the
Euler equations, but it is useful to see how it can be derived without dropping
down to the individual component equations. The ability to do this becomes
ever more valuable as the complexity of the equations increases.

Next we use the result that

i1ΩB = I(ΩB) − (i3 − i1)(ΩB∧e3)e3

= I(ΩB) + (i1 − i3)ω3Ie3 (3.157)

to write

Ω = RΩBR† =
1
i1

L +
i1 − i3

i1
ω3RIe3R

†. (3.158)

Our rotor equation now becomes

Ṙ = − 1
2ΩR = − 1

2i1
(LR + R(i1 − i3)ω3Ie3). (3.159)

The right-hand side of this equation involves two constant bivectors, one mul-
tiplying R to the left and the other to the right. We therefore define the two
bivectors

Ωl =
1
i1

L, Ωr = ω3
i1 − i3

i1
Ie3, (3.160)

so that the rotor equation becomes

Ṙ = − 1
2ΩlR − 1

2RΩr. (3.161)

This equation integrates immediately to give

R(t) = exp(−1
2Ωlt)R0 exp(− 1

2Ωrt). (3.162)

This fully describes the motion of a symmetric top. It shows that there is an
‘internal’ rotation in the e1e2 plane (the symmetry plane of the body). This is
responsible for the precession of a symmetric top. The constant rotor R0 defines
the attitude of the rigid body at t = 0 and can be set to 1. The resultant body is
then rotated in the plane of its angular momentum to obtain the final attitude
in space.

3.5 Notes

Much of this chapter follows New Foundations for Classical Mechanics by David
Hestenes (1999), which gives a comprehensive account of the applications to clas-
sical mechanics of geometric algebra in three dimensions. Readers are encouraged
to compare the techniques used in this chapter with more traditional methods,
a good description of which can be found in Classical Mechanics by Goldstein
(1950), or Analytical Mechanics by Hand & Finch (1998). The standard reference
for the Kustaanheimo–Stiefel equation is Linear and Regular Celestial Mechanics
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by Stiefel and Scheifele (1971). Many authors have explored this technique, par-
ticularly in the quaternionic framework. These include Hestenes’ ‘Celestial me-
chanics with geometric algebra’ (1983) and the papers by Aramanovitch (1995)
and Vrbik (1994, 1995).

3.6 Exercises

3.1 An elliptical orbit in an inverse-square force law is parameterised in
terms of a scalar + pseudoscalar quantity U by x = U2e1. Prove that
U can be written

U = A0eIωs + B0e−Iωs,

where dt/ds = r, r = |x| = UU† and I is the unit bivector for the
plane. What is the value of ω? Find the conditions on A0 and B0 such
that at time t = 0, s = 0 and the particle lies on the positive e1 axis
with velocity in the positive e2 direction. For which value of s does the
velocity point in the −e1 direction? Find the values for the shortest and
longest diameters of the ellipse, and verify that we can write

U =
√

a(1 + e) cos(ωs) −
√

a(1 − e)I sin(ωs),

where e is the eccentricity and a is the semi-major axis.
3.2 For elliptical orbits the semi-major axis a is defined by a = 1

2 (r1 + r2),
where r1 and r2 are the distances of closest and furthest approach. Prove
that

l2

kµ
= a(1 − e2).

Hence show that we can write

r =
a(1 − e2)

1 + e cos(θ)
,

where e cos(θ) = e · x̂. The eccentricity vector points to the point of
closest approach. Why would we expect the orbital average of x̂/r4 to
also point in this direction? Prove that∫ T

0

dt
x̂

r4
= ê

µ

la2(1 − e2)2

∫ 2π

0

(
1 + e cos(θ)

)2 cos(θ) dθ

and evaluate the integral.
3.3 A particle in three dimensions moves along a curve x(t) such that |v| is

constant. Show that there exists a bivector Ω such that

v̇ = Ω·v,

and give an explicit formula for Ω. Is this bivector unique?
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3.4 Suppose that we measure components of the position vector x in a ro-
tating frame {fi}. By referring this frame to a fixed frame, show that
the components of x are given by

xi = ei ·(R†xR).

By differentiating this expression twice, prove that we can write

fiẍi = ẍ + Ω·(Ω·x) + 2Ω·ẋ + Ω̇·x.

Hence deduce expressions for the centrifugal, Coriolis and Euler forces
in terms of the angular velocity bivector Ω.

3.5 Show that the inertia tensor satisfies the following properties:

linearity: I(λA + µB) = λI(A) + µI(B)
symmetry: 〈AI(B)〉 = 〈I(A)B〉.

3.6 Prove that the inertia tensor I(B) for a solid cylinder of height h and
radius a can be written

I(B) =
Mh2

12
(B − B∧e3 e3) +

Ma2

4
(B + B∧e3 e3),

where e3 is the symmetry axis.
3.7 For a torque-free symmetric top prove that the angular momentum,

viewed back in the reference copy, rotates around the symmetry axis at
an angular frequency ω, where

ω = ω3
i3 − i1

i1
.

Show that the angle between the symmetry axis and the vector l = −IL

is given by

cos(θ) =
i3ω

l
,

where l2 = l2 = LL†. Hence show that the symmetry axis rotates in
space in the L plane at an angular frequency ω′, where

ω′ =
i3ω3

i1 cos(θ)
.
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4

Foundations of geometric
algebra

In chapter 2 we introduced geometric algebra in two and three dimensions. We
now turn to a discussion of the full, axiomatic framework for geometric algebra
in arbitrary dimensions, with arbitrary signature. This will involve some dupli-
cation of material from chapter 2, but we hope that this will help reinforce some
of the key concepts. Much of the material in this chapter is of primary relevance
to those interested in the full range of applications of geometric algebra. Those
interested solely in applications to space and spacetime may want to skip some
of the material below, as both of these algebras are treated in a self-contained
manner in chapters 2 and 5 respectively. The material on frames and linear al-
gebra is important, however, and a knowledge of this is assumed for applications
in gravitation.

The fact that geometric algebra can be applied in spaces of arbitrary dimen-
sions is crucial to the claim that it is a mathematical tool of universal applica-
bility. The framework developed here will enable us to extend geometric algebra
to the study of relativistic dynamics, phase space, single and multiparticle quan-
tum theory, Lie groups and manifolds. This chapter also highlights some of the
new algebraic techniques we now have at our disposal. Many derivations can be
simplified through judicious use of the geometric product at various intermediate
steps. This is true even if the initial and final expressions contain only inner and
outer products.

Many key relations in physics involve linear mappings between one space and
another. In this chapter we also explore how geometric algebra simplifies the
rich subject of linear transformations. We start with simple mappings between
vectors in the same space and study their properties in a very general, basis-free
framework. In later chapters this framework is extended to encompass functions
between different spaces, and multilinear functions where the argument of the
function can consist of one or more multivectors.
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4.1 AXIOMATIC DEVELOPMENT

4.1 Axiomatic development

We should now have an intuitive feel for the elements of a geometric algebra
— the multivectors — and some of their multiplicative properties. The next
step is to define a set of axioms and conventions which enable us to efficiently
manipulate them. Geometric algebra can be defined using a number of axiomatic
frameworks, all of which give rise to the same final algebra. In the main we
will follow the approach first developed by Hestenes and Sobczyk and raise the
geometric product to primary status in the algebra. The properties of the inner
and outer products are then inherited from the full geometric product, and this
simplifies proofs of a number of important results.

Our starting point is the vector space from which the entire algebra will be
generated. Vectors (i.e. grade-1 multivectors) have a special status in the algebra,
as the grading of the algebra is determined by them. Three main axioms govern
the properties of the geometric product for vectors.

(i) The geometric product is associative:

a(bc) = (ab)c = abc. (4.1)

(ii) The geometric product is distributive over addition:

a(b + c) = ab + ac. (4.2)

(iii) The square of any vector is a real scalar: a2 ∈ �.

The final axiom is the key one which distinguishes a geometric algebra from a
general associative algebra. We do not force the scalar to be positive, so we can
incorporate Minkowski spacetime without modification of our axioms. Nothing
is assumed about the commutation properties of the geometric product — matrix
multiplication is one picture to keep in mind. Indeed, one can always represent
the geometric product in terms of products of suitably chosen matrices, but this
does not bring any new insights into the properties of the geometric product.

By successively multiplying together vectors we generate the complete algebra.
Elements of this algebra are called multivectors and are usually written in upper-
case italic font. The space of multivectors is linear over the real numbers, so if λ

and µ are scalars and A and B are multivectors λA + µB is also a multivector.
We only consider the algebra over the reals as most occurrences of complex
numbers in physics turn out to have a geometric origin. This geometric meaning
can be lost if we admit a scalar unit imaginary. Any multivector can be written
as a sum of geometric products of vectors. They too can be multiplied using the
geometric product and this product inherits properties (i) and (ii) above. So,
for multivectors A, B and C, we have

(AB)C = A(BC) = ABC (4.3)

85

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.006
https:/www.cambridge.org/core


FOUNDATIONS OF GEOMETRIC ALGEBRA

and

A(B + C) = AB + AC. (4.4)

If we now form the square of the vector a + b we find that

(a + b)2 = (a + b)(a + b) = a2 + ab + ba + b2. (4.5)

It follows that the symmetrised product of two vectors can be written

ab + ba = (a + b)2 − a2 − b2, (4.6)

and so must also be a scalar, by axiom (iii). We therefore define the inner
product for vectors by

a·b =
1
2
(ab + ba). (4.7)

The remaining, antisymmetric part of the geometric product is defined as the
exterior product and returns a bivector,

a∧b =
1
2
(ab − ba). (4.8)

These definitions combine to give the familiar result

ab = a·b + a∧b. (4.9)

In forming this decomposition we have defined both the inner and outer products
of vectors in terms of the geometric product. This contrasts with the common
alternative of defining the geometric product in terms of separate inner and
outer products. Some authors prefer this alternative because the (less famil-
iar) geometric product is defined in terms of more familiar objects. The main
drawback, however, is that work still remains to establish the main properties of
the geometric product. In particular, it is far from obvious that the product is
associative, which is invaluable for its use.

4.1.1 The outer product, grading and bases

In the preceding we defined the outer product of two vectors and asserted that
this returns a bivector (a grade-2 multivector). This is the key to defining the
grade operation for the entire algebra. To do this we first extend the definition of
the outer product to arbitrary numbers of vectors. The outer (exterior) product
of the vectors a1, . . . , ar is denoted by a1 ∧ a2 ∧ · · · ∧ ar and is defined as the
totally antisymmetrised sum of all geometric products:

a1∧a2∧· · ·∧ar =
1
r!

∑
(−1)εak1ak2 · · · akr

. (4.10)
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The sum runs over every permutation k1, . . . , kr of 1, . . . , r, and (−1)ε is
+1 or −1 as the permutation k1, . . . , kr is even or odd respectively. So, for
example,

a1∧a2 =
1
2!

(a1a2 − a2a1) (4.11)

as required.
The antisymmetry of the outer product ensures that it vanishes if any two

vectors are the same. It follows that the outer product vanishes if the vectors
are linearly dependent, since in this case one vector can be written as a linear
combination of the remaining vectors. The outer product therefore records the
dimensionality of the object formed from a set of vectors. This is precisely what
we mean by grade, so we define the outer product of r vectors as having grade r.
Any multivector which can be written purely as the outer product of a set of
vectors is called a blade. Any multivector can be expressed as a sum of blades,
as can be verified by introducing an explicit basis. These blades all have definite
grade and in turn define the grade or grades of the multivector.

We rarely need the full antisymmetrised expression when studying blades. In-
stead we can employ the result that every blade can be written as a geometric
product of orthogonal, anticommuting vectors. The anticommutation of orthog-
onal vectors then takes care of the antisymmetry of the product. In Euclidean
space this result is simple to prove using a form of Gram–Schmidt orthogonali-
sation. Given two vectors a and b we form

b′ = b − λa. (4.12)

We then see that

a∧(b − λa) = a∧b − λa∧a = a∧b. (4.13)

So the same bivector is obtained, whatever the value of λ (figure 4.1). The
bivector encodes an oriented plane with magnitude determined by the area.
Interchanging b and b′ changes neither the orientation nor the magnitude, so
returns the same bivector. We now form

a·b′ = a·(b − λa) = a·b − λa2. (4.14)

So if we set λ = a·b/a2 we have a·b′ = 0 and can write

a∧b = a∧b′ = ab′. (4.15)

One can continue in this manner and construct a complete set of orthogonal
vectors generating the same outer product.
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a

b′a∧b
b

Figure 4.1 The Gram–Schmidt process. The outer product a ∧ b is in-
dependent of shape of the parallelogram formed by a and b. The only
information contained in a∧ b is the oriented plane and a magnitude. The
vectors b and b′ generate the same bivector, so we can choose b′ orthogonal
to a and write a ∧ b = ab′.

An alternative form for b′ is quite revealing. We write

b′ = b − a−1a·b
= a−1(ab − a·b)
= a−1(a∧b). (4.16)

This shows that b′ is formed by rotating a through 90◦ in the a ∧ b plane, and
dilating by the appropriate amount. The algebraic form also makes it clear why
ab′ = a ∧ b, and gives a formula that extends simply to higher grades.

The above argument is fine for Euclidean space, but breaks down for spaces of
mixed signature. The inverse a−1 = a/a2 is not defined when a is null (a2 = 0),
so an alternative procedure is required. Fortunately this is a relatively straight-
forward exercise. We start with the set of r independent vectors a1, . . . , ar and
form the r × r symmetric matrix

Mij = ai ·aj . (4.17)

The symmetry of this matrix ensures that it can always be diagonalised with an
orthogonal matrix Rij ,

RikMklR
t
lj = RikRjlMkl = Λij . (4.18)

Here Λij is diagonal and, unless stated otherwise, the summation convention is
employed. The matrix Rij defines a new set of vectors via

ei = Rijaj . (4.19)

These satisfy

ei ·ej = (Rikak)·(Rjlal)

= RikRjlMkl

= Λij . (4.20)
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4.1 AXIOMATIC DEVELOPMENT

The vectors e1, . . . , er are therefore orthogonal and hence all anticommute. Their
geometric product is therefore totally antisymmetric, and we have

e1e2 · · · er = e1∧· · ·∧er

= (R1iai)∧· · · (Rrkak)

= det (Rij) a1∧a2∧· · ·∧ar. (4.21)

The determinant appears here because of the total antisymmetry of the expres-
sion (see section 4.5.2). But since Rij is an orthogonal matrix it has determinant
±1, and by choosing the order of the {ei} vectors appropriately we can set the
determinant of Rij to 1. This ensures that we can always find a set of vectors
such that

a1∧a2∧· · ·∧ar = e1e2 · · · er. (4.22)

This result will simplify the proofs of a number of results in this chapter.
For a given vector space, an orthonormal frame {ei}, i = 1, . . . , n provides a

natural way to view the entire geometric algebra. We denote this algebra Gn.
Most of the results derived in this chapter are independent of signature, so in the
following we let Gn denote the geometric algebra of a space of dimension n with
arbitrary (non-degenerate) signature. One can also consider the degenerate case
where some of the basis vectors are null, though we will not need such algebras
in this book. The basis vectors build up to form a basis for the entire algebra as

1, ei, eiej (i < j), eiejek (i < j < k), . . . . (4.23)

The fact that the basis vectors anticommute ensures that each product in the
basis set is totally antisymmetric. The product of r distinct basis vectors is
then, by definition, a grade-r multivector. The basis (4.23) therefore naturally
defines a basis for each of the grade-r subspaces of Gn. We denote each of these
subspaces by Gr

n. The size of each subspace is given by the number of distinct
combinations of r objects from a set of n. (The order is irrelevant, because of
the total antisymmetry.) These are given by the binomial coefficients, so

dim
(
Gr

n

)
=
(

n

r

)
. (4.24)

For example, we have already seen that in two dimensions the algebra contains
terms of grade 0, 1, 2 with each space having dimension 1, 2, 1 respectively. Simi-
larly in three dimensions the separate graded subspaces have dimension 1, 3, 3, 1.
The binomial coefficients always exhibit a mirror symmetry between the r and
n − r terms. This gives rise to the notion of duality, which is explained in sec-
tion 4.1.4 where we explore the properties of the highest grade element of the
algebra — the pseudoscalar.
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The total dimension of the algebra is

dim
(
Gn

)
=

n∑
r=0

dim
(
Gr

n

)
=

n∑
r=0

(
n

r

)
= (1 + 1)n = 2n. (4.25)

One can see that the total size of the algebra quickly becomes very large. If
one wanted to find a matrix representation of the algebra, the matrices would
have to be of the order of 2n/2 × 2n/2. For all but the lowest values of n these
matrices become totally impractical for computations. This is one reason why
matrix representations do not help much with understanding and using geometric
algebra.

We have now defined the grade operation for our linear space Gn. An arbitrary
multivector A can be decomposed into a sum of pure grade terms

A = 〈A〉0 + 〈A〉1 + · · · =
∑

r

〈A〉r. (4.26)

The operator 〈 〉r projects onto the grade-r terms in the argument, so 〈A〉r
returns the grade-r components in A. Multivectors containing terms of only one
grade are called homogeneous. They are often written as Ar, so

〈Ar〉r = Ar. (4.27)

Take care not to confuse the grading subscript in Ar with frame indices in expres-
sions like {ek}. The context should always make clear which is intended. The
grade-0 terms in Gn are the real scalars and commute with all other elements.
We continue to employ the useful abbreviation

〈A〉 = 〈A〉0 (4.28)

for the operation of taking the scalar part.
An important feature of a geometric algebra is that not all homogeneous mul-

tivectors are pure blades. This is confusing at first, because we have to go to four
dimensions before we reach our first counterexample. Suppose that {e1, . . . , e4}
form an orthonormal basis for the Euclidean algebra G4. There are six inde-
pendent basis bivectors in this algebra, and from these we can construct terms
like

B = αe1∧e2 + βe3∧e4, (4.29)

where α and β are scalars. B is a pure bivector, so is homogeneous, but it cannot
be reduced to a blade. That is, we cannot find two vectors a and b such that
B = a∧ b. The reason is that e1 ∧ e2 and e3 ∧ e4 do not share a common vector.
This is not possible in three dimensions, because any two planes with a common
origin share a common line. A four-dimensional bivector like B is therefore hard
for us to visualise. There is a way to visualise B in three dimensions, however,
and it is provided by projective geometry. This is described in chapter 10.
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4.1 AXIOMATIC DEVELOPMENT

4.1.2 Further properties of the geometric product

The decomposition of the geometric product of two vectors into a scalar term
and a bivector term has a natural extension to general multivectors. To establish
the results of this section we make repeated use of the formula

ab = 2a·b − ba (4.30)

which we use to reorder expressions. As a first example, consider the case of a
geometric product of vectors. We find that

aa1a2 · · · ar = 2a·a1 a2 · · · ar − a1aa2 · · · ar

= 2a·a1 a2 · · · ar − 2a·a2 a1a3 · · · ar + a1a2aa3 · · · ar

= 2
r∑

k=1

(−1)k+1a·ak a1a2 · · · ǎk · · · ar + (−1)ra1a2 · · · ara, (4.31)

where the check on ǎk denotes that this term is missing from the series. We
continue to follow the conventions introduced in chapter 2 so, in the absence
of brackets, inner products are performed before outer products, and both are
performed before geometric products.

Suppose now that the vectors a1, . . . , ar are replaced by a set of anticommuting
vectors e1, . . . , er. We find that

1
2

(
ae1e2 · · · er − (−1)re1e2 · · · era

)
=

r∑
k=1

(−1)k+1a·ek e1e2 · · · ěk · · · er. (4.32)

The right-hand side contains a sum of terms formed from the product of r − 1
anticommuting vectors, so has grade r−1. Since any grade-r multivector can be
written as a sum of terms formed from anticommuting vectors, the combination
on the left-hand side will always return a multivector of grade r−1. We therefore
define the inner product between a vector a and a grade-r multivector Ar by

a·Ar =
1
2

(
aAr − (−1)rAra

)
. (4.33)

The inner product of a vector and a grade-r multivector results in a multivector
with grade reduced by one.

The main work of this section is in establishing the properties of the remaining
part of the product aAr. For the case where Ar is a vector, the remaining term
is the antisymmetric product, and so is a bivector. This turns out to be true
in general — the remaining part of the geometric product returns the exterior
product,

1
2

(
a(a1∧a2∧· · ·∧ar) + (−1)r(a1∧a2∧· · ·∧ar)a

)
= a∧a1∧a2∧· · ·∧ar. (4.34)

We will prove this important result by induction. First, we write the blade as a
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geometric product of anticommuting vectors, so that the result we will establish
becomes

1
2

(
ae1e2 · · · er + (−1)re1e2 · · · era

)
= a∧e1∧e2∧· · ·∧er. (4.35)

For r = 1 the result is true as the right-hand side defines the bivector a∧e1. For
r > 1 we proceed by writing

a∧e1∧e2∧· · ·∧er =
1

r + 1
ae1e2 · · · er

+
1

r + 1

r∑
k=1

(−1)kek(a∧e1∧· · ·∧ěk∧· · ·∧er). (4.36)

This result is easily established by writing out all terms in the full antisymmetric
product and gathering together the terms which start with the same vector. Next
we assume that equation (4.35) holds for the case of an r − 1 blade, and expand
the term inside the sum as follows:

r∑
k=1

(−1)kek(a∧e1∧· · ·∧ěk∧· · ·∧er)

=
1
2

r∑
k=1

(−1)kek

(
ae1 · · · ěk · · · er + (−1)r−1e1 · · · ěk · · · era

)

=
1
2

r∑
k=1

(−1)kekae1 · · · ěk · · · er +
r

2
(−1)re1 · · · era

=
r∑

k=1

(−1)k(ek ·a)e1 · · · ěk · · · er +
r

2

(
ae1 · · · er + (−1)re1 · · · era

)

=
r − 1

2
ae1 · · · er +

r + 1
2

(−1)re1 · · · era, (4.37)

where we have used equation (4.32). Substituting this result into equation (4.36)
then proves equation (4.35) for a grade-r blade, assuming it is true for a blade
of grade r − 1. Since the result is already established for r = 1, equation (4.34)
holds for all blades and hence all multivectors.

We extend the definition of the wedge symbol by writing

a∧Ar =
1
2

(
aAr + (−1)rAra

)
. (4.38)

With this definition we now have

aAr = a·Ar + a∧Ar, (4.39)

which extends the decomposition of the geometric product in precisely the de-
sired way. In equation (4.38) one can see how the geometric product can simplify
many calculations. The left-hand side would, in general, require totally antisym-
metrising all possible products. But the right-hand side only requires evaluating
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4.1 AXIOMATIC DEVELOPMENT

two products — an enormous saving! As we have established the grades of the
separate inner and outer products, we also have

aAr = 〈aAr〉r−1 + 〈aAr〉r+1, (4.40)

where

a·Ar = 〈aAr〉r−1, a∧Ar = 〈aAr〉r+1. (4.41)

So, as expected, multiplication by a vector raises and lowers the grade of a
multivector by 1.

A homogeneous multivector can be written as a sum of blades, and each blade
can be written as a geometric product of anticommuting vectors. Applying the
preceding decomposition, we establish that the product of two homogeneous
multivectors decomposes as

ArBs = 〈ArBs〉|r−s| + 〈ArBs〉|r−s|+2 + · · · + 〈ArBs〉r+s. (4.42)

We retain the · and ∧ symbols for the lowest and highest grade terms in this
series:

Ar ·Bs = 〈ArBs〉|r−s|,

Ar∧Bs = 〈ArBs〉r+s.
(4.43)

This is the most general use of the wedge symbol, and is consistent with the
earlier definition as the antisymmetrised product of a set of vectors. We can
check that the outer product is associative by forming

(Ar∧Bs)∧Ct = 〈ArBs〉r+s∧Ct = 〈(ArBs)Ct〉r+s+t. (4.44)

Associativity of the outer product then follows from the fact that the geometric
product is associative:

〈(ArBs)Ct〉r+s+t = 〈ArBsCt〉r+s+t = Ar∧Bs∧Ct. (4.45)

In equation (4.32) we established a formula for the result for the inner product
of a vector and a blade formed from orthogonal vectors. We now extend this to
a more general result that is extremely useful in practice. We start by writing

a·(a1∧a2∧· · ·∧ar) = a·〈a1a2 · · · ar〉r, (4.46)

where a1, . . . , ar are a general set of vectors. The geometric product a1a2 · · · ar

can only contain terms of grade r, r − 2, . . . , so

1
2

(
aa1a2 · · · ar − (−1)ra1a2 · · · ara

)
= a·〈a1a2 · · · ar〉r + a·〈a1a2 · · · ar〉r−2 + · · · . (4.47)

The term we are after is the r − 1 grade part, so we have

a·(a1∧a2∧· · ·∧ar) =
1
2
〈aa1a2 · · · ar − (−1)ra1a2 · · · ara〉r−1. (4.48)
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We can now apply equation (4.31) inside the grade projection operator to form

a·(a1∧a2∧· · ·∧ar) =
r∑

k=1

(−1)k+1a·ak〈a1 · · · ǎk · · · ar〉r−1

=
r∑

k=1

(−1)k+1a·ak a1∧· · ·∧ǎk∧· · ·∧ar. (4.49)

The first two cases illustrate how the general formula behaves:

a·(a1∧a2) = a·a1 a2 − a·a2 a1,

a·(a1∧a2∧a3) = a·a1 a2∧a3 − a·a2 a1∧a3 + a·a3 a1∧a2.
(4.50)

The first case was established in chapter 2, where it was used to replace the
formula for the double cross product of vectors in three dimensions.

4.1.3 The reverse, the scalar and the commutator product

Now that the grading is established, we can establish some general properties of
the reversion operator, which was first introduced in chapter 2. The reverse of a
product of vectors is defined by

(ab · · · c)† = c · · · ba. (4.51)

For a blade the reverse can be formed by a series of swaps of anticommuting
vectors, each resulting in a minus sign. The first vector has to swap past r − 1
vectors, the second past r − 2, and so on. This demonstrates that

A†
r = (−1)r(r−1)/2Ar. (4.52)

If we now consider the scalar part of a geometric product of two grade-r multi-
vectors we find that

〈ArBr〉 = 〈ArBr〉† = 〈B†
rA

†
r〉 = (−1)r(r−1)〈BrAr〉 = 〈BrAr〉, (4.53)

so, for general A and B,

〈AB〉 = 〈BA〉. (4.54)

It follows that

〈A · · ·BC〉 = 〈CA · · ·B〉. (4.55)

This cyclic reordering property is frequently useful for manipulating expressions.
The product in equation (4.54) is sometimes given the symbol ∗, so we write

A∗B = 〈AB〉. (4.56)
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A further product of considerable importance in geometric algebra is the com-
mutator product of two multivectors. This is denoted with a cross, ×, and is
defined by

A×B =
1
2
(AB − BA). (4.57)

Care must be taken to include the factor of one-half, which is different to the
standard commutator of two operators in quantum mechanics. The commutator
product satisfies the Jacobi identity

A×(B×C) + B×(C×A) + C×(A×B) = 0, (4.58)

which is easily seen by expanding out the products.
The commutator arises most frequently in equations involving bivectors. Given

a bivector B and a vector a we have

B×a =
1
2
(Ba − aB) = B ·a, (4.59)

which therefore results in a second vector. Now consider the product of a bivector
and a blade formed from anticommuting vectors. We have

B(e1e2 · · · er) = 2(B×e1)e2 · · · er + e1Be2 · · · er

= 2(B×e1)e2 · · · er + · · · + 2e1 · · · (B×er) + e1e2 · · · erB. (4.60)

It follows that

B×(e1e2 · · · er) =
r∑

i=1

e1 · · · (B ·ei) · · · er. (4.61)

The sum involves a series of terms which can only contain grades r and r − 2.
But if we form the reverse of the commutator product between a bivector and a
homogeneous multivector, we find that

(B×Ar)† =
1
2
(BAr − ArB)†

=
1
2
(−A†

rB + BA†
r)

= (−1)r(r−1)/2B×Ar. (4.62)

It follows that B × Ar has the same properties under reversion as Ar. But
multivectors of grade r and r − 2 always behave differently under reversion.
The commutator product in equation (4.61) must therefore result in a grade-r
multivector. Since this is true of any grade-r basis element, it must be true of
any homogeneous multivector. That is,

B×Ar = 〈B×Ar〉r. (4.63)

The commutator of a multivector with a bivector therefore preserves the grade
of the multivector. Furthermore, the commutator of two bivectors must result
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in a third bivector. This is the basis for incorporating the theory of Lie groups
into geometric algebra.

A similar argument to the preceding one shows that the symmetric product
with a bivector must raise or lower the grade by 2. We can summarise this by
writing

BAr = 〈BAr〉r−2 + 〈BAr〉r + 〈BAr〉r+2

= B ·Ar + B×Ar + B∧Ar, (4.64)

where
1
2
(BAr − ArB) = B×Ar (4.65)

and
1
2
(BAr + ArB) = B ·Ar + B∧Ar. (4.66)

It is assumed in these formulae that Ar has grade r > 1.

4.1.4 Pseudoscalars and duality

The exterior product of n vectors defines a grade-n blade. For a given vector
space the highest grade element is unique, up to a magnitude. The outer product
of n vectors is therefore a multiple of the unique pseudoscalar for Gn. This is
denoted I, and has two important properties. The first is that I is normalised
to

|I2| = 1. (4.67)

The sign of I2 depends on the size of space and the signature. It turns out that
the pseudoscalar squares to −1 for the three algebras of most use in this book
— those of the Euclidean plane and space, and of spacetime. But this is in no
way a general property.

The second property of the pseudoscalar I is that it defines an orientation.
For any ordered set of n vectors, their outer product will either have the same
sign as I, or the opposite sign. Those with the same sign are assigned a positive
orientation, and those with opposite sign have a negative orientation. The ori-
entation is swapped by interchanging any pair of vectors. In three dimensions
we always choose the pseudoscalar I such that it has the orientation specified by
a right-handed set of vectors. In other spaces one just asserts a choice of I and
then sticks to that choice consistently.

The product of the grade-n pseudoscalar I with a grade-r multivector Ar is
a grade n − r multivector. This operation is called a duality transformation. If
Ar is a blade, IAr returns the orthogonal complement of Ar. That is, the blade
formed from the space of vectors not contained in Ar. It is clear why this has
grade n − r. Every blade acts as a pseudoscalar for the space spanned by its
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4.2 ROTATIONS AND REFLECTIONS

generating vectors. So, even if we are working in three dimensions, we can treat
the bivector e1e2 as a pseudoscalar for any manipulation taking place entirely in
the e1e2 plane. This is often a very helpful idea.

In spaces of odd dimension, I commutes with all vectors and so commutes with
all multivectors. In spaces of even dimension, I anticommutes with vectors and
so anticommutes with all odd-grade multivectors. In all cases the pseudoscalar
commutes with all even-grade multivectors in its algebra. We summarise this by

IAr = (−1)r(n−1)ArI. (4.68)

An important use of the pseudoscalar is for interchanging inner and outer prod-
ucts. For example, we have

a·(ArI) =
1
2

(
aArI − (−1)n−rArIa

)
=

1
2

(
aArI − (−1)n−r(−1)n−1AraI

)
=

1
2

(
aAr + (−1)rAra

)
I

= a∧Ar I. (4.69)

More generally, we can take two multivectors Ar and Bs, with r + s ≤ n, and
form

Ar ·(BsI) = 〈ArBsI〉|r−(n−s)|

= 〈ArBsI〉n−(r+s)

= 〈ArBs〉r+sI

= Ar∧Bs I. (4.70)

This type of interchange is very common in applications. Note how simple this
proof is made by the application of the geometric product in the intermediate
steps.

4.2 Rotations and reflections

In chapter 2 we showed that in three dimensions a reflection in the plane per-
pendicular to the unit vector n is performed by

a 
→ a′ = −nan. (4.71)

This formula holds in arbitrary numbers of dimensions. Provided n2 = 1, we see
that n is transformed to

n 
→ −nnn = −n, (4.72)

whereas any vector a⊥ perpendicular to n is mapped to

a⊥ 
→ −na⊥n = a⊥nn = a⊥. (4.73)
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So, for a vector a, the component parallel to n has its sign reversed, whereas
the component perpendicular to n is unchanged. This is what we mean by a
reflection in the hyperplane perpendicular to n.

Two successive reflections in the hyperplanes perpendicular to m and n result
in a rotation in the m ∧ n plane. This is encoded in the rotor

R = nm = exp(−B̂θ/2) (4.74)

where

cos(θ/2) = n·m, B̂ =
m∧n

sin(θ/2)
. (4.75)

The rotor R generates a rotation through the by now familiar formula

a 
→ a′ = RaR†. (4.76)

Rotations form a group, as the result of combining two rotations is a third
rotation. The same must therefore be true of rotors. Suppose that R1 and R2

generate two distinct rotations. The combined rotations take a to

a 
→ R2(R1aR†
1)R

†
2 = R2R1aR†

1R
†
2. (4.77)

We therefore define the product rotor

R = R2R1, (4.78)

so that the result of the composite rotation is described by RaR†, as usual. The
product R is a new rotor, and in general it will consist of geometric products of
an even number of unit vectors,

R = lk · · ·nm. (4.79)

We will adopt this as our definition of a rotor. The reversed rotor is

R† = mn · · · kl. (4.80)

The result of the map a 
→ RaR† returns a vector for any vector a, since

RaR† = lk · · ·
(
n(mam)n

)
· · · kl (4.81)

and each successive sandwich between a vector returns a new vector.
We can immediately establish the normalisation condition

RR† = lk · · ·nmmn · · · kl = 1 = R†R. (4.82)

In Euclidean spaces, where every vector has a positive square, this normalisation
is automatic. In mixed signature spaces, like Minkowski spacetime, unit vectors
can have n2 = ±1. In this case the condition RR† = 1 is taken as a further
condition satisfied by a rotor. In the case where R is the product of two rotors
we can easily confirm that

RR† = R2R1(R2R1)† = R2R1R
†
1R

†
2 = 1. (4.83)
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The set of rotors therefore forms a group, called a rotor group. This is similar to
the group of rotation matrices, though not identical due to the two-to-one map
between rotors and rotation matrices. We will have more to say about the group
properties of rotors in chapter 11.

In Euclidean spaces every rotor can be written as the exponential of a bivector,

R = exp(−B/2). (4.84)

The bivector B defines the plane or planes in which the rotation takes place.
The sign ensures that the rotation has the orientation defined by B. In mixed
signature spaces one can always write a rotor as ± exp(B). In either case the
effect of the rotor R on the vector a is

a 
→ exp(−B/2)a exp(B/2). (4.85)

We can prove that the right-hand side always returns a vector by considering a
Taylor expansion of

a(λ) = exp(−λB/2)a exp(λB/2). (4.86)

Differentiating the expression on the right produces the power series expansion

a(λ) = a + λa·B +
λ2

2!
(a·B)·B + · · · . (4.87)

Since the inner product of a vector and a bivector always results in a new vector,
each term in this expansion is a vector. Setting λ = 1 then demonstrates that
equation (4.85) results in a new vector, defined by

exp(−B/2)a exp(B/2) = a + a·B +
1
2!

(a·B)·B + · · · . (4.88)

4.2.1 Multivector transformations

Suppose now that every vector in a blade undergoes the same rotation. This is
the sort of transformation implied if a plane or volume element is to be rotated.
The r-blade Ar can be written

Ar = a1 ∧ · · · ∧ ar =
1
r!

∑
(−1)εak1ak2 · · · akr

, (4.89)

with the sum running over all permutations. If each vector in a geometric product
is rotated, the result is the multivector

(Ra1R
†)(Ra2R

†) · · · (RarR
†) = Ra1R

†Ra2R
† · · ·RarR

†

= Ra1a2 · · · arR
†. (4.90)

This holds for each term in the antisymmetrised sum, so the transformation law
for the blade Ar is simply

Ar 
→ A′
r = RArR

†. (4.91)
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FOUNDATIONS OF GEOMETRIC ALGEBRA

Blades transform with the same simple law as vectors! All multivectors share
the same transformation law regardless of grade when each component vector
is rotated. This is one reason why the rotor formulation is so powerful. The
alternative, tensor form would require an extra matrix for each additional vector.

4.3 Bases, frames and components

Any set of linearly independent vectors form a basis for the vectors in a geometric
algebra. Such a set is often referred to as a frame. Repeated use of the outer
product then builds up a basis for the entire algebra. In this section we use the
symbols e1, . . . , en or {ek} to denote a frame for n-dimensional space. We do not
restrict the frame to be orthonormal, so the {ek} do not necessarily anticommute.
The reason for the change of font for frame vectors, as opposed to general sets of
vectors, is that use of frames nearly always implies reference to coordinates. It
is natural write the coordinates of the vector a as ai or ai so, to avoid confusion
with a set of vectors, we write the frame vectors in a different font.

The volume element for the {ek} frame is defined by

En ≡ e1∧e2∧· · ·∧en. (4.92)

The grade-n multivector En is a multiple of the pseudoscalar for the space
spanned by the {ek}. The fact that the vectors are independent guarantees
that En 	= 0. Associated with any arbitrary frame is a reciprocal frame {ek}
defined by the property

ei ·ej = δi
j , ∀i, j = 1 . . . n. (4.93)

The ‘Kronecker δ’, δi
j , has value +1 if i = j and is zero otherwise. The reciprocal

frame is constructed as follows:

ej = (−1)j−1e1∧e2∧· · ·∧ěj∧· · ·∧en E−1
n , (4.94)

where as usual the check on ěj denotes that this term is missing from the ex-
pression. The formula for ej has a simple interpretation. The vector ej must
be perpendicular to all the vectors {ei, i 	= j }. To find this we form the exte-
rior product of the n − 1 vectors {ei, i 	= j}. The dual of this returns a vector
perpendicular to all vectors in the subspace, and this duality is achieved by the
factor of En. All that remains is to fix up the normalisation. For this we recall
the duality results of section 4.1.4 and form

e1 ·e1 = e1 ·(e2∧· · ·∧en E−1
n ) = (e1∧e2∧· · ·∧en)E−1

n = 1. (4.95)

This confirms that the formula for the reciprocal frame is correct.
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4.3 BASES, FRAMES AND COMPONENTS

e1

e2

e3

e3

e1∧e2

Figure 4.2 The reciprocal frame. The vectors e1, e2 and e3 form a non-
orthonormal frame for three-dimensional space. The vector e3 is formed
by constructing the e1 ∧ e2 plane, and forming the vector perpendicular to
this plane. The length is fixed by demanding e3 ·e3 = 1.

4.3.1 Application — crystallography

An important application of the formula for a reciprocal frame is in crystal-
lography. If a crystal contains some repeated structure defined by the vectors
e1, e2, e3, then constructive interference occurs for wavevectors whose difference
satisfies

∆k = 2π(n1e
1 + n2e

2 + n3e
3), (4.96)

where n1, n2, n3 are integers. The reciprocal frame is defined by

e1 =
e2∧e3

e1∧e2∧e3
, e2 =

e3∧e1

e1∧e2∧e3
, e3 =

e1∧e2

e1∧e2∧e3
. (4.97)

If we write

e1∧e2∧e3 = [e1, e2, e3]I, (4.98)

where I is the three-dimensional pseudoscalar and [e1, e2, e3] denotes the scalar
triple product, we arrive at the standard formula

e1 =
(e2∧e3)I−1

[e1, e2, e3]
=

e2×e3

[e1, e2, e3]
, (4.99)

with similar results holding for e2 and e3. Here the bold cross × denotes the vec-
tor cross product, not to be confused with the commutator product. Figure 4.2
illustrates the geometry involved in defining the reciprocal frame.

4.3.2 Components

The basis vectors {ek} are linearly independent, so any vector a can be written
uniquely in terms of this set as

a = aiei = aie
i. (4.100)
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FOUNDATIONS OF GEOMETRIC ALGEBRA

We continue to employ the summation convention and summed indices appear
once as a superscript and once as a subscript. The set of scalars (a1, . . . , an) are
the components of the vector a in the {ek} frame. To find the components we
form

a·ei = ajej ·ei = ajδi
j = ai (4.101)

and

a·ei = aje
j ·ei = ajδ

j
i = ai. (4.102)

These formulae explain the labelling scheme for the components. In many ap-
plications we are only interested in orthonormal frames in Euclidean space. In
this case the frame and its reciprocal are equivalent, and there is no need for
the distinct subscript and superscript indices. The notation is unavoidable in
mixed signature spaces, however, and is very useful in differential geometry, so
it is best to adopt it at the outset.

Combining the equations (4.100), (4.101) and (4.102) we see that

a·ei ei = a·ei ei = a. (4.103)

This holds for any vector a in the space spanned by the {ek}. This result
generalises simply to arbitrary multivectors. First, for the bivector a∧b we have

ei ei ·(a∧b) = ei ei ·a b − ei ei ·b a = ab − ba = 2a∧b. (4.104)

This extends for an arbitrary grade-r multivector Ar to give

ei ei ·Ar = rAr. (4.105)

Since eie
i = n, we also see that

ei ei∧Ar = ei(eiAr − ei ·Ar) = (n − r)Ar. (4.106)

Subtracting the two preceding results we obtain,

eiAre
i = (−1)r(n − 2r)Ar. (4.107)

The {ek} basis extends easily to provide a basis for the entire algebra generated
by the basis vectors. We can then decompose any multivector A into a set of
components through

Ai···jk = 〈(ek∧ej · · ·∧ei)A〉. (4.108)

and

A =
∑

i<j···<k

Aij···kei∧· · ·∧ej∧ek. (4.109)

The components Aij···k are totally antisymmetric on all indices and are usually
referred to as the components of an antisymmetric tensor. We shall have more
to say about tensors in following sections.
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4.3.3 Application — recovering a rotor

As an application of the preceding results, suppose that we have two sets of
vectors in three dimensions {ek} and {fk}, k = 1, 2, 3. The vectors need not
be orthonormal, but we know that the two sets are related by a rotation. The
rotation is governed by the formula

fk = RekR† (4.110)

and we seek a simple expression for the rotor R. In three dimensions the rotor
R can be written as

R = exp(−B/2) = α − βB, (4.111)

where

α = cos(|B|/2), β =
sin(|B|/2)

|B| . (4.112)

The reverse is

R† = exp(B/2) = α + βB. (4.113)

We therefore find that

ekR†ek = ek(α + βB)ek

= 3α − βB

= 4α − R†. (4.114)

We now form

fkek = RekR†ek = 4αR − 1. (4.115)

It follows that R is a scalar multiple of 1 + fkek. We therefore establish the
simple formula

R =
1 + fkek

|1 + fkek| =
ψ

√
(ψψ̃)

, (4.116)

where ψ = 1 + fkek. This compact formula recovers the rotor directly from
the frame vectors. A problem arises if the rotation is through precisely 180◦, in
which case ψ vanishes. This case can be dealt with simply enough by considering
the image of two of the three vectors.

4.4 Linear algebra

Many key relations in physics involve linear mappings between two, sometimes
different, spaces. These are the subject of tensor analysis in the standard litera-
ture. Examples include the stress and strain tensors of elasticity, the conductivity
tensor of electromagnetism and the inertia tensor of dynamics. If one has only
met the study of linear transformations through tensor analysis, one could be
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FOUNDATIONS OF GEOMETRIC ALGEBRA

forgiven for thinking that the subject cannot be discussed without a large dose
of index notation. The indices refer to components of tensors in some frame,
though the essence of tensor analysis is to establish a set of results which are
independent of the choice of frame. In our opinion, this subject is much more
simply dealt with if one can avoid specifying a frame until it is absolutely neces-
sary. Perhaps unsurprisingly, it is geometric algebra that provides precisely the
tools necessary to achieve such a development.

In this section we use capital, sans-serif symbols for linear functions. This helps
to distinguish functions from their multivector argument. The dimension and
signature of the vector space is arbitrary unless otherwise specified. We assume
that readers are familiar with the basic properties of linear transformations in
the guise of matrices. Suppose, then, that we are interested in a quantity F

which maps vectors to vectors linearly in the same space. That is, if a is a vector
in the space acted on by F, then F(a) lies in the same space. The linearity of F

is expressed by

F(λa + µb) = λF(a) + µF(b), (4.117)

for scalars λ and µ and vectors a and b. Geometrically, we can think of F as an
instruction to take a vector and rotate/dilate it to a new vector. No frame or
components are required for such a picture. A simple example is provided by a
rotation, which can be written as

R(a) = RaR†, (4.118)

where R is a rotor. It is a simple matter to confirm that this map is linear.

4.4.1 Extension to multivectors

Once one has formulated the action of a linear function on a vector, the obvious
next step is to let the function act on a multivector. In this way we extend the
action of a linear function to the full geometric algebra defined by the underlying
vector space. Suppose that two vectors a and b are acted on by the linear
function F. The bivector a ∧ b then transforms to F(a) ∧ F(b). We take this as
the definition for the action of F on a bivector blade:

F(a∧b) = F(a)∧F(b). (4.119)

Since the right-hand side is the outer product of two vectors, it is also a bivector
blade (see figure 4.3). The action on sums of blades is defined by the linearity
of F:

F(a∧b + c∧d) = F(a∧b) + F(c∧d). (4.120)

Continuing in this manner, we define the action of F on an arbitrary blade by

F(a∧b∧· · ·∧c) = F(a)∧F(b)∧· · ·∧F(c). (4.121)
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a

b
a∧b

F(a)

F(b)

F(a∧b)

Figure 4.3 The extended linear function. The action of F on the bivector
a∧ b results in the new plane F(a)∧ F(b). This is the definition of F(a∧ b).

Extension by linearity then defines the action of F on arbitrary multivectors. By
construction, F is both linear over multivectors,

F(λA + µB) = λF(A) + µF(B), (4.122)

and grade-preserving,

F(Ar) = 〈F(Ar)〉r, (4.123)

where Ar is a grade-r multivector. A simple example is provided by rotations.
We have already established a formula for the result of rotating all of the vectors
in a blade. For the extension of a rotation we therefore have

R(a∧b∧· · ·∧c) = (RaR†)∧(RbR†)∧· · ·∧(RcR†)

= R a∧b∧· · ·∧cR†. (4.124)

It follows that acting on an arbitrary multivector A we have

R(A) = RAR†. (4.125)

Again, it is simple to confirm that this has the expected properties.

4.4.2 The product

The product of two linear functions is formed by letting a second function act
on the result of the first function. Thus the action of the product of F and G is
defined by

(FG)(a) = F
(
G(a)

)
= FG(a). (4.126)

The final expression enables us to remove some brackets without any ambiguity.
A price to pay for removing indices is that brackets are often required to show
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how calculations are ordered. Any convention that enables brackets to be sys-
tematically dropped is then well worth adopting. It is straightforward to show
that FG is a linear function if F and G are both linear:

FG(λa + µb) = F(λG(a) + µG(b)) = λFG(a) + µFG(b). (4.127)

Next we form the extension of a product function. Suppose that H is given by
the product of F and G:

H(a) = F
(
G(a)

)
= FG(a). (4.128)

It follows that

H(a∧b∧· · ·∧c) = F
(
G(a)

)
∧F
(
G(b)

)
∧· · ·∧F

(
G(c)

)
= F

(
G(a)∧G(b)∧· · ·∧G(c)

)
= F

(
G(a∧b∧· · ·∧c)

)
, (4.129)

so the multilinear action of the product of two linear functions is the product of
their exterior actions. In dealing with combinations of linear functions we can
therefore write

H(A) = FG(A), (4.130)

since the meaning of the right-hand side is unambiguous.

4.4.3 The adjoint

Given a linear function F, the adjoint, or transpose, F̄ is defined so that

a·F̄(b) = F(a)·b, (4.131)

for all vectors a and b. If F is a mapping from one vector space to another, then
the adjoint function maps from the second space back to the first. In terms of
an arbitrary frame {ek} we have

ei ·F̄(a) = a·F(ei), (4.132)

so we can construct the adjoint using

ad(F)(a) = F̄(a) = ei a·F(ei). (4.133)

The notation of a bar for the adjoint, rather than a superscript T or †, is slightly
unconventional, though it does agree with that of Hestenes & Sobczyk (1984).
The notation is very useful in handwritten work, where it is also convenient to
denote the linear function with an underline. Some formulae relating functions
and their adjoints have a neat symmetry when this overbar/underbar convention
is followed.
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The operation of taking the adjoint of the adjoint of a function returns the
original function. This is verified by forming

ad(F̄)(a) = eia·F̄(ei) = ei ei ·F(a) = F(a). (4.134)

The adjoint of a product of two functions is found as follows:

ad(FG)(a) = ei a·FG(ei) = F̄(a)·G(ei) ei

= ḠF̄(a)·ei ei = ḠF̄(a). (4.135)

The operation of taking the adjoint of a product therefore reverses the order
in which the linear functions act. A symmetric function is one which is equal
to its own adjoint, F̄ = F. Two particularly significant examples of symmetric
functions are the functions FF̄ and F̄F. To verify that these are symmetric we
form

ad(FF̄) = ad(F̄)ad(F) = FF̄, (4.136)

with a similar derivation holding for F̄F. These functions will be met again later
in this chapter.

The adjoint is still a linear function, so its extension to arbitrary multivectors
is precisely as expected:

F̄(a∧b∧· · ·∧c) = F̄(a)∧F̄(b)∧· · ·∧F̄(c). (4.137)

If we now consider two bivectors a1 ∧ a2 and b1 ∧ b2, we find that

(a1∧a2)·F(b1∧b2) = a1 ·F(b2) a2 ·F(b1) − a1 ·F(b1) a2 ·F(b2)

= F̄(a1)·b2 F̄(a2)·b1 − F̄(a1)·b1 F̄(a2)·b2

= F̄(a1∧a2)·(b1∧b2). (4.138)

It follows that for two bivectors B1 and B2

B1 ·F̄(B2) = F(B1)·B2. (4.139)

This result extends for arbitrary multivectors to give

〈AF̄(B)〉 = 〈F(A)B〉. (4.140)

This is a special case of an even more general and powerful result. Consider the
expression

F(a∧b)·c = F(a)F(b)·c − F(b)F(a)·c
= F

(
a b·F̄(c) − b a·F̄(c)

)
= F

(
(a∧b)·F̄(c)

)
. (4.141)

Building up in this way we establish the useful results:

Ar ·F̄(Bs) = F̄
(
F(Ar)·Bs

)
r ≤ s,

F(Ar)·Bs = F
(
Ar ·F̄(Bs)

)
r ≥ s.

(4.142)
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e1

e2

e3

F(e1)

F(e2)F(e3)

F

Figure 4.4 The determinant. The unit cube is transformed to a par-
allelepiped with sides F(e1), F(e2) and F(e3). The determinant is the
volume scale factor, so is given by the volume of the parallelepiped,
F(e1)∧F(e2)∧F(e3) = F(I).

These reduce to equation (4.140) in the case when r = s. One way to think
of these formulae is as follows. In the expression F(Ar) · Bs, with r ≥ s, there
are r separate applications of the function F on vectors. When the result is
contracted with Bs, s of these applications are converted to adjoint functions F̄.
The remaining r − s applications act on the multivector Ar · F̄(Bs), which has
grade r − s.

4.4.4 The determinant

Now that we have seen how a linear function defines an action on the entire
geometric algebra, we can give a very compact definition of the determinant.
The pseudoscalar for any space is unique up to scaling, and linear functions are
grade-preserving, so we define

F(I) = det (F) I. (4.143)

It should be immediately apparent that this definition of the determinant is
much more compact and intuitive than the matrix definition (discussed later).
The definition (4.143) shows clearly that the determinant is the volume scale
factor for the operation F. In particular, acting on the unit hypercube, the
result F(I) returns the directed volume of the resultant object (see figure 4.4).

As an example of the power of the geometric algebra definition, consider the
product of two functions, F and G. From equation (4.130) it follows that

det (FG)I = FG(I) = det (G)F(I) = det (F) det (G) I, (4.144)
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which establishes that the determinant of the product of two functions is the
product of their determinants. This is one of the key properties of the deter-
minant, yet in conventional developments it is hard to prove. By contrast, the
geometric algebra approach establishes the result in a few lines. Similarly, one
can easily establish that the determinant of the adjoint is the same as that of
the original function,

det (F) = 〈F(I)I−1〉 = 〈IF̄(I−1)〉 = det (F̄). (4.145)

Example 4.1
Consider the linear function

F(a) = a + αa·f1 f2, (4.146)

where α is a scalar and f1 and f2 are a pair of arbitrary vectors. Construct the
action of F on a general multivector and find its determinant.

We start by forming

F(a∧b) = (a + αa·f1f2)∧(b + αb·f1f2)

= a∧b + α(b·f1a − a·f1b)∧f2

= a∧b + α
(
(a∧b)·f1

)
∧f2. (4.147)

It follows that

F(A) = A + α(A·f1)∧f2. (4.148)

The determinant is now calculated as follows:

F(I) = I + α(I ·f1)∧f2

= I + αf1 ·f2 I, (4.149)

hence det (F) = 1 + αf1 ·f2.

4.4.5 The inverse

We now construct a simple, explicit formula for the inverse of a linear function.
We start by considering a multivector B, lying entirely in the algebra defined by
the pseudoscalar I. For these we have

det (F)IB = F(I)B = F
(
IF̄(B)

)
, (4.150)

where we have used the adjoint formulae of equation (4.142). The inner product
with a pseudoscalar is replaced with a geometric product, since no other grades
are present in the full product. Replacing IB by A we find that

det (F)A = F
(
IF̄(I−1A)

)
(4.151)
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with a similar result holding for the adjoint. It follows that

F−1(A) = IF̄(I−1A) det (F)−1,

F̄−1(A) = IF(I−1A) det (F)−1.
(4.152)

These relations provide simple, explicit formulae for the inverse of a function.
The derivation of these formulae is considerably quicker than anything available
in traditional matrix/tensor analysis.

Example 4.2
Find the inverse of the function defined in equation (4.146).
With

F(A) = A + α(A·f1)∧f2 (4.153)

we have

〈ArF(Br)〉 = 〈ArBr〉 + α〈Ar(Br ·f1)∧f2〉
= 〈ArBr〉 + α〈f2 ·ArBrf1〉, (4.154)

hence

F̄(A) = A + αf1∧(f2 ·A). (4.155)

It follows that

F−1(A) =
(
I−1A + αf1∧(f2 ·(I−1A))

)
(1 + αf1 ·f2)−1

= (A + αf1 ·(f2∧A))(1 + αf1 ·f2)−1

= A − α

1 + αf1 ·f2
f2∧(f1 ·A). (4.156)

Example 4.3
Find the inverse of the rotation

R(a) = RaR†, (4.157)

where R is a rotor.
We have already seen that the action of R on a general multivector is

R(A) = RAR† and R̄(A) = R†AR (4.158)

Hence

det (R)I = RIR† = IRR† = I, (4.159)

so det (R) = 1. It follows that

R−1(A) = IR†I−1AR = R†AR = R̄(a), (4.160)

so, as expected, the inverse of a rotation is the same as the adjoint. This is the
definition of an orthogonal transformation.
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4.4.6 Eigenvectors and eigenblades

We assume that readers are familiar with the concept of an eigenvalue and eigen-
vector of a matrix. All of the standard results for these have obvious counterparts
in the geometric algebra framework. This subject will be explored more thor-
oughly in chapter 11. Here we give a simple outline, concentrating on the new
concepts that geometric algebra offers. A linear function F has an eigenvector e

if

F(e) = λe. (4.161)

The scalar λ is the associated eigenvalue. It follows that

det (F − λI) = 0, (4.162)

which defines a polynomial equation for λ. Techniques for finding eigenvalues
and eigenvectors are discussed widely in the literature.

In general, the polynomial equation for λ will have complex roots. Traditional
developments of the subject usually allow these and consider linear superposi-
tions over the complex field. But if one starts with a real mapping between real
vectors it is not clear that this formal complexification is useful. What one would
like would be a more geometric classification of a general linear transformation.
This is provided by the notion of an eigenblade. We extend the notion of an
eigenvector to that of an eigenblade Ar satisfying

F(Ar) = λAr, (4.163)

where Ar is a grade-r blade and λ is real. One immediate example is the
pseudoscalar, for which λ = det (F). More generally, each eigenblade determines
an invariant subspace of the transformation.

As an example of the geometric clarity of the eigenblade concept, consider a
function satisfying

F(e1) = λe2, F(e2) = −λe1. (4.164)

Traditionally, one might write that e1 ± ie2 are eigenvectors with eigenvalues
∓iλ, where i is the unit imaginary. But the identity

F(e1∧e2) = λ2e1∧e2 (4.165)

identifies the plane e1∧e2 as an eigenbivector of F. The role of the complex
structure inherent in F is played by the unit bivector e1∧e2. A linear function
can have many distinct eigenbivectors, each acting as a distinct imaginary for
its own plane. Replacing all of these by a single scalar imaginary throws away a
considerable amount of useful information.
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4.4.7 Symmetric and antisymmetric functions

An important aspect of the theory of linear functions is finding natural, canon-
ical† expressions for a function. For symmetric functions in Euclidean space
this form is via its spectral decomposition. If ei and ej are eigenvectors of a
function, with eigenvalues λi and λj , we have (no sums implied)

ei ·F(ej) = ei ·(λjej) = λjei ·ej . (4.166)

But if F is symmetric, this also equals

F̄(ei)·ej = F(ei)·ej = (λiei)·ej = λiei ·ej . (4.167)

It follows that

(λi − λj)ei ·ej = 0, (4.168)

so eigenvectors of a symmetric function with distinct eigenvalues must be or-
thogonal.

If we admit the existence of complex eigenvectors and eigenvalues we also find
that (no sums)

e∗ ·F(e) = λe∗ ·e = F(e∗)·e = λ∗e∗ ·e. (4.169)

So for any symmetric function we also have

(λ − λ∗)e∗ ·e = 0. (4.170)

Provided e∗ · e 	= 0 we can conclude that the eigenvalue, and hence the eigen-
vector, is real. In Euclidean space this inequality is always satisfied, and every
symmetric function on an n-dimensional space has a spectral decomposition of
the form

F(a) = λ1P1(a) + λ2P2(a) + · · · + λmPm(a). (4.171)

Here λ1 < λ2 < · · · < λm are the m distinct eigenvalues (m ≤ n) and the Pi are
projections onto each of the invariant subspaces defined by the eigenvectors. For
the case of a projection onto a one-dimensional space we have simply

Pi(a) = a·ei ei. (4.172)

The eigenvectors form an orthonormal frame, which is the natural frame in which
to study the linear function. If two eigenvalues are the same, it is always possible
to choose the eigenvectors so that they remain orthogonal. In non-Euclidean
spaces, such as spacetime, one has to be careful due to the possibility of complex
null vectors. These can have e∗ · e = 0, so the above reasoning breaks down and

† The origin of the use of the word canonical is obscure — see for example the comments in
Goldstein (1950). In mathematical physics, a canonical form usually refers to a standard
way of simplifying an expression without altering its meaning.
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one cannot guarantee the existence of an orthonormal frame of eigenvectors. We
will encounter examples of this when we study gravitation.

Antisymmetric functions have F̄(a) = −F(a). It follows that

a·F(a) = F̄(a)·a = −F(a)·a = 0. (4.173)

The natural way to study antisymmetric functions is through the bivector

F =
1
2
ei∧F(ei), (4.174)

where the {ek} are an arbitrary frame for the space acted on by F. The bivector
F is independent of the choice of frame, so is an invariant quantity. One can
easily confirm that the bivector F has the same number of degrees of freedom
as F. If we now form 2a·F we find that

2a·F = a·
(
ei∧F(ei)

)
= a·ei F(ei) − eia·F(ei)

= F(a·ei ei) + ei ei ·F(a)

= 2F(a). (4.175)

The action of an antisymmetric function therefore reduces to contracting with
the characteristic bivector F :

F(a) = a·F. (4.176)

The problem of reducing an antisymmetric function to its simplest form reduces
to that of splitting F into a set of commuting blades:

F = λ1F̂1 + · · · + λkF̂k, (4.177)

where k ≤ n/2 and each of the F̂i is a unit blade. This decomposition is always
possible in Euclidean space, though the answer is only unique if the blades all
have different magnitudes. Each component blade of F is an eigenblade of F

and determines an invariant subspace. Within this subspace the effect of F is
simply to rotate all vectors by ±90◦, and to scale the result by the magnitude
of the eigenblade. In non-Euclidean spaces such a decomposition is not always
possible.

4.4.8 The singular value decomposition

For linear functions of no symmetry a number of alternative canonical forms can
be found. Among these, perhaps the most useful is the singular value decompo-
sition. We start with an arbitrary function F and restrict the discussion to the
case where F acts on an n-dimensional Euclidean space. We also suppose that
det (F) 	= 0; the case of det (F) = 0 is easily dealt with by separating out the space

113

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.006
https:/www.cambridge.org/core


FOUNDATIONS OF GEOMETRIC ALGEBRA

which is mapped onto the origin, and working with a reduced function acting in
the subspace over which F is non-singular. We next form the function D by

D(a) = F̄F(a). (4.178)

This function is symmetric and has n orthogonal eigenvectors with real, positive
eigenvalues. The fact that the eigenvalues are positive follows from

F̄F(e) = λe ⇒ F(e)·F(e) = λe2. (4.179)

Since (in Euclidean space) the square of any vector is a positive scalar we see that
λ must be positive. The assumption that det (F) 	= 0 rules out the possibility of
any eigenvalues being zero. It follows that we can write

D(a) =
n∑

i=1

λia·ei ei, (4.180)

where the {ei} are the orthonormal frame of eigenvectors. Degenerate eigen-
values are dealt with by picking a set of arbitrary orthonormal vectors in the
invariant subspace.

The linear function D has a simple (positive) square root,

D1/2 =
n∑

i=1

λ
1/2
i a·ei ei (4.181)

and this is also invertible,

D−1/2 =
n∑

i=1

λ
−1/2
i a·ei ei. (4.182)

We now set

S = FD−1/2. (4.183)

This satisfies

S̄S = D−1/2F̄FD−1/2 = D−1/2DD−1/2 = I, (4.184)

where I is the identity function. It follows that S is an orthogonal function. The
function F can now be written

F = SD1/2. (4.185)

This represents a series of dilations along the eigendirections of D, followed by a
rotation.

If the linear function F is presented as an n×n matrix of components in some
frame, then one usually includes a further rotation R to align this arbitrary frame
with the frame of eigenvectors. In this case one writes

F = SΛ1/2R̄, (4.186)
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where Λ is a diagonal matrix in the arbitrary coordinate frame. This writes a
matrix as a dilation sandwiched between two rotations, and is called the singular
value decomposition of the matrix. An arbitrary linear function in n dimensions
has n2 degrees of freedom. The singular value decomposition assigns 2 × n(n −
1)/2 of these to the two orthogonal transformations R and S, with the remaining n

degrees of freedom contained in the dilation Λ. The singular value decomposition
appears frequently in subjects such as data analysis, where it is often used in
connection with analysing non-square matrices.

4.5 Tensors and components

Many modern physics textbooks are written in the language of tensor analysis.
In this approach one often works directly with the components of a vector, or
linear function, in a chosen coordinate frame. The invariance of the laws under
a change of frame can then be used to advantage to simplify the component
equations. Since this approach is so ubiquitous it is important to establish the
relationship between tensor analysis and the largely frame-free approach of the
present chapter. We start by analysing Cartesian tensors, and then move onto
the more general case of an arbitrary coordinate frame.

4.5.1 Cartesian tensors

The subject of Cartesian tensors arises when we restrict our frames to consist
only of orthonormal vectors in Euclidean space. For these we have

ei ·ej = δij , (4.187)

so there is no distinction between frames and their reciprocals. In this case we
can drop all distinction between raised and lowered indices, and just work with
all indices lowered. Provided both frames have the same orientation, a new frame
is obtained from the {ek} frame by a rotation,

e′i = ReiR
† = Λijej . (4.188)

Here R is a rotor and Λij are the components of the rotation defined by R:

Λij = (ReiR
†)·ej . (4.189)

It follows that

ΛijΛik = (ReiR
†)·ej(ReiR

†)·ek

= (R†ejR)·(R†ekR) = δjk, (4.190)

and similarly

ΛikΛjk = δij . (4.191)
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A vector a has components ai = ei ·a and these transform under a change of
frame in the obvious manner,

a′
i = e′i ·a = Λijaj . (4.192)

It is important to realise here that it is only the components of a that change, not
the underlying vector itself. The change in components is exactly cancelled by
the change in the frame. Many equations in physics are invariant if the vector
itself is transformed, but this is the result of an underlying symmetry in the
equations, and not of the freedom to choose the coordinate system. These two
concepts should not be confused!

Extending this idea, we define the components of the linear function F by

Fij = ei ·F(ej). (4.193)

The result of this decomposition is an n× n array of components, which can be
stored and manipulated as a matrix. This definition ensures that the components
of the vector F(a) are given by

ei ·F(a) = ei ·F(ajej) = Fijaj , (4.194)

which is the usual expression for a matrix acting on a column vector. Similarly,
if F and G are a pair of linear functions, the components of the product function
FG are given by

(FG)ij = FG(ej)·ei = G(ej)·F̄(ei)

= G(ej)·ek ek ·F̄(ei) = FikGkj . (4.195)

This recovers the familiar rule for multiplying matrices. If the frame is changed
to a new rotated frame, the components of the tensor transform in the obvious
way:

F′
ij = ΛikΛjlFkl, (4.196)

where the prime denotes the components in the new (primed) frame. Objects
with two indices are referred to as rank-2 tensors. Rank-1 tensors are vectors,
rank-3 tensors have three indices, and so on. Since rank-2 tensors appear regu-
larly in physics they are often referred to simply as tensors. Also, it is usual to
let the term tensor refer to either the component form Fij or the abstract entity
F.

For Cartesian tensors there are two important tensors which arise regularly
in computations. These are the two invariant tensors. The first of these is the
Kronecker δ, which transforms as

δ′ij = ΛikΛjlδkl = ΛikΛjk = δij . (4.197)

The components of the identity function are therefore the same in all orthonormal
frames (and are those of the identity matrix in all cases). The second invariant is
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the alternating tensor εij···k, where the number of indices matches the dimension
of the space. This is totally antisymmetric and is defined as follows:

εij···k =




1 i, j, . . ., k = even permutation of 1, 2, . . . , n

−1 i, j, . . ., k = odd permutation of 1, 2, . . . , n

0 otherwise

. (4.198)

The order of a permutation is the number of pairwise swaps required to re-
turn to the original order 1, 2, . . . , n. If an even number of swaps is required
the permutation is even, and similarly for the odd case. In three dimensions
even permutations of 1, 2, 3 coincide with cyclic orderings of the indices. The
determinant of a matrix can be expressed in terms of the alternating tensor via

FαiFβj · · ·Fγkεαβ···γ = det (F) εij···k. (4.199)

Given this result, it is straightforward to prove the frame invariance of the al-
ternating tensor under rotations:

ε′ij···k = ΛiαΛjβ · · ·Λkγεαβ···γ = det (Λ) εij···k. (4.200)

But since Λij is a rotation matrix it has determinant +1, so the tensor is indeed
invariant.

4.5.2 The determinant revisited

We should now establish that the definition of the determinant (4.199) agrees
with our earlier definition (4.143). To prove this we first need the result that

εij···k = ei∧ej · · ·∧ek I†, (4.201)

where I = e1e2 · · · en and the {ek} form an orthonormal frame. The right-
hand side of (4.201) is zero if any of the indices are the same, because of the
antisymmetry of the outer product. If the indices form an even permutation of
1, 2, . . . , n we can reorder the vectors into the order e1e2 · · · en = I, in which case
the right-hand side of (4.201) returns +1. Similarly, any anticyclic combination
of 1, 2, . . . , n returns −1. Together these agree with the definition (4.198) of the
alternating tensor εij···k. We can now rearrange the left-hand side of (4.199) as
follows:

FαiFβj · · ·Fγkεαβ···γ = FαiFβj · · ·Fγk eα∧eβ · · ·∧eγ I†

= F(ei)∧F(ej) · · ·F(ek) I†

= det (F) ei∧ej · · ·∧ek I†

= det (F) εij···k, (4.202)

which recovers the expected result.
We assume that most readers are familiar with the various techniques employed
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when computing the determinant of an n × n matrix. These can be found
in most elementary textbooks on linear algebra. It is instructive to see how
the same results arise in the geometric algebra treatment. We have already
established that the determinant of the product of two functions is the product of
the determinants, and that taking the adjoint does not change the determinant.
To establish a further set of results we first introduce the (non-orthonormal)
vectors {fi},

fi ≡ F(ei), (4.203)

so that

Fij = ei ·fj . (4.204)

From equation (4.143) the determinant of F can be written

det (F) = (f1∧f2∧· · ·∧fn)·(en∧· · ·∧e2∧e1). (4.205)

Expanding this product out in full recovers the standard expression for the de-
terminant of a matrix. The first result we see is that swapping any two of the
{fi} changes the sign of the determinant. This is the same as swapping two
columns in the matrix Fij . Since matrix transposition does not affect the result,
the same is true for interchanging rows.

Next we single out one of the {ek} vectors and write

det (F) = (−1)j+1(en∧· · · ěj · · ·∧e1)·
(
ej ·(f1∧· · ·∧fn)

)
=

n∑
k=1

(−1)j+k ej ·fk (en∧· · · ěj · · ·∧e1)·(f1∧· · · f̌k · · ·∧fn). (4.206)

The final part of each term in the sum corresponds to an (n − 1) × (n − 1)
determinant, as can be seen by comparing with (4.205). This is equivalent to
the familiar expression for the expansion of the determinant by the jth row. A
further useful result is obtained from the identity

f1∧· · ·∧(fj + λfk)∧· · ·∧fn = f1∧· · ·∧fj∧· · ·∧fn j 	= k. (4.207)

This result means that any multiple of the kth row can be added to the jth row
without changing the result. The same is true for columns. This is the key to
the method of Gaussian elimination for finding a determinant. In this method
the matrix is first transformed to upper (or lower) triangular form, so that the
determinant is then simply the product of the entries down the leading diagonal.
This is numerically a highly efficient method for calculating determinants. We
can continue in this manner to give concise proofs of many of the key results for
determinants. For a useful summary of these, see Turnbull (1960).

To see how these formulae also lead to the familiar expression for the inverse
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of a matrix, consider the decomposition:

F−1
ij = ei ·F−1(ej)

= 〈ei e1∧· · ·∧en F̄(en∧· · ·∧e1 ej)〉det (F)−1

= (−1)i+j〈F(e1∧· · · ěi · · ·∧en) en∧· · · ěj · · ·∧e1〉det (F)−1. (4.208)

The term enclosed in angular brackets is the determinant of the (n−1)× (n−1)
matrix obtained from Fij by deleting the ith column and jth row. This is the
definition of the i, j cofactor of Fij . Equation (4.208) shows that the components
of F−1

ij are formed from the transposed matrix of cofactors, divided by the deter-
minant det (F) — the familiar result. Similarly, all other matrix formulae have
simple and often elegant counterparts in geometric algebra. Further examples of
these are discussed in chapter 11.

4.5.3 General tensors

We now generalise the preceding treatment to the case of arbitrary basis sets
in spaces of arbitrary (non-degenerate) signature. One reason for wanting to
deal with non-orthonormal frames is that these regularly arise when working in
curvilinear coordinate systems. In addition, in mixed signature spaces one has no
option since it is impossible to identify a frame with its reciprocal. Suppose, then,
that the vectors {ek} constitute an arbitrary frame for n-dimensional space (of
unspecified signature). The reciprocal frame is denoted {ek} and the two frames
are related by

ei ·ej = δi
j . (4.209)

Equation (4.94) for the reciprocal frame is general and still holds in mixed sig-
nature spaces.

As described in section 4.3.2, the vector a has components (a1, a2, . . . , an)
in the {ek} frame, and (a1, a2, . . . , an) in the {ek} frame. When working with
general coordinate frames we always ensure that upper and lower indices match
separately on either side of an expression. Suppose we now form the inner
product of two vectors a and b. We can write this as

a·b = (aiei)·(bje
j) = aibj ei ·ej = aibjδ

j
i = aibi. (4.210)

The general rule is that sums are only taken over pairs of indices where one is a
superscript and the other a subscript. Another way to write an inner product is
to introduce the metric tensor gij :

gij = ei ·ej . (4.211)

In terms of its components gij is a symmetric n× n matrix. The inverse matrix
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is written as gij and is given by

gij = ei ·ej . (4.212)

It is easily verified that this is the inverse of gij :

gikgkj = ei ·ek ek ·ej = ei ·ej = δi
j . (4.213)

Employing the metric tensor we can write the inner product of two vectors in a
number of equivalent forms:

a·b = aibi = aib
i = aibjgij = aibjg

ij . (4.214)

Of course, all of these expressions encode the same thing and, unless there is a
particular reason to introduce a frame, the index-free expression a·b is usually
the simplest to use.

The same ideas extend to expressing the linear function F in a general non-
orthonormal frame. We let F act on the frame vector ej and find the components
of the result in the reciprocal frame. The components are then given by

Fij = ei ·F(ej). (4.215)

Again, the set of numbers Fij are referred to as the components of a rank-2
tensor and form an n × n matrix, the entries of which depend on the choice of
frame. Similar expressions exist for combinations of frame vectors and reciprocal
vectors, for example,

Fij = F(ej)·ei. (4.216)

One use of the metric tensor is to interchange between these expressions:

Fij = ei ·F(ej) = ei ·ek ek ·F(ele
l ·ej) = gikgjlFkl. (4.217)

Again, we have at our disposal a variety of different ways of encoding the infor-
mation in F. In terms of the abstract concept of a linear operator, the metric
tensor gij is simply the identity operator expressed in a non-orthonormal frame.

If Fij are the components of F in some frame then the components of F̄ are
given by

F̄ij = F̄(ej)·ei = ej ·F(ei) = Fji. (4.218)

That is, viewed as a matrix, the components of F̄ are found from the components
of F by matrix transposition. For mixed index tensors we have to be slightly more
careful, as we now have

Fi
j = F(ej)·ei = ej ·F̄(ei) = F̄j

i. (4.219)

If F is a symmetric function we have F̄ = F. In this case the component matrices
satisfy

Fij = F(ej)·ei = F(ei)·ej = Fji, (4.220)
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so the components Fij form a symmetric matrix. The same is true of Fij = Fji,
but for the mixed tensor Fi

j we have Fi
j = Fj

i.
The components of the product function FG are found from the following

rearrangement:

(FG)ij = FG(ej)·ei = G(ej)·F̄(ei)

= G(ej)·ek ek ·F̄(ei) = Fi
kGkj . (4.221)

Provided the correct combination of subscript and superscript indices is used,
this can be viewed as a matrix product. Alternatively, one can work entirely
with subscripted indices, and include suitable factors of the metric tensor,

(FG)ij = FikGljg
kl. (4.222)

Higher rank linear functions give rise to higher rank tensors. Suppose, for
example, that φ(a1, a2, a3) is a scalar function of three vectors, and is linear on
each argument,

φ(λa1 + µb, a2, a3) = λφ(a1, a2, a3) + µφ(b, a2, a3), etc. (4.223)

The components of this define a rank-3 tensor via

φijk = φ(ei, ej , ek). (4.224)

Using similar schemes it is a straightforward matter to set up a map between
tensor equations and frame-free expressions in geometric algebra.

4.5.4 Coordinate transformations

If a second non-orthonormal frame {fα} is introduced we can relate the two
frames via a transformation matrix fαi:

fαi = fα ·ei, fαi = fα ·ei, (4.225)

where Latin and Greek indices distinguish the components in one frame from
the other. These matrices satisfy

fαif
αj = fα ·ei fα ·ej = ei ·ej = δj

i (4.226)

and

fαif
βi = fα ·ei fβ ·ei = fα ·fβ = δβ

α. (4.227)

The decomposition of the vector a in terms of these frames gives

a = aiei = aifαei ·fα = aifαif
α. (4.228)

If follows that the transformation law for the components is

aα = fαia
i, (4.229)
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with similar expressions holding for the superscripted components.
These formulae extend simply to include linear functions. For example, we see

that

Fαβ = fαifβjF
ij . (4.230)

Again, similar expressions hold for superscripts and for mixtures of indices. In
particular we have

Fα
β = fα

ifβ
jFi

j . (4.231)

Expressed in terms of matrix multiplication, this would be an equivalence trans-
formation. Of course, the abstract frame-free function F is unaffected by any
change of basis. All that changes is the particular representation of the function
in the chosen coordinate system. Any set of n2 numbers with this transformation
property are called the components of a rank 2 tensor, the implication being that
the underlying function is frame-independent.

In conventional accounts, the subject of tensors is often built up by taking
the transformation law as fundamental. That is, a vector (rank-1 tensor) is
defined as a set of components which transform according to equation (4.229)
under a change of basis. Once one has the tools available to treat vectors and
linear operations in a frame-free manner, such an approach becomes entirely
unnecessary. The defining property of a tensor is that it represents a genuine
geometric object (or operation) and does not depend on a choice of frame. Given
this, the transformation laws (4.229) and (4.231) follow automatically. In this
book the name tensor is applied to any frame-independent linear function, such
as F. We will encounter a variety of such objects in later chapters.

4.6 Notes

The realisation that geometric algebra is a universal tool for physics was a key
point in the modern development of the subject, and was first strongly promoted
by David Hestenes (figure 4.5). Before his work, physicists’ sole interaction
with geometric algebra was through the quantum theory of spin. The Pauli
and Dirac matrices form representations of Clifford algebras, a fact that was
realised as soon as they were introduced. But in the 50 years since Clifford’s
original idea, the geometry behind his algebra had been lost as mathematicians
concentrated on its algebraic properties. This discovery of the Pauli and Dirac
matrices thus gave rise to two mistaken beliefs. The first was that there was
something intrinsically quantum-mechanical in the non-commutative properties
of the matrices. This is clearly not the case. Clifford died long before quantum
theory was first formulated and was motivated entirely by classical geometry,
and his algebra is today routinely employed in a range of subjects far removed
from quantum theory.
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Figure 4.5 David Hestenes. Inventor of geometric calculus and first to
draw attention to the universal nature of geometric algebra. He wrote
the influential Space-Time Algebra in 1966, and followed this with a fully
developed formalism in Clifford Algebra to Geometric Calculus (Hestenes
& Sobczyk, 1984). This was followed by the (simpler) New Foundations
for Classical Mechanics, first published in 1986 (second edition 1999). In
a series of papers Hestenes and coworkers showed how geometric algebra
could be applied in the study of classical and quantum mechanics, electro-
dynamics, projective and conformal geometry and Lie group theory. More
recently, he has advocated the use of geometric algebra in the field of com-
puter graphics.

The second widespread belief was that matrices were crucial to understanding
the properties of Clifford algebras. This too is erroneous. The geometric algebra
of a finite-dimensional vector space is an associative algebra, so always has a ma-
trix representation. But these matrices add little, if anything, to understanding
the properties of the algebra. Furthermore, an insistence on working with ma-
trices deters one from applying geometric algebra to anything beyond the lowest
dimensional spaces, because the size of the matrices increases exponentially with
the dimension of the space. Working directly with the elements of the algebra
imposes no such constraints, and one can easily apply the ideas to spaces of any
dimension, including infinite-dimensional spaces.

Mathematicians had few such misconceptions, and Atiyah and others devel-
oped Clifford algebra as a powerful tool for geometry. Even in these develop-
ments, however, the emphasis was usually on Clifford algebra as an extra tool
on top of the standard techniques for solving geometric problems. The algebra
was seldom used as complete language for geometry. The picture first started
to change when Hestenes recovered Clifford’s original interpretation of the Pauli
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FOUNDATIONS OF GEOMETRIC ALGEBRA

matrices. This led Hestenes to question whether the appearance of a Clifford
algebra was telling us something about the underlying structure of quantum
theory. Hestenes then went on to promote the universal nature of the algebra,
which he publicised in a series of books and papers. Acceptance of this view
is growing and, while not everyone is in full agreement, it is now hard to find
an area of physics to which geometric algebra cannot or has not been applied
without some degree of success.

4.7 Exercises

4.1 Prove that the outer product of a set of linearly dependent vectors van-
ishes.

4.2 In a Euclidean space, Gram–Schmidt orthogonalisation proceeds by suc-
cessively replacing each vector in a set {ai} by one perpendicular to the
preceding vectors. Prove that such a vector is given by

ei = ai −
i−1∑
j=1

ai ·ej

e2
j

ej .

Prove that we can also write this as

ei = ai∧ai−1∧· · ·∧a1(ai−1∧· · ·∧a1)−1.

4.3 Prove that

(a∧b)×(c∧d) = b·c a∧d − a·c b∧d + a·d b∧c − b·d a∧c.

4.4 The length of a vector in Euclidean space is defined by |a| =
√

(a2), and
the angle θ between two vectors is defined by

cos(θ) = a·b/(|a||b|).

Show that a linear transformation F which leaves lengths and angles
unchanged must satisfy

F̄ = F−1.

What does this imply for the determinant of F? A reflection in the
(hyper)plane perpendicular to n is defined by

R(a) = −nan,

where n2 = 1. Show that R̄ = R−1, and that R has determinant −1.
4.5 For the reflection in the preceding question introduce a suitable basis

frame and express F in terms of a matrix Fij . Verify the results for the
determinant and inverse of this matrix. (Hint — align one of the basis
vectors with n.)
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4.6 A rotor R is defined by

R = exp(−λB/2).

By Taylor expanding in λ, prove that the operation

R(A) = RAR†

preserves the grade(s) of the multivector A.
4.7 Show that the plane B is unchanged by the rotation defined by the rotor

R = exp(B/2).
4.8 Analyse the properties of the matrix(

1 2 sinh(u)
0 1

)
.

To what geometric operation does this matrix correspond? Can this
matrix be diagonalised, and does it have a sensible singular value de-
composition?

4.9 Suppose that the linear transformation F has a complex eigenvector e+if

with associated eigenvector α + iβ. What is the effect of F on the e∧f

plane? How should one interpret the action of F in this plane?
4.10 Suppose that the vectors {ek} form an orthonormal basis frame for n-

dimensional Euclidean space. What is the effect of the transformation

T(a) = a + λa·e1 e2

on the rows of the matrix Fij formed by decomposing F in the {ek}
frame? Use this result to prove that the determinant of a matrix is
unchanged by adding a multiple of one row to another.
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5

Relativity and spacetime

The geometric algebra of spacetime is called the spacetime algebra. Historically,
the spacetime algebra was the first modern implementation of geometric algebra
to gain widespread attention amongst the physics community. This is because
it provides a synthetic framework for studying spacetime physics. There are
two main approaches to the study of geometry, which can be loosely referred to
as the algebraic and synthetic traditions. In the algebraic approach one works
entirely with the components of a vector and manipulates these directly. Such
an approach leads naturally to the subject of tensors, and places considerable
emphasis on how coordinates transform under changes of frame. The synthetic
approach, on the other hand, treats vectors as single, abstract entities x or a,
and manipulates these directly. Geometric algebra follows in this tradition.

For much of modern physics the synthetic approach has come to dominate.
The most obvious examples of this are classical mechanics and electromagnetism,
both of which helped shape the development of abstract vector calculus. For
these subjects, presentations typically perform all of the required calculations
with the three-dimensional scalar and cross products. We have argued that geo-
metric algebra provides extra efficiency and clarity, though it is not essential
to a synthetic treatment of three-dimensional physics. But for spacetime cal-
culations the cross product cannot be defined. Despite the obvious advantages
of synthetic treatments, most relativity texts revert to a more basic, algebraic
approach involving the components of 4-vectors and Lorentz-transform matri-
ces. Such an approach has trouble encoding such basic notions as a plane in
spacetime and, unsurprisingly, does a very poor job of handling the dynamics of
extended bodies.

To develop a generally applicable algebra of vectors in spacetime one has
little option but to use either geometric algebra, or the language of exterior
forms (which is essentially a subset of geometric algebra which only employs
the interior and exterior products). This is why relativistic physics still tends
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to dominate the literature of applications of geometric algebra. Many aspects
of special relativity become clearer when viewed in the language of geometric
algebra and, crucially, a wealth of new computational tools is provided which
dramatically simplify relativistic problems.

5.1 An algebra for spacetime

It is not our intention in this chapter to give a fully self-contained introduction to
relativity. Such an account can be found in the various books listed at the end of
this chapter. In brief, a series of famous experiments conducted in the latter half
of the nineteenth century showed that light did not appear to behave in quite
the expected, Newtonian manner. This led Einstein to his ‘second postulate’,
that the speed of light c is the same for all inertial (non-accelerating) observers.
Combined with Einstein’s ‘first postulate’, the principle of relativity, one is led
inexorably to special relativity. The principle of relativity states simply that
all inertial frames are equivalent for the purposes of physical experiment. An
immediate consequence of these postulates is that the underlying geometry is no
longer that of a (Euclidean) three-dimensional space, but instead the appropriate
arena for physics is (Lorentzian) spacetime.

To understand why this is the case, suppose that a spherical flash of light is
sent out from a source, and this event is described in two coordinate frames. We
discuss the concept of a frame, as distinct from a single observer, later in this
chapter. The frames are in relative motion, and their origins coincide with the
location of the source at the moment the light is emitted. At this instant both
frames also set their time measurements to zero. In the first frame the source is
at rest and the light expands radially according to the equation

r = ct. (5.1)

But the second frame must also record a radially expanding shell of light since
the relative velocity of the source has no effect on the speed of light. The second
frame therefore sees light expanding according to the equation

r′ = ct′. (5.2)

Since the two frames are in relative motion, points at a given fixed r cannot
coincide with those at a fixed r′. So points reached at the same time in one
frame are reached at different times in the second frame. But in both frames
the light lies on a spherical expanding shell. So the one thing that is common to
both frames is the value of

(ct)2 − r2 = (ct′)2 − (r′)2 = 0. (5.3)

This defines the invariant interval of special relativity and is the fundamental
algebraic concept we need to encode.
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RELATIVITY AND SPACETIME

The preceding argument shows us that the algebra we need to construct is
generated by four orthogonal vectors {γ0, γ1, γ2, γ3} satisfying the algebraic re-
lations

γ2
0 = 1, γ0 ·γi = 0, γi ·γj = −δij , (5.4)

where i and j run from 1 to 3. These are summarised in relativistic notation as

γµ ·γν = ηµν = diag(+ − − −), µ, ν = 0, . . . , 3. (5.5)

The notation {γµ} for a spacetime frame is a widely adopted convention in
the spacetime algebra literature. The notation is borrowed from Dirac theory
and we continue to employ it in this book. We have also chosen the ‘particle
physics’ choice of signature, which has spacelike vectors with negative norm.
General relativists often work with the opposite signature and swap all of the
signs in ηµν . Both choices have their advocates and all (known) physical laws
are independent of the choice of signature. Throughout we use Latin indices to
denote the range 1–3 and Greek for the full spacetime range 0–3.

The {γµ} vectors are dimensionless, as is clear from their squares. Since we
are in a space of mixed signature, we must adopt the conventions of section 4.3
and distinguish between a frame and its reciprocal. For the {γµ} frame the
reciprocal frame vectors, {γµ}, have γ0 = γ0 and γi = −γi. A general vector in
the spacetime algebra can be constructed from the {γµ} vectors. A spacetime
event, for example, is encoded in the vector x, which has coordinates xµ in the
{γµ} frame. Explicitly, the vector x is

x = xµγµ = ctγ0 + xiγi, (5.6)

which has dimensions of distance. From this point on it will be convenient to
work in units where the speed of light c is 1. Factors of c can then be inserted in
any final result if the answer is required in different units. The mixed signature
means that the square of a vector (a, say) is no longer necessarily positive, and
instead we have

a2 = aa = ε|a2|. (5.7)

ε is the signature of the vector and can be ±1 or 0. The mixed signature does
not affect the validity of the axiomatic development and results of chapter 4,
which made no reference to the signature.

5.1.1 The bivector algebra

There are 4 × 3/2 = 6 bivectors in our algebra. These fall into two classes:
those that contain a timelike component (e.g. γi ∧ γ0), and those that do not
(e.g. γi ∧ γj). For any pair of orthogonal vectors a and b, a·b = 0, we have

(a∧b)2 = abab = −abba = −a2b2. (5.8)
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γ0

γ1

Time

Space

Figure 5.1 A spacetime diagram. Spacetime diagrams traditionally have
the t axis vertical, so a suitable bivector for this plane is γ1γ0.

The two types of bivectors therefore have different signs of their squares. First,
we have

(γi∧γj)2 = −γi
2γj

2 = −1, (5.9)

which is the familiar result for Euclidean bivectors. Each of these generates
rotations in a plane. For bivectors containing a timelike component, however,
we have

(γi∧γ0)2 = −γi
2γ0

2 = +1. (5.10)

Bivectors with positive square have a number of new properties. One immediate
result we notice, for example, is that

eαγ1γ0 = 1 + αγ1γ0 +
α2

2!
+

α3

3!
γ1γ0 + · · ·

= cosh(α) + sinh(α)γ1γ0. (5.11)

This shows us that we are dealing with hyperbolic geometry. This will prove
crucial to our treatment of Lorentz transformations. Traditionally, spacetime
diagrams are drawn with the time axis vertical (see figure 5.1). For these dia-
grams the ‘right-handed’ bivector is, for example, γ1γ0. These bivectors do not
generate 90◦ rotations, however, as we now have

γ0 ·(γ1γ0) = −γ1, γ1 ·(γ1γ0) = −γ0. (5.12)

5.1.2 The pseudoscalar

We define the (grade-4) pseudoscalar I by

I = γ0γ1γ2γ3. (5.13)

In the literature the symbol i is often used for the pseudoscalar. We have de-
parted from this practice to avoid confusion with the i of quantum theory. Us-
ing the latter symbol presents a potential problem because of the fact that the
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pseudoscalar anticommutes with vectors. The pseudoscalar defines an orienta-
tion for spacetime, and the reason for the above choice will emerge shortly. We
still assume that {γ1, γ2, γ3} form a right-handed orthonormal set, as usual for
a three-dimensional Cartesian frame. Since I is grade-4, it is equal to its own
reverse:

Ĩ = γ3γ2γ1γ0 = I. (5.14)

For relativistic applications we use the tilde ˜ to denote the reverse operation.
The problem with the alternative symbol, the dagger †, is that it is usually
reserved for a different role in relativistic quantum theory. The fact that Ĩ = I

makes it easy to compute the square of I :

I2 = IĨ = (γ0γ1γ2γ3)(γ3γ2γ1γ0) = −1. (5.15)

Multiplication of a bivector by I results in a multivector of grade 4 − 2 = 2, so
returns another bivector. This provides a map between bivectors with positive
and negative squares, for example

Iγ1γ0 = γ1γ0I = γ1γ0γ0γ1γ2γ3 = −γ2γ3. (5.16)

If we define Bi = γiγ0 then the bivector algebra can be summarised by

Bi×Bj = εijk IBk,

(IBi)×(IBj) = −εijk IBk, (5.17)

(IBi)×Bj = −εijkBk.

These equations show that the pseudoscalar provides a natural complex structure
for the set of bivectors. This in turn tells us that there is a complex structure
hidden in the group of Lorentz transformations.

As well as the four vectors, we also have four trivectors in our algebra. The
vectors and trivectors are interchanged by a duality transformation,

γ1γ2γ3 = γ0γ0γ1γ2γ3 = γ0I = −Iγ0. (5.18)

The pseudoscalar I anticommutes with vectors and trivectors, as we are in a
space of even dimensions. As always, I commutes with all even-grade multivec-
tors.

5.1.3 The spacetime algebra

Combining the preceding results, we arrive at an algebra with 16 terms. The
{γµ} define an explicit basis for this algebra as follows:

1 {γµ} {γµ∧γν} {Iγµ} I

1 scalar 4 vectors 6 bivectors 4 trivectors 1 pseudoscalar
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This is the spacetime algebra, G(1, 3). The structure of this algebra tells us
practically all one needs to know about (flat) spacetime and the Lorentz trans-
formation group. A general element of the spacetime algebra can be written
as

M = α + a + B + Ib + Iβ, (5.19)

where α and β are scalars, a and b are vectors and B is a bivector. The reverse
of this element is

M̃ = α + a − B − Ib + Iβ. (5.20)

The vector generators of the spacetime algebra satisfy

γµγν + γνγµ = 2ηµν . (5.21)

These are the defining relations of the Dirac matrix algebra, except for the
absence of an identity matrix on the right-hand side. It follows that the Dirac
matrices define a representation of the spacetime algebra. This also explains our
notation of writing {γµ} for an orthonormal frame. But it must be remembered
that the {γµ} are basis vectors, not a set of matrices in ‘isospace’.

5.2 Observers, trajectories and frames

From a study of the literature on relativity one can easily form the impression
that the subject is in the main concerned with transformations between frames.
But it is the subject of relativistic dynamics that is of primary importance to
us, and one aim of the spacetime algebra development is to minimise the use of
coordinate frames. Instead, we aim to develop spacetime physics in a frame-free
manner and, where necessary, then focus on the physics as seen from different
observers. Developing relativistic physics in this manner has the added advan-
tage of clarifying precisely which aspects of special relativity need modification
to incorporate gravity.

5.2.1 Spacetime paths

Suppose that x(λ) describes a curve in spacetime, where λ is some arbitrary,
monotonically-increasing parameter along the curve. The tangent vector to the
curve is

x′ =
dx(λ)

dλ
. (5.22)

Under a change of parameter from λ to τ the tangent vector becomes

dx

dτ
=

dλ

dτ

dx

dλ
. (5.23)
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It follows that (
dx

dτ

)2

=
(

dλ

dτ

)2(
dx

dλ

)2

, (5.24)

so the sign of (x′)2 is an invariant feature of the path. We assume for simplicity
that this sign does not change along the path. As we are working in a space of
mixed signature there are then three cases to consider.

The first possibility is that (x′)2 > 0, in which case the path is said to be
timelike. Timelike trajectories are those followed by massive particles. For these
paths we can define an invariant proper interval

∆τ =
∫ λ2

λ1

(
dx

dλ
· dx

dλ

)1/2

dλ. (5.25)

It is straightforward to check that this interval is independent of how the path
is parameterised. If we consider the simplest case of a particle (or observer) at
rest in the γ0 system, its spacetime trajectory can be written as x = tγ0. In this
case it is clear that the interval defines the elapsed time in the observer’s rest
frame. This must be true for all possible paths, so the interval (5.25) defines the
time as measured along the path. This is called the proper time, and is usually
given the symbol τ . The proper time defines a preferred parameter along the
curve with the unique property that the velocity v,

v =
dx

dτ
= ẋ, (5.26)

satisfies

v2 = 1. (5.27)

Throughout we use dots to denote differentiation with respect to proper time
τ . The unit timelike vector v then defines the instantaneous rest frame. The
definition of ‘proper time’ makes it clear that in relativity observers moving in
relative motion measure different times.

The second case to consider is that (x′)2 = 0. In this case the trajectory is
said to be lightlike or null. Null trajectories are followed by massless (point)
particles and (in the geometric optics limit) they define possible photon paths.
There is no preferred parameter along these curves, and the proper distance (or
time) measured along the curve is 0. Photons do still carry an intrinsic clock,
defined by their frequency, but this can tick at an arbitrary rate.

The third possibility is that (x′)2 < 0, in which case the trajectory is said
to be spacelike. As with timelike paths there is a preferred (affine) parameter
along the path such that (x′)2 = −1. In this case the parameter defines the
proper distance. Spacelike curves cannot arise for the trajectories of (known)
particles, which are constrained to move at less than (or equal to) the speed
of light. Events which are separated by spacelike intervals cannot be in causal
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Timelike

Lightlike

Past

Future

Elsewhere

t

x

y

Spacelike

Figure 5.2 Spacetime trajectories. There are three different types of space-
time trajectory: timelike, lightlike and spacelike. The set of lightlike tra-
jectories through a point separate spacetime into three regions: the past,
the future and ‘elsewhere’.

contact with each other and cannot exert any classical influence over each other.
The three possibilities for spacetime trajectories are summarised in figure 5.2.

5.2.2 Spacetime frames

The subject of spacetime frames and coordinates dominates many discussions of
the meaning of special relativity. The concept of a frame is distinct from that
of an observer as it involves the notion of a coordinate lattice. We start with an
inertial observer with constant velocity v. This velocity vector is then equated
with the timelike vector e0 from a spacetime frame {eµ}. The remaining vectors
ei are chosen so that they form a right-handed set of orthonormal spacelike
vectors perpendicular to e0 = v. The {eµ} then define a set of frame vectors
satisfying

eµ ·eν = ηµν . (5.28)

So far these vectors are only defined at a single point on the observer’s trajectory.
We now assume that the vectors extend throughout all spacetime, so that any
event can be given a set of spacetime coordinates

xµ = eµ ·x. (5.29)
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RELATIVITY AND SPACETIME

Clearly these coordinates are a rather distinct concept from what an observer will
actually measure, since the observer is constrained to remain in one place and
only receives incoming photons. Frequently one sees discussions involving arrays
of clocks all cleverly synchronised to read the time x0 at each spatial location.
But how such a frame is set up is not really the point. The assertion is that the
coordinates as specified above are a reasonable model for the sort of distance and
time measurements performed in a laboratory system using physical measuring
devices. It is precisely this assertion that is challenged by general relativity,
which insists that one talk entirely in terms of physically-defined coordinates, so
that the xµ defined above have no physical meaning. That said, for applications
not involving gravity and for non-accelerating frames, we can safely identify the
coordinates defined above with physical distances and times and will continue
to do so in this chapter.

5.2.3 Relative vectors

Now suppose that we follow a timelike path with instantaneous velocity v, v2 = 1.
What sort of quantities do we measure? First we construct a frame of rest vectors
{ei} perpendicular to v = e0. We also take a point on the worldline as the spatial
origin. Then a general event x can be decomposed in this frame as

x = te0 + xiei, (5.30)

where the time coordinate is

t = x·e0 = x·v (5.31)

and spatial coordinates are

xi = x·ei. (5.32)

Suppose now that the event is a point on the worldline of an object at rest in
our frame. The three-dimensional vector to this object is

xiei = x·eµ eµ − x·e0 e0 = x − x·v v = x∧v v. (5.33)

Wedging with v projects onto the components of the vector x in the rest frame
of v. The key quantity is the spacetime bivector x∧v. We call this the relative
vector and write

x = x∧v. (5.34)

With these definitions we have

xv = x·v + x∧v = t + x. (5.35)
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The invariant distance now decomposes as

x2 = xvvx = (x·v + x∧v)(x·v + v∧x)

= (t + x)(t − x) = t2 − x2, (5.36)

recovering the invariant interval. A second observer with a different velocity
performs a different split of x into time and space components. But the interval
x2 is the same for all observers as it manifestly does not depend on the choice
of frame.

5.2.4 The even subalgebra

Each observer sees a set of relative vectors, which we model as spacetime bivec-
tors. What algebraic properties do these have? To simplify matters, we take
the timelike velocity vector to be γ0 and introduce a standard frame of relative
vectors

σi = γiγ0. (5.37)

These define a set of spacetime bivectors representing timelike planes. (The
notation is again borrowed from quantum mechanics and is commonplace in the
spacetime algebra literature.) The {σi} satisfy

σi ·σj = 1
2 (γiγ0γjγ0 + γjγ0γiγ0)

= 1
2 (−γiγj − γjγi) = δij . (5.38)

These act as vector generators for a three-dimensional algebra. This is the geo-
metric algebra of the relative space in the rest frame defined by γ0. Furthermore,
the volume element of this algebra is

σ1σ2σ3 = (γ1γ0)(γ2γ0)(γ3γ0) = −γ1γ0γ2γ3 = I, (5.39)

so the algebra of relative space shares the same pseudoscalar as spacetime. This
was the reason for our earlier definition of I. Of course, we still have

1
2 (σiσj − σjσi) = εijkIσk, (5.40)

so that both relative vectors and relative bivectors are spacetime bivectors.
The even-grade terms in the spacetime algebra define the even subalgebra. As

we have just established, this algebra has precisely the properties of the algebra
of three-dimensional (relative) space. The even subalgebra contains scalar and
pseudoscalar terms, and six bivector terms. These are split into three timelike
vectors and three spacelike vectors, which in turn become relative vectors and
bivectors. This is called a spacetime split, and it is observer-dependent. Different
velocity vectors generate different spacetime splits. Algebraically, this provides
us with an extremely efficient tool for comparing physical effects in different
frames.
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Spacetime bivectors which are also used as relative vectors are written in
bold. This conforms with our earlier usage of a bold face for vectors in three
dimensions. There is a potential ambiguity here — how are we to interpret the
expression a∧b? Our convention is that if all of the terms in an expression are
bold, the dot and wedge symbols drop down to their three-dimensional meaning,
otherwise they take their spacetime definition. This works pretty well in prac-
tice, though where necessary we will try to draw attention to the fact that this
convention is in use.

5.2.5 Relative velocity

Suppose that an observer with constant velocity v measures the relative velocity
of a particle with proper velocity u(τ) = ẋ(τ), u2 = 1. We have

uv =
d

dτ
(x(τ)v) =

d

dτ
(t + x), (5.41)

where t + x is the description of the event x in the v frame. It follows that

dt

dτ
= u·v,

dx

dτ
= u∧v. (5.42)

The relative velocity u as measured in the v frame is therefore

u =
dx

dt
=

dx

dτ

dτ

dt
=

u∧v

u·v . (5.43)

This construction of the relative velocity is extremely elegant. It embodies the
concept of relativity in its precise (anti)symmetry. If we interchange u and v the
second observer measures precisely the same relative speed as the first, but in
the opposite direction. Expressions like u∧v/u·v arise frequently in the subject
of projective geometry (see section 10.1). The resulting bivector is homogeneous,
which is to say we can rescale u and v and still recover the same result. So the
choice of parameterisation of the two spacetime trajectories is irrelevant to their
relative velocity. The relative velocity is determined solely by the spacetime
trajectories themselves, and not by any evolution parameter.

The definition of the relative velocity ensures that the magnitude is

(u∧v)2

(u·v)2
= 1 − 1

(u·v)2
< 1, (5.44)

so no two observers measure a relative velocity greater than the speed of light
(which is 1 in our current choice of units). If we form the Lorentz factor γ using

γ−2 = 1 − u2

= 1 + (u·v)−2[(uv − u·v)(vu − v ·u)] = (u·v)−2, (5.45)

136

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.007
https:/www.cambridge.org/core


5.2 OBSERVERS, TRAJECTORIES AND FRAMES

we find that γ = u·v. It follows that we can decompose the velocity as

u = uvv = (u·v + u∧v)v = γ(1 + u)v, (5.46)

which shows a neat split into a part γuv in the rest space of v, and a part γv

along v.

5.2.6 Momentum and wave vectors

The relativistic definitions of energy and momentum can be motivated in various
ways. Perhaps the simplest is to consider photons with frequency ω and wave-
vector k measured in the γ0 frame. From quantum theory, the energy and
momentum are given by --hω and --hk respectively. If we define the wavevector k

by

k = ωγ0 + kiγi, (5.47)

then the energy-momentum vector for the photon is simply

p = --hk. (5.48)

An observer with velocity v, as opposed to γ0, measures energy and momentum
given by

E = p·v, p = p∧v. (5.49)

We take this as the correct definition for massive particles as well. So a particle
of rest mass m and velocity u has an energy-momentum vector p = mu. A
spacetime split of this vector with the velocity vector v yields

pv = p·v + p∧v = E + p. (5.50)

A significant feature of this definition is that the relative momentum is related
to the velocity by

p = mu·v u = γmu, (5.51)

where again γ is the Lorentz factor. One sometimes sees this formula written in
terms of a velocity-dependent mass m′ = γm, but we will not adopt this practice
here.

From the definition of p we recover the invariant

m2 = p2 = pvvp = (E + p)(E − p) = E2 − p2. (5.52)

Similarly, for a photon with wavevector k, k2 = 0, we have

0 = kvvk = (ω + k)(ω − k) = ω2 − k2. (5.53)

This recovers the relation |k| = ω, which holds in all frames.
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5.2.7 Proper acceleration

A final ingredient in the formulation of relativistic dynamics is the proper accel-
eration. A particle follows a trajectory x(τ), where τ is the proper time. The
particle has velocity v = ẋ, v2 = 1. The proper acceleration is simply

v̇ =
dv

dτ
. (5.54)

Since v2 = 1, the velocity and acceleration are perpendicular

d

dτ
(v2) = 0 = 2v̇ ·v. (5.55)

In many physical phenomena it turns out that a more useful concept is provided
by the acceleration bivector

Bv = v̇∧v = v̇v. (5.56)

This bivector denotes the acceleration projected into the instantaneous rest frame
of the particle. Typically this bivector multiplied by the rest mass is equated
with a bivector encoding the forces acting on the particle. Any change in the
parameter along the curve will rescale the velocity vector, so Bv can be written
as

Bv =
v′∧v

(v ·v)3/2
, (5.57)

which is independent of the parameterisation of the trajectory.
Before applying the various preceding definitions to a range of dynamical prob-

lems, we turn to a discussion of the Lorentz transformations. This will pave the
way for a powerful method for studying relativistic problems which is unique to
geometric algebra.

5.3 Lorentz transformations

Lorentz transformations are usually expressed in the form of a coordinate trans-
formation. We suppose that two inertial observers have set up ‘coordinate lat-
tices’ in their own rest frames, as discussed in section 5.2.2. We denote these
frames by S and S′, and assume that they are set up such that their 1 and 2
axes coincide, but that S′ moves at (scalar) velocity βc along the 3 axis as seen
in the S frame. We denote the 0 and 3 components by t and z respectively. If
the origins of the frames coincide at t = t′ = 0, the coordinates of the same
spacetime event as measured in the two frames are related by

t′ = γ(t − βz), x1′ = x1, x2′ = x2, z′ = γ(z − βt), (5.58)
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where γ = (1 − β2)−1/2 and β is the velocity in units of c (β < 1). The inverse
relations are easily found to be

t = γ(t′ + βz′), x1 = x1′, x2 = x2′, z = γ(z′ + βt′). (5.59)

The arguments leading to these transformation laws are discussed in all intro-
ductory texts on relativity (see e.g. Rindler (1977) or French (1968)).

To get a clearer understanding of this transformation law we must first convert
these relations into a transformation law for the frame vectors. The vector x has
been decomposed in two frames, {eµ} and {e′µ}, so that

x = xµeµ = xµ′e′µ. (5.60)

We then have, for example,

t = e0 ·x, t′ = e0′ ·x. (5.61)

Concentrating on the 0 and 3 components we have

te0 + ze3 = t′e′0 + z′e′3, (5.62)

and from this we derive the vector relations

e′0 = γ(e0 + βe3), e′3 = γ(e3 + βe0). (5.63)

These define the new frame in terms of the old. As a check the new frame vectors
have the correct normalisation,

(e′0)
2 = γ2(1 − β2) = 1, (e′3)

2 = −1. (5.64)

The geometry of this transformation is illustrated in figure 5.3.
We saw earlier that bivectors with positive square lead to hyperbolic geometry.

This suggests that we introduce an ‘angle’ α with

tanh(α) = β (5.65)

so that

γ =
(
1 − tanh2(α)

)−1/2 = cosh(α). (5.66)

The vector e′0 is now

e′0 = cosh(α) e0 + sinh(α) e3

=
(
cosh(α) + sinh(α) e3e0

)
e0

= exp(α e3e0) e0, (5.67)

where we have expressed the scalar + bivector term as an exponential. Similarly,
we have

e′3 = cosh(α) e3 + sinh(α) e0 = exp(α e3e0) e3. (5.68)

Now recall that these are just two of four frame vectors, and the other pair
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r

r′

t t′

Figure 5.3 A Lorentz transformation. The transformation leaves the mag-
nitude of a vector invariant. As the underlying geometry of a spacetime
plane is Lorentzian, vectors of constant magnitude lie on hyperbolae, rather
than circles. The transformed axes define a new coordinate grid.

are unchanged by the transformation. Since e3e0 anticommutes with e0 and e3,
but commutes with e1 and e2, we can express the relationship between the two
frames as

e′µ = ReµR̃, eµ′ = ReµR̃, (5.69)

where

R = eα e3e0/2. (5.70)

The same rotor prescription introduced for rotations in Euclidean space also
works for boosts in relativity! This is dramatically simpler than having to work
with 4 × 4 Lorentz transform matrices.

5.3.1 Addition of velocities

As a simple example, suppose that we are in a frame with basis vectors {γµ}.
We observe two objects flying apart with 4-velocities

v1 = eα1γ1γ0/2γ0e−α1γ1γ0/2 = eα1γ1γ0γ0 (5.71)

and

v2 = e−α2γ1γ0/2γ0eα2γ1γ0/2 = e−α2γ1γ0γ0. (5.72)
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What is the relative velocity they see for each other? We form

v1∧v2

v1 ·v2
=

〈
e(α1 + α2)γ1γ0

〉
2〈

e(α1 + α2)γ1γ0
〉
0

=
sinh(α1 + α2)γ1γ0

cosh(α1 + α2)
. (5.73)

Both observers therefore measure a relative velocity of

tanh(α1 + α2) =
tanh(α1) + tanh(α2)

1 + tanh(α1) tanh(α2)
, (5.74)

Addition of (collinear) velocities is achieved by adding hyperbolic angles, and
not the velocities themselves. Replacing the tanh factors by the scalar velocities
u = c tanh(α) recovers the more familiar expression

u′ =
u1 + u2

1 + u1u2/c2
. (5.75)

The surprising conclusion is that addition of velocities in spacetime is really a
generalized rotation in a hyperbolic space! Quite dramatically different from the
Newtonian prescription of simple vector addition of the velocities.

5.3.2 Photons, Doppler shifts and aberration

For many relativistic applications involving the properties of light it is sufficient
to use a simplified model of a photon as a point particle following a null tra-
jectory. The tangent vector to the path is the wavevector k. This provides for
simple formulae for Doppler shifts and aberration. Suppose that two particles
follow different worldlines and that particle 1 emits a photon which is received
by particle 2 (see figure 5.4). The frequency seen by particle 1 is ω1 = v1·k, and
that by particle 2 is ω2 = v2 ·k. The ratio of these describes the Doppler effect,
often expressed as a redshift, z:

1 + z =
ω1

ω2
=

v1 ·k
v2 ·k

. (5.76)

This can be applied in many ways. For example, suppose that the emitter is
receding in the γ1 direction, and v2 = γ0. We have

k = ω2(γ0 + γ1), v1 = cosh(α) γ0 − sinh(α) γ1, (5.77)

so that

1 + z =
ω2

(
cosh(α) + sinh(α)

)
ω2

= eα. (5.78)

The velocity of the emitter in the γ0 frame is tanh(α), and it is easy to check
that

eα =
(

1 + tanh(α)
1 − tanh(α)

)1/2

. (5.79)
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v1

v2

k

Figure 5.4 Photon emission and absorption. A photon is emitted by par-
ticle 1 and received by particle 2.

This formula recovers the standard expression for the relativistic Doppler effect:

ω2 =
(

1 − β

1 + β

)1/2

ω1. (5.80)

In its current form this formula is appropriate for a source and receiver moving
away from each other at velocity βc. Had they been approaching each other the
sign of β would be reversed, leading to an increased frequency at the receiver (a
blueshift).

Aberration formulae can be obtained in a similar manner. Suppose that ob-
server 1 has velocity γ0, and that this observer receives photons at an angle θ to
the 1 axis in the 12 plane. The photons are therefore on a null trajectory with
tangent vector

n = γ0 − cos(θ) γ1 − sin(θ) γ2, (5.81)

and the γ0 observer recovers the angle θ via

tan(θ) =
n·γ2

n·γ1
. (5.82)

Suppose now that a second observer moves with velocity β relative to the first
along the 1 axis. This observer’s velocity is

v = e0 = cosh(α) γ0 + sinh(α) γ1 (5.83)

and the frame vectors for this observer are

e1 = cosh(α) γ1 + sinh(α) γ0, e2 = γ2, e3 = γ3. (5.84)

According to this observer the photons arrive at an angle

tan(θ′) =
n·e2

n·e1
=

sin(θ)
cosh(α) cos(θ) + sinh(α)

. (5.85)
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A straightforward rearrangement gives

cos(θ′) =
cosh(α) cos(θ) + sinh(α)
cosh(α) + sinh(α) cos(θ)

=
cos(θ) + β

1 + β cos(θ)
, (5.86)

so observers in relative motion measure different angles to a fixed light source.
This effect can be seen in observations of stars from the Earth. The Earth’s or-
bital velocity around the sun has a β of roughly 10−4 so to a good approximation
we have

cos(θ′) ≈ cos(θ) + β sin2(θ). (5.87)

The aberration angle φ = θ − θ′ satisfies the approximate formula

φ ≈ β sin(θ), (5.88)

which implies that the aberration varies over a year as θ varies through a complete
cycle. This variation was first observed by James Bradley in 1727 and was
explained in terms of a particle model of light. Bradley was able to use his data
to give an improved estimate of the speed of light, though the full relativistic
relation of (5.86) cannot be checked in this manner.

5.4 The Lorentz group

The full Lorentz group consists of the transformation group for vectors that pre-
serves lengths and angles. These include reflections and rotations. A reflection
in the hyperplane perpendicular to n is achieved by

a 
→ −nan−1. (5.89)

The n−1 is necessary to accommodate both timelike n2 > 0 and spacelike n2 < 0
cases. We cannot have null n, as the inverse does not exist. A timelike n

generates time-reversal transformations, whereas spacelike reflections preserve
time-ordering. Pairs of either of these result in a transformation which preserves
time-ordering. However, a combination of one spacelike and one timelike re-
flection does not preserve the time-ordering. The full Lorentz group therefore
contains four sectors (table 5.1).

The structure of the Lorentz group is easily understood in the spacetime alge-
bra. We concentrate on even numbers of reflections, which have determinant +1
and correspond to type I and type IV transformations. The remaining types
are obtained from these by a single extra reflection. If we combine even numbers
of reflections we arrive at a transformation of the form

a 
→ ψaψ−1, (5.90)

where ψ is an even multivector. This expression is currently too general, as we
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Parity preserving Space reflection

Time order preserving
I

Proper
orthochronous

II
I with space

reflection

Time reversal
III

I with time
reversal

IV
I with
a �→ −a

Table 5.1 The full Lorentz group. The group of Lorentz transforma-
tions falls into four disjoint sectors. Sectors I and IV have determinant
+1, whereas II and III have determinant −1. Both I and II preserve
time-ordering, and the proper orthochronous transformations (type I) are
simply-connected to the identity.

have not ensured that the right-hand side is a vector. To see how to do this we
decompose ψ into invariant terms. We first note that

ψψ̃ = (ψψ̃)∼ (5.91)

so ψψ̃ is even-grade and equal to its own reverse. It can therefore only contain
a scalar and a pseudoscalar,

ψψ̃ = α1 + Iα2 = ρeIβ , (5.92)

where ρ 	= 0 in order for ψ−1 to exist. We can now define a rotor R by

R = ψ(ρeIβ)−1/2, (5.93)

so that

RR̃ = ψψ̃(ρeIβ)−1 = 1, (5.94)

as required. We now have

ψ = ρ1/2eIβ/2R, ψ−1 = ρ−1/2e−Iβ/2R̃ (5.95)

and our general transformation becomes

a 
→ eIβ/2Rae−Iβ/2R̃ = eIβRaR̃. (5.96)

The term RaR̃ is necessarily a vector as it is equal to its own reverse, so we must
restrict β to either 0 or π, leaving the transformation

a 
→ ±RaR̃. (5.97)

The transformation a 
→ RaR̃ preserves causal ordering as well as parity.
Transformations of this type are called ‘proper orthochronous’ transformations.
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We can prove that transformations parameterised by rotors are proper orthoch-
ronous by starting with the velocity γ0 and transforming it to v = Rγ0R̃. We
require that the γ0 component of v is positive, that is,

γ0 ·v = 〈γ0Rγ0R̃〉 > 0. (5.98)

Decomposing in the γ0 frame we can write

R = α + a + Ib + Iβ (5.99)

and we find that

〈γ0Rγ0R̃〉 = α2 + a2 + b2 + β2 > 0 (5.100)

as required. Our rotor transformation law describes the group of proper or-
thochronous transformations, often called the restricted Lorentz group. These
are the transformations of most physical relevance. The negative sign in equa-
tion (5.97) corresponds to β = π and gives class-IV transformations.

5.4.1 Invariant decomposition and fixed points

Every rotor in spacetime can be written in terms of a bivector as

R = ±eB/2. (5.101)

(The minus sign is rarely required, and does not affect the vector transformation
law.) We can understand many of the features of spacetime transformations
and rotors through the properties of the bivector B. The bivector B can be
decomposed in a Lorentz-invariant manner by first writing

B2 = 〈B2〉0 + 〈B2〉4 = ρeIφ, (5.102)

and we will assume that ρ 	= 0. (The case of a null bivector is treated slightly
differently.) We now define

B̂ = ρ−1/2e−Iφ/2B, (5.103)

so that

B̂2 = ρ−1e−IφB2 = 1. (5.104)

With this we can now write

B = ρ1/2eIφ/2B̂ = αB̂ + βIB̂, (5.105)

which decomposes B into a pair of bivector blades, αB̂ and βIB̂. Since

B̂(IB̂) = (IB̂)B̂ = I, (5.106)

the separate bivector blades commute. The rotor R now decomposes into

R = eαB̂/2eβIB̂/2 = eβIB̂/2eαB̂/2, (5.107)
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n− n+

Time

SpaceB̂

Figure 5.5 A timelike plane. Any timelike plane B̂, B̂2 = 1, contains two
null vectors n+ and n−. These can be normalised so that n+∧n− = 2B̂.

exhibiting an invariant split into a boost and a rotation. The boost is generated
by B̂ and the rotation by IB̂.

For every timelike bivector B̂, B̂2 = 1, we can construct a pair of null vectors
n± satisfying

B̂ ·n± = ±n±. (5.108)

These are necessarily null, since

n+ ·n+ = (B ·n+)·n+ = B ·(n+∧n+) = 0, (5.109)

with the same holding for n−. The two null vectors can also be chosen so that

n+∧n− = 2B̂, (5.110)

so that they form a null basis for the timelike plane defined by B̂ (see figure 5.5).
The null vectors n± anticommute with B̂ and therefore commute with IB̂.

The effect of the Lorentz transformation on n± is therefore

Rn±R̃ = eαB̂/2n±e−αB̂/2

= cosh(α)n± + sinh(α) B̂ ·n±

= e±αn±. (5.111)

The two null directions are therefore just scaled — their direction is unchanged.
It follows that every Lorentz transformation has two invariant null directions.
The case where the bivector generator itself is null, B2 = 0, corresponds to the
special situation where these two null directions coincide.

5.4.2 The celestial sphere

One way to visualise the effect of Lorentz transformations is through their effect
on the past light-cone (see figure 5.6). Each null vector on the past light-cone
maps to a point on the sphere S− — the celestial sphere for the observer. Suppose
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γ0

t = 0S

S+

S−

Past

light-cone

Figure 5.6 The celestial sphere. Each observer sees events in their past
light-cone, which can be viewed as defining a sphere (shown here as a circle
in a plane).

then that light is received along the null vector n, with the observer’s velocity
chosen to be γ0. The relative vector in the γ0 frame is n∧γ0. This has magnitude

(n∧γ0)2 = (n·γ0)2 − n2γ2
0 = (n·γ0)2. (5.112)

We therefore define the unit relative vector n by the projective formula

n =
n∧γ0

n·γ0
. (5.113)

Observers passing through the same spacetime point at different velocities see
different celestial spheres. If a second observer has velocity v = Rγ0R̃, the unit
relative vectors in this observer’s frame are formed from n∧v/n·v. These can be
brought to the γ0 frame for comparison by forming

n′ = R̃
n∧v

n·v R =
n′∧γ0

n′ ·γ0
, (5.114)
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where n′ = R̃nR. The effects of Lorentz transformations can be visualised simply
by moving around points on the celestial sphere with the map n 
→ R̃nR. We
know immediately, then, that two directions remain invariant and so describe
the same points on the celestial spheres of two observers.

5.4.3 Relativistic visualisation

We have endeavoured to separate the concept of a single observer from that of a
coordinate lattice. A clear illustration of this distinction arises when one studies
how bodies appear when seen by different observers. Concentrating purely on
coordinates leads directly to the conclusion that there is a measurable Lorentz
contraction in the direction of motion of a body moving relative to some coor-
dinate system. But when we consider what two different observers actually see,
the picture is rather different.

Suppose that two observers in relative motion observe a sphere. The sphere
and one of the observers are both at rest in the γ0 system. This observer sees
the edge of the sphere as a circle defined by the unit vectors

n = sin(θ)(cos(φ)σ1 + sin(φ)σ2) + cos(θ)σ3, 0 ≤ φ < 2π. (5.115)

The angle θ is fixed so the sphere subtends an angle 2θ on the sky and is centred
on the 3 axis (see figure 5.7). The incoming photon paths from the sphere are
defined by the family of null vectors

n = (1 − n)γ0. (5.116)

Now suppose that a second observer has velocity β = tanh(α) along the 1 axis,
so

v = cosh(α) γ0 + sinh(α) γ1 = Rγ0R̃, (5.117)

where R = exp(α γ1γ0/2). To compare what these two observers see we form

n′ = R̃nR = cosh(α)
(
1 + β sin(θ) cos(φ)

)
γ0 − cosh(α)

(
sin(θ) cos(φ) + β

)
γ1

− sin(θ) sin(φ) γ2 − cos(θ) γ3. (5.118)

And from this the new unit relative outward vector is

n′ =
cosh(α)

(
sin(θ) cos(φ) + β

)
σ1 + sin(θ) sin(φ)σ2 + cos(θ)σ3

cosh(α)
(
1 + β sin(θ) cos(φ)

) . (5.119)

Now consider the vector

c = σ3 + sinh(α) cos(θ)σ1. (5.120)

This vector satisfies

c·n′ = cosh(α) cos(θ), (5.121)
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θ θ

e1

e2

e3

Figure 5.7 Relativistic visualization of a sphere. The sphere is at rest in
the γ0 frame with its centre a unit distance along the 3 axis. The sphere
is simultaneously observed by two observers placed at the spatial origin.
One observer is at rest in the γ0 system, and the other is moving along the
1 axis.

which is independent of φ. It follows that, from the point of view of the second
observer, all points on the edge of the sphere subtend the same angle to c. So
the vector c must lie at the centre of a circle, and the second observer still sees
the edge of the sphere as circular. That is, both observers see the sphere as
a sphere, and there is no observable contraction along the direction of motion.
The only difference is that the moving observer sees the angular diameter of the
sphere reduced from 2θ to 2θ′, where

cos(θ′) =
cos(θ) cosh(α)(

1 + sinh2(α) cos2(θ)
)1/2

,

tan(θ′) =
tan(θ)

γ
.

(5.122)

More generally, moving observers see solid objects as rotated, as opposed to
contracted along their direction of motion. Visualising Lorentz transformations
of solid objects has now been discussed by various authors (see Rau, Weiskopf
& Ruder (1998)). But the original observation that spheres remain spheres
for observers in relative motion had to wait until 1959 — more than 50 years
after the development of special relativity! The first authors to point out this
invisibility of the Lorentz contraction were Terrell (1959) and Penrose (1959).
Both authors based their studies on the fact that the Lorentz group is isomorphic
to the conformal group acting on the surface of a sphere. This type of geometry
is discussed in chapter 10.
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5.4.4 Pure boosts and observer splits

Suppose we are travelling with velocity u and want to boost to velocity v. We
seek the rotor for this which contains no additional rotational factors. We have

v = LuL̃ (5.123)

with La⊥L̃ = a⊥ for any vector outside the u∧v plane. It is clear that the
appropriate bivector for the rotor is u∧v, and as this anticommutes with u and
v we have

v = LuL̃ = L2u ⇒ L2 = vu. (5.124)

The solution to this is

L =
1 + vu

[2(1 + u·v)]1/2
= exp

(
α

2
v∧u

|v∧u|

)
, (5.125)

where the angle α is defined by cosh(α) = u·v.
Now suppose that we start in the γ0 frame and some arbitrary rotor R takes

this to v = Rγ0R̃. We know that the pure boost for this transformation is

L =
1 + vγ0

[2(1 + v ·γ0)]1/2
= exp

(
α

2
v∧γ0

|v∧γ0|

)
, (5.126)

where v ·γ0 = cosh(α). Now define the further rotor U by

U = L̃R, UŨ = L̃RR̃L = 1. (5.127)

This satisfies

Uγ0Ũ = L̃vL = γ0, (5.128)

so Uγ0 = γ0U . We must therefore have U = exp(Ib/2), where Ib is a relative
bivector, and U generates a pure rotation in the γ0 frame. We now have

R = LU, (5.129)

which decomposes R into a relative rotation and boost. Unlike the invariant
decomposition into a boost and rotation of equation (5.107), the boost L and
rotation U will not usually commute. The fact that the LU decomposition ini-
tially singled out the γ0 vector shows that the decomposition is frame-dependent.
Both the invariant split of equation (5.107) and the frame-dependent split of
equation (5.129) are useful in practice.

5.5 Spacetime dynamics

Dynamics in spacetime is traditionally viewed as a hard subject. This need not
be the case, however. We have now established that Lorentz transformations
which preserve parity and causal structure can be described with rotors. By
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parameterising the motion in terms of rotors many equations are considerably
simplified, and can be solved in new ways. This provides a simple understanding
of the Thomas precession, as well as a new formulation of the Lorentz force law
for a particle in an electromagnetic field.

5.5.1 Rotor equations and Fermi transport

A spacetime trajectory x(τ) has a future-pointing velocity vector ẋ = v. This is
normalised to v2 = 1 by parameterising the curve in terms of the proper time.
This suggests an analogy with rigid-body dynamics. We write

v = Rγ0R̃, (5.130)

which keeps v future-pointing and normalised. This moves all of the dynamics
into the rotor R = R(τ), and this is the key idea which simplifies much of
relativistic dynamics. The next quantity we need to find is the acceleration

v̇ =
d

dτ
(Rγ0R̃) = Ṙγ0R̃ + Rγ0

˙̃R. (5.131)

But just as in three dimensions, ṘR̃ is of even grade and is equal to minus its
reverse, so can only contain bivector terms. We therefore have

v̇ = ṘR̃v − vṘR̃

= 2(ṘR̃)·v. (5.132)

This equation is consistent with the fact that v·v̇ = 0, which follows from v2 = 1.
If we now form the acceleration bivector we obtain

v̇v = 2(ṘR̃)·v v. (5.133)

This determines the projection of the bivector into the instantaneous rest frame
defined by v. In this frame the projected bivector is purely timelike and cor-
responds to a pure boost. The remaining freedom in ṘR̃ corresponds to an
additional rotation in R which does not change v.

For the purposes of determining the velocity and trajectory of a particle the
component of ṘR̃ perpendicular to v is of no relevance. In some applications,
however, it is useful to attach physical significance to the comoving frame vectors
{eµ},

eµ = RγµR̃, (5.134)

which have e0 = v. The spatial set of vectors {ei} satisfy ei ·v = 0 and span the
instantaneous rest space of v. In this case, the dynamics of the ei can be used
to determine the component of ṘR̃ which is not fixed by v alone.

The vectors {ei} are carried along the trajectory by the rotor R. They are said
to be Fermi-transported if their transformation from one instant to the next is
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v(τ)

v(τ + δτ)

x(τ)

Figure 5.8 The proper boost. The change in velocity from τ to τ + δτ
should be described by a rotor solely in the v̇∧v plane.

a pure boost in the v frame. In this case the {ei} vectors remain ‘as constant as
possible’, subject to the constraint ei ·v = 0. For example, the direction defined
by the angular momentum of an inertial guidance gyroscope (supported at its
centre of mass so there are no torques) is Fermi-transported along the path of
the gyroscope through spacetime.

To ensure Fermi-transport of RγiR̃ we need to ensure that the rotor describes
pure boosts from one instant to the next (see figure 5.8). To first order in δτ we
have

v(τ + δτ) = v(τ) + δτ v̇. (5.135)

The pure boost between v(τ) and v(τ + δτ) is determined by the rotor

L =
1 + v(τ + δτ)v(τ)

[2(1 + v(τ + δτ)·v(τ))]1/2
= 1 + 1

2δτ v̇v, (5.136)

to first order in δτ . But since

R(τ + δτ) = R(τ) + δτṘ(τ) = (1 + δτṘR̃)R(τ), (5.137)

the additional rotation that takes the {ei} frame from τ to τ + δτ is described
by the rotor 1 + δτṘR̃. Equating this to the pure boost L of equation (5.136),
we find that the correct expression to ensure Fermi-transport of the {ei} is

ṘR̃ = 1
2 v̇v. (5.138)

This is as one would expect. The bivector describing the change in the rotor is
simply the acceleration bivector, which is the acceleration seen in the instanta-
neous rest frame.
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Under Fermi-transport the {ei} frame vectors satisfy

ėi = 2(ṘR̃)·ei = −ei ·(v̇v). (5.139)

This leads directly to the definition of the Fermi derivative

Da

Dτ
= ȧ + a·(v̇v). (5.140)

The Fermi derivative of a vector vanishes if the vector is Fermi-transported along
the worldline. The derivative preserves both the magnitude a2 and a · v. The
former holds because

d

dτ
(a2) = −2a·

(
a·(v̇∧v)

)
= 0. (5.141)

Conservation of a · v is also straightforward to check:

d

dτ
(a·v) = −

(
a·(v̇v)

)
·v + a·v̇

= −a·v̇ + a·v v̇ ·v + a·v̇ = 0. (5.142)

It follows that if a starts perpendicular to v it remains so. In the case where
a·v = 0 the Fermi derivative takes on the simple form

Da

Dτ
= ȧ + a·v̇ v = ȧ − ȧ·v v = ȧ∧v v. (5.143)

This is the projection of ȧ perpendicular to v, as expected. The Fermi derivative
extends simply to multivectors as follows:

DM

Dτ
=

dM

dτ
+ M×(v̇v). (5.144)

Derivatives of this type are important in gauge theories and gravity.

5.5.2 Thomas precession

As an application, consider a particle in a circular orbit (figure 5.9). The world-
line is

x(τ) = t(τ)γ0 + a(cos(ωt)γ1 + sin(ωt)γ2), (5.145)

and the velocity is

v = ẋ = ṫ
(
γ0 + aω(− sin(ωt)γ1 + cos(ωt)γ2)

)
. (5.146)

The relative velocity as seen in the γ0 frame, v = v∧γ0/v ·γ0, has magnitude
|v| = aω. We therefore introduce the hyperbolic angle α, with

tanh(α) = aω, ṫ = cosh(α). (5.147)
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γ0

γ1

γ1

γ2

γ2

ω

Figure 5.9 Thomas precession. The particle follows a helical worldline,
rotating at a constant rate in the γ0 frame.

The velocity is now

v = cosh(α) γ0 + sinh(α)
(
− sin(ωt)γ1 + cos(ωt)γ2

)
= eαn/2γ0e−αn/2, (5.148)

where

n = − sin(ωt)σ1 + cos(ωt)σ2. (5.149)

This form of time dependence in the rotor is inconvenient to work with. To
simplify, we write

n = e−ωtIσ3σ2 = Rωσ2R̃ω, (5.150)

where Rω = exp(−ωtIσ3/2). We now have

eαn/2 = exp(αRωσ2R̃ω/2) = RωRαR̃ω, (5.151)

where

Rα = exp(ασ2/2). (5.152)

The velocity is now given by

v = RωRαR̃ωγ0RωR̃αR̃ω = RωRαγ0R̃αR̃ω. (5.153)

The final expression follows because Rω commutes with γ0.
We can now see that the rotor for the motion must have the form

R = RωRαΦ, (5.154)
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where Φ is a rotor that commutes with γ0. We want R to describe Fermi trans-
port of the {ei}, so we must have v̇v = 2ṘR̃. We begin by forming the accelera-
tion bivector v̇v. We can simplify this derivation by writing v = RωvαR̃ω, where
vα = Rαγ0R̃α. We then find that

v̇v = Rω

(
2(R̃ωṘω)·vα vα

)
R̃ω

= −ω cosh(α)Rω

(
(Iσ3)·vα vα

)
R̃ω

= ω sinh(α) cosh(α)Rω

(
− cosh(α)σ1 + sinh(α) Iσ3

)
R̃ω. (5.155)

We also form the rotor equivalent, 2ṘR̃, which is

2ṘR̃ = 2ṘωR̃ω + 2RωRαΦ̇Φ̃R̃αR̃ω

= −ω cosh(α) Iσ3 + 2RωRαΦ̇Φ̃R̃αR̃ω. (5.156)

Equating the two preceding results we find that

2Φ̇Φ̃ = ω cosh2(α) R̃α

(
− sinh(α)σ1 + cosh(α) Iσ3

)
Rα

= ω cosh2(α) Iσ3. (5.157)

The solution with Φ = 1 at t = 0 is Φ = exp(ω cosh(α)tIσ3/2), so the full rotor
is

R = e−ωtIσ3/2eασ2/2ecosh(α)ωtIσ3/2. (5.158)

This form of the rotor ensures that the ei = RγiR̃ are Fermi transported. The
fact that the ‘internal’ rotation rate ω cosh(α) differs from ω is due to the fact
that the acceleration is formed in the instantaneous rest frame v and not the fixed
γ0 frame. This difference introduces a precession — the Thomas precession. We
can see this effect by imagining the vector γ1 being transported around the circle.
The rotated vector is

e1 = Rγ1R̃. (5.159)

In the low velocity limit cosh(α) 
→ 1 the vector γ1 continues to point in the γ1

direction and the frame does not rotate, as we would expect. At larger velocities,
however, the frame starts to precess. After time t = 2π/ω, for example, the γ1

vector is transformed to

e1(2π/ω) = eασ2/2e2π cosh(α)Iσ3γ1e−ασ2/2. (5.160)

Dotting this with the initial vector e1(0) = γ1 we see that the vector has precessed
through an angle

θ = 2π(cosh(α) − 1). (5.161)

This shows that the effect is of order |v|2/c2. The form of the Thomas precession
justifies one of the relativistic corrections to the spin-orbit coupling in the Pauli
theory of the electron.
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5.5.3 The Lorentz force law

The non-relativistic form of the Lorentz force law for a particle of charge q is

dp

dt
= q(E + v×B), (5.162)

where the × here denotes the vector cross product, and all relative vectors are
expressed in some global Newtonian frame, which we will take to be the γ0 frame.
We seek a covariant relativistic version of this law. The quantity p on the left-
hand side is the relative vector p∧γ0. Since dt = γdτ , we must multiply through
by γ = v·γ0 to convert the derivative into one with respect to proper time. The
first term on the right-hand side then includes

v ·γ0 E = 1
4

(
E(vγ0 + γ0v) + (vγ0 + γ0v)E

)
= 1

4

(
(Ev − vE)γ0 − γ0(Ev − vE)

)
= (E ·v)∧γ0. (5.163)

Recall at this point that E is a spacetime bivector built from the σk = γkγ0, so
E anticommutes with γ0.

For the magnetic term in equation (5.162) we first replace the cross product
by the equivalent three-dimensional expression (IB) ·v. Expanding out, and
expressing in the full spacetime algebra, we obtain

1
2v ·γ0(IBv − vIB) = 1

4

(
IB(vγ0 − γ0v) − (vγ0 − γ0v)IB

)
= 1

4

(
(IBv − vIB)γ0 − γ0(IBv − vIB)

)
=
(
(IB)·v

)
∧γ0, (5.164)

where we use the fact that γ0 commutes with IB. Combining equations (5.163)
and (5.164) we can now write the Lorentz force law (5.162) in the form

dp

dτ
= ṗ∧γ0 = q

(
(E + IB)·v

)
∧γ0. (5.165)

We next define the Faraday bivector F by

F = E + IB. (5.166)

This is the covariant form of the electromagnetic field strength. It unites the
electric and magnetic fields into a single spacetime structure. We study this in
greater detail in chapter 7. The Lorentz force law can now be written

ṗ∧γ0 = q(F ·v)∧γ0. (5.167)

The rate of working on the particle is qE ·v, so

dp0

dt
= qE ·v. (5.168)
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Here, p0 = p·γ0 is the particle’s energy in the γ0 frame. Multiplying through by
v ·γ0, we find

ṗ·γ0 = qE ·(v∧γ0) = q(F ·v)·γ0. (5.169)

In the final step we have used (IB) · (v∧γ0) = 0. Adding this equation to
equation (5.167), and multiplying on the right by γ0, we find

ṗ = qF ·v. (5.170)

Recalling that p = mv, we arrive at the relativistic form of the Lorentz force law,

mv̇ = qF ·v. (5.171)

This is manifestly Lorentz covariant, because no particular frame is picked out.
The acceleration bivector is

v̇v =
q

m
F ·v v =

q

m
(F ·v)∧v =

q

m
Ev, (5.172)

where Ev is the relative electric field in the v frame. A charged point particle
only responds to the instantaneous electric field in its frame. Algebraically, this
bivector is

Ev = 1
2 (F − vFv). (5.173)

So Ev is the component of the bivector F which anticommutes with v.
Now suppose that we parameterise the velocity with a rotor, so that v = Rγ0R̃.

We have

v̇ = 2ṘR̃v = 2(ṘR̃)·v =
q

m
F ·v. (5.174)

The simplest form of the rotor equation comes from equating the projected terms:

Ṙ =
q

2m
FR. (5.175)

This is not the most general possibility as we could include an extra multiple of
F ∧v v. The rotor determined by equation (5.175) will not, in general, describe
Fermi-transport of the RγiR̃ vectors. However, equation (5.175) is sufficient to
determine the velocity of the particle, and is certainly the simplest form of rotor
equation to work with. As we now demonstrate, the rotor equation (5.175) is
remarkably efficient when it comes to solving the dynamical equations.

5.5.4 Constant field

Motion in a constant field is easy to solve for now. We can immediately integrate
the rotor equation to give

R = exp
( q

2m
Fτ
)

R0. (5.176)

157

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.007
https:/www.cambridge.org/core


RELATIVITY AND SPACETIME

Figure 5.10 Particle in a constant field. The general motion is a combi-
nation of linear acceleration and circular motion. The plot on the left has
E and B colinear. The plot on the right has E entirely in the IB plane,
giving rise to cycloids.

To proceed and recover the trajectory we form the invariant decomposition of
F . We first write

F 2 = 〈F 2〉0 + 〈F 2〉4 = ρeIθ, (5.177)

so that we can set

F = ρ1/2eIθ/2F̂ = αF̂ + IβF̂ , (5.178)

where F̂ 2 = 1. (If F is null a slightly different procedure is followed.) We now
have

R = exp
( q

2m
αF̂τ

)
exp

( q

2m
IβF̂ τ

)
R0. (5.179)

Next we decompose the initial velocity v0 = R0γ0R̃0 into components in and out
of the F̂ plane:

v0 = F̂ 2v0 = F̂ F̂ ·v0 + F̂ F̂∧v0 = v0‖ + v0⊥. (5.180)

Now v0‖ = F̂ F̂ ·v0 anticommutes with F̂ , and v0⊥ commutes with F̂ , so

ẋ = exp
( q

m
αF̂ τ

)
v0‖ + exp

( q

m
IβF̂ τ

)
v0⊥. (5.181)

This integrates immediately to give the particle history

x − x0 =
eqαF̂ τ/m − 1

qα/m
F̂ ·v0 −

eqβIF̂ τ/m − 1
qβ/m

(IF̂ )·v0. (5.182)

The first term gives linear acceleration and the second is periodic and drives
rotational motion (see figure 5.10). One has to be slightly careful integrating the
velocity equation in the case where either α or β is zero, which corresponds to
perpendicular E and B fields.
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5.5.5 Particle in a Coulomb field

As a further application we consider the case of a charged point particle moving
in a central Coulomb field. If relativistic effects are ignored the problem reduces
to the inverse-square force law described in section 3.2.1. We therefore expect
that the relativistic description will add additional perturbative effects to the
elliptic and hyperbolic orbits found in the inverse-square case. We assume for
simplicity that the central charge has constant velocity γ0 and is placed at the
origin. The electromagnetic field is

F =
Qx

4πε0r3
, (5.183)

where x = x∧γ0 and r2 = x2. In this section all bold symbols denote relative
vectors in the γ0 frame. The question of how to generalise the non-relativistic
definitions of centre of mass and relative separation turns out to be surprisingly
complex and is not tackled here. Instead we will simply assume that the source of
the Coulomb field is far heavier than the test charge so that the source’s motion
can be ignored.

There are two constants of motion for this force law. The first is the energy

E = mv ·γ0 +
qQ

4πε0r
. (5.184)

If the charges are opposite, qQ is negative and the potential is attractive. The
force law can now be written in the γ0 frame as

m
d2x

dτ2
=

qQx

4πε0r3

(
E

m
− qQ

4πε0mr

)
. (5.185)

The second conserved quantity is the angular momentum, which is conserved for
any central force, as is the case in equation (5.185). If we define the spacetime
bivector L = x∧p we find that

L̇ = qx∧(F ·v). (5.186)

It follows that the trivector L∧γ0 is conserved. Equivalently, we can define the
relative bivector

Il = L∧γ0 γ0, (5.187)

so that the relative vector l is conserved. This is the relative angular momentum
vector and satisfies x·l = 0. It follows that the test particle’s motion takes place
in a constant plane as seen from the source charge.

In order to integrate the rotor equation we need to find a way to express the
field as a function of the particle’s proper time. This is achieved by introducing
an angular measure in the plane of motion. Suppose that we align the 3 axis
with l, so that we can write

x̂(τ) = σ1 exp
(
Iσ3θ(τ)

)
, (5.188)
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where x̂ is the unit relative vector x/r. It follows that

l2 = m2r4 ˙̂x2 = m2r4θ̇2. (5.189)

If we set l = |l| we have l = mr2θ̇, which enables us to express the Coulomb field
as

F =
Qmθ̇σ1 exp

(
Iσ3θ(τ)

)
4πε0l

. (5.190)

If we now let

κ =
qQ

4πε0l
(5.191)

the rotor equation takes on the simple form

dR

dθ
=

κ

2
σ1 exp(Iσ3θ)R. (5.192)

Re-expressing the differential equation in terms of θ is a standard technique for
solving inverse-square problems in non-relativistic physics. But this technique
fails to give a simple solution to the relativistic equation (5.185). Instead, we
see that the technique gives a simple solution to the relativistic problem only if
applied directly to the rotor equation.

To solve equation (5.192) we first set

R = exp(−Iσ3θ/2)U. (5.193)

It follows that
dU

dθ
Ũ = 1

2 (κσ1 + Iσ3), (5.194)

which integrates straightforwardly. The full rotor is then

R = e−Iσ3θ/2eAθ/2R0, (5.195)

where

A = κσ1 + Iσ3. (5.196)

The initial conditions can be chosen such that θ(0) = 0, which tells us how to
align the 1 axis. The rotor R0 then specifies the initial velocity v0. If we are not
interested in transporting a frame, R0 can be set equal to a pure boost from γ0

to v0.
With the rotor equation now solved, the velocity can be integrated to recover

the trajectory. Clearly, different types of path are obtained for the different signs
of A2 = κ2 − 1. The equation relating r and θ is found from the relation

− d

dθ

(
1
r

)
=

m

l
x̂·ẋ. (5.197)
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To evaluate the right-hand side we need

x̂·ẋ = 〈e−Iσ3θ/2σ1eIσ3θ/2Rγ0R̃γ0〉
= −〈γ1eAθ/2v0e−Aθ/2〉
= 〈e−Aθγ1v0〉. (5.198)

It follows that

− d

dθ

(
1
r

)
=

m

l
〈e−Aθγ1v0〉. (5.199)

For a given l and v0 this integrates to give the trajectory in the Il plane.
Suppose, for example, that we are interested in bound states. For these we

must have A2 < 0, which implies that κ2 < 1. We write

|A| = (1 − κ2)1/2 (5.200)

for the magnitude of A. To simplify the equations we will assume that τ = 0
corresponds to a point on the trajectory where v is perpendicular to x. In this
case we have

v0 = cosh(α0) γ0 + sinh(α0) γ2 (5.201)

so that the trajectory is determined by

− d

dθ

(
1
r

)
=

m

l|A|
(
κ cosh(α0) + sinh(α0)

)
sin(|A|θ). (5.202)

The magnitude of the angular momentum is given by l = mr0 sinh(α0), which
can be used to write

m
(
κ cosh(α0) + sinh(α0)

)
= (E2 − m2|A|2)1/2. (5.203)

The trajectory is then given by

l|A|2
r

= −κE + (E2 − m2|A|2)1/2 cos(|A|θ), (5.204)

and since this represents a bound state, κ must be negative. The fact that the
angular term goes as cos(|A|θ) shows that this equation specifies a precessing
ellipse (figure 5.11). The precession rate of the ellipse can be found simply using
the technique of section 3.3.

5.5.6 The gyromagnetic moment

Particles with non-zero spin have a magnetic moment which is proportional to
the spin. In non-relativistic physics we write this as m = γs, where γ is the
gyromagnetic ratio and s is the spin (which has units of angular momentum).
The gyromagnetic ratio is usually written in the form

γ = g
q

2m
, (5.205)
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Figure 5.11 Motion in a Coulomb field. For bound orbits (E < m) the
particle’s motion is described by a precessing ellipse. The plot is for |A| =
0.95. The units are arbitrary.

where m is the particle mass, q is the charge and g is the (reduced) gyromagnetic
ratio. The last is determined experimentally via the precession of the spin vector
which, in classical physics, obeys

ṡ = g
q

2m
(IB)·s. (5.206)

We seek a relativistic extension of this equation. We start by introducing the
relativistic spin vector s, which is perpendicular to the velocity v, so s · v = 0.
For a particle at rest in the γ0 frame we have s = sγ0. The particle’s spin
will interact with the magnetic field only in the instantaneous rest frame, so we
should regard equation (5.206) as referring to this frame.

Given that s = sγ0 we find that

(IB)·s = 〈(F∧γ0)γ0sγ0〉2
= (F ·s)∧γ0. (5.207)

So, for a particle at rest in the γ0 frame, equation (5.206) can be written

ds

dt
= g

q

2m
(F ·s)∧γ0 γ0. (5.208)

To write down an equation which is valid for arbitrary velocity we must replace
the two factors of γ0 on the right-hand side with the velocity v. On the left-hand
side we need the derivative of s which preserves s · v = 0. This is the Fermi
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derivative of section 5.5.1, which tells us that the relativistic form of the spin
precession equation is

ṡ + s·(v̇v) = g
q

2m
(F ·s)∧v v. (5.209)

This equation tells us how much the spin vector rotates, relative to a Fermi-
transported frame, which is physically sensible. We can eliminate the accelera-
tion bivector v̇v by using the relativistic Lorentz force law to find

ṡ = g
q

2m
(F ·s)∧v v − q

m
s·(F ·v v)

=
q

2m

(
g(F ·s)∧v + 2(F ·s)·v

)
v

=
q

m
F ·s + (g − 2)

q

2m
(F ·s)∧v v. (5.210)

This is called the Bargmann–Michel–Telegdi equation.
For the value g = 2, the Bargmann–Michel–Telegdi equation reduces to

ṡ =
q

m
F ·s, (5.211)

which has the same form as the Lorentz force law. In this sense, g = 2 is the
most natural value of the gyromagnetic ratio of a point particle in relativistic
physics. Ignoring quantum corrections, this is indeed found to be the value for an
electron. Quantum corrections tell us that for an electron g = 2(1+α/2π + · · · ).
The corrections are due to the fact that the electron is never truly isolated and
constantly interacts with virtual particles from the quantum vacuum.

Given a velocity v and a spin vector s, with v ·s = 0 and s normalised to
s2 = −1, we can always find a rotor R such that

v = Rγ0R̃, s = Rγ3R̃. (5.212)

For these we have

v̇ = 2(ṘR̃)·v, ṡ = 2(ṘR̃)·s. (5.213)

For a particle with g = 2, this pair of equations reduces to the single rotor
equation (5.175). The simple form of this equation further justifies the claim
that g = 2 is the natural, relativistic value of the gyromagnetic ratio. This
also means that once we have solved the rotor equation, we can simultaneously
compute both the trajectory and the spin precession of a classical relativistic
particle with g = 2.

5.6 Notes

There are many good introductions to special relativity. Standard references
include the books by French (1968), Rindler (1977) and d’Inverno (1992). Prac-
tically all introductory books make heavy use of coordinate geometry. Geometric
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algebra was first systematically applied to the study of relativistic physics in the
book Space-Time Algebra by Hestenes (1966). Since this book was published
in 1966 many authors have applied spacetime algebra techniques to relativistic
physics. The two most significant papers are again by Hestenes, ‘Proper parti-
cle mechanics’ and ‘Proper dynamics of a rigid point particle’ (1974a,b). These
papers detail the use of rotor equations for solving problems in electrodynamics,
and much of section 5.5 follows their presentation.

5.7 Exercises

5.1 Suppose that the spacetime bivector B̂ satisfies B̂2 = 1. By writing
B̂ = a + Ib in the γ0 frame, show that we can write

B̂ = cosh(u)â + sinh(u)Ib̂ = euIb̂â â,

where â2 = b̂
2

= 1. Hence explain why we can write B̂ = Rσ3R̃. By
considering the null vectors γ0 ± γ3, prove that we can always find two
null vectors satisfying

B̂ ·n± = ±n±.

5.2 The boost L from velocity u to velocity v satisfies

v = LuL̃ = L2u,

with LL̃ = 1. Prove that a solution to this equation is

L =
1 + vu

[2(1 + v ·u)]1/2
.

Is this solution unique? Show further that this solution can be written
in the form

L = exp
(

α

2
v∧u

|v∧u|

)
,

where α > 0 satisfies cosh(α) = u·v.
5.3 Compton scattering occurs when a photon scatters off an electron. If

we ignore quantum effects this can be modelled as a relativistic collison
process. The incident photon has wavelength λ0 in the frame in which
the electron is initially stationary. Show that the wavelength after scat-
tering, λ, satisfies

λ − λ0 =
2π--h
mc

(
1 − cos(θ)

)
,

where θ is the angle through which the photon scatters.
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5.4 A relativistic particle has velocity v = Rγ0R̃. Show that v satisfies the
Lorentz force equation mv̇ = qF ·v if R satisfies

Ṙ =
q

2m
FR.

Show that the solution to this for a constant field is

R = exp(qFτ/2m)R0.

Given that F is null, F 2 = 0, show that v is given by the polynomial

v = v0 + τ
q

m
F ·v0 − τ2 q2

4m2
Fv0F.

Suppose now that F = σ1 + Iσ2 and the particle is initially at rest in
the γ0 frame. Sketch the resultant motion in the γ1γ3 plane.

5.5 One way to construct the Fermi derivative of a vector a is to argue that
we should ‘de-boost’ the vector at proper time τ + δτ before comparing
it with a(τ). Explain why this leads us to evaluate

lim
δτ→0

1
δτ

(
L̃a(τ + δτ)L − a(τ)

)
,

and confirm that this evaluates to ȧ + a·(v̇v).
5.6 A frame is Fermi-transported along the worldline of a particle with ve-

locity v = Rγ0R̃. The rotor R is decomposed into a rotation and boost
in the γ0 frame as R = LU . Show that the rotation U satisfies

2U̇ Ũ = −(L̃L̇ + γ0L̃L̇γ0).

What is the interpretation of the right-hand side in terms of the γ0

frame?
5.7 The bivector B = a∧b is Fermi-transported along a worldline by Fermi-

transporting the two vectors a and b. Show that B remains a blade, and
that the bivector satisfies

dB

dτ
+ B×(v̇v) = 0.

5.8 A point particle with a gyromagnetic ratio g = 2 is in a circular orbit
around a central Coulomb field. Show that in one complete orbit the
spin vector rotates in the plane A = κσ1 + Iσ3 by an amount 2π|A|,
where

κ =
qQ

4πε0l
,

and l is the angular momentum.
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5.9 Show that the Bargmann–Michel–Telegdi equation of (5.210) for a rela-
tivistic point particle with spin vector s can be written

ṡ =
q

m

(
F + 1

2 (g − 2)F∧v v
)
·s.

Given that v = Rγ0R̃ and s = Rγ3R̃, show that the rotor R satisfies the
equation

Ṙ =
q

2m
FR +

q

4m
(g − 2)RIB0,

where

IB0 = (R̃FR)∧γ0 γ0.

Assuming that the electromagnetc field F is constant, prove that B0

is also constant. Hence study the precession of s for a particle with a
gyromagnetic ratio g 	= 2.
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6

Geometric calculus

Geometric algebra provides us with an invertible product for vectors. In this
chapter we investigate the new insights this provides for the subject of vector
calculus. The familiar gradient, divergence and curl operations all result from
the action of the vector operator, ∇. Since this operator is vector-valued, we
can now form its geometric product with other multivectors. We call this the
vector derivative. Unlike the separate divergence and curl operations, the vec-
tor derivative has the important property of being invertible. That is to say,
Green’s functions exist for ∇ which enable initial conditions to be propagated
off a surface.

The synthesis of vector differentiation and geometric algebra described in this
chapter is called ‘geometric calculus’. We will see that geometric calculus pro-
vides new insights into the subject of complex analysis and enables the concept of
an analytic function to be extended to arbitrary dimensions. In three dimensions
this generalisation gives rise to the angular eigenstates of the Pauli theory, and
the spacetime generalisation of an analytic function defines the wavefunction for
a massless spin-1/2 particle. Clearly there are many insights to be gained from
a unified treatment of calculus based around the geometric product.

The early sections of this chapter discuss the vector derivative, and its asso-
ciated Green’s functions, in flat spaces. This way we can quickly assemble a
number of results of central importance in later chapters. The generalisations
to embedded surfaces and manifolds are discussed in the final section. This is
a large and important subject, which has been widely discussed elsewhere. Our
presentation here is kept brief, focusing on the key results which are required
later in this book.
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GEOMETRIC CALCULUS

6.1 The vector derivative

The vector derivative is denoted with the symbol ∇ (or ∇ in two and three
dimensions). Algebraically, this has all of the properties of a vector (grade-1)
object in a geometric algebra. The operator properties of ∇ are contained in the
definition that the inner product of ∇ with any vector a results in the directional
derivative in the a direction. That is,

a·∇F (x) = lim
ε	→0

F (x + εa) − F (x)
ε

, (6.1)

where we assume that this limit exists and is well defined. Suppose that we
now define a constant coordinate frame {ek} with reciprocal frame {ek}. Spatial
coordinates are defined by xk = ek·x, and the summation convention is assumed
except where stated otherwise. The vector derivative can be written

∇ =
∑

k

ek ∂

∂xk
= ek∂k, (6.2)

where we introduce the useful abbreviation

∂i =
∂

∂xi
. (6.3)

The frame decomposition ∇ = ek∂k shows clearly how the the vector derivative
combines the algebraic properties of a vector with the operator properties of the
partial derivatives. It is a straightforward exercise to confirm that the definition
of ∇ is independent of the choice of frame.

6.1.1 Scalar fields

As a first example, consider the case of a scalar field φ(x). Acting on φ, the vector
derivative ∇ returns the gradient, ∇φ. This is the familiar grad operation. The
result is a vector whose components in the {ek} frame are the partial derivatives
with respect to the xk coordinates. The simplest example of a scalar field is the
quantity a ·x, where a is a constant vector. We write a ·x = xjaj , so that the
gradient becomes

∇(x·a) = ei ∂xj

∂xi
aj = eiajδ

j
i . (6.4)

But the right-hand side simply expresses the vector a in the {ek} frame, so we
are left with the frame-free result

∇(x·a) = a. (6.5)

This result is independent of both the dimensions and signature of the vector
space. Many formulae for the vector derivative can be built up by combining this
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primitive result with the chain and product rules for differentiation. A particular
application of this result is to the coordinates themselves,

∇xk = ∇(x·ek) = ek, (6.6)

a formula which generalises to curvilinear coordinate systems.
As a second example, consider the derivative of the scalar x2. We first derive

the result in coordinates before discussing a more elegant, frame-free derivation.
We form

∇(x2) = ei∂i(xjxk)ej ·ek

= ei

(
∂xj

∂xi
xk +

∂xk

∂xi
xj

)
ej ·ek

= xkek + xjej

= 2x, (6.7)

which recovers the expected result. It is extremely useful to be able to perform
such manipulations without reference to any coordinate frame. This requires a
notation to keep track of which terms are being differentiated in a given expres-
sion. A suitable convention is to use overdots to define the scope of the vector
derivative. With this notation we can write

∇(x2) = ∇̇(ẋ·x) + ∇̇(x·ẋ) = 2∇̇(ẋ·x). (6.8)

In the final term it is only the first factor of x which is differentiated, while the
second is held constant. We can therefore apply the result of equation (6.5),
which immediately gives ∇(x2) = 2x. More complex results can be built up in
a similar manner.

In Euclidean spaces ∇φ points in the direction of steepest increase of φ. This
is illustrated in equation (6.5). To get the biggest increase in a ·x for a given
step size you must clearly move in the positive a direction, since moving in any
orthogonal direction does not change the value. More generally, suppose ∇φ = J

and consider the contraction of this equation with the unit vector n,

n·∇φ = n·J. (6.9)

We seek the direction of n which maximises this value. Clearly in a Euclidean
space this must be the J direction, so J points in the direction of greatest increase
of φ. Also, setting n in the J direction shows that the magnitude of J is simply
the derivative in the direction of steepest increase.

In mixed signature spaces, such as spacetime, this simple geometric picture
can break down. As a simple example, consider a timelike plane defined by
orthogonal basis vectors {γ0, γ1}, with γ2

0 = 1 and γ2
1 = −1. We introduce the

scalar field

φ = 〈xγ0xγ0〉 = (x0)2 + (x1)2. (6.10)
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Figure 6.1 Spacetime gradients. The contours of the scalar field φ =
〈xγ0xγ0〉 define circles in spacetime. But the direction of the vector deriv-
ative is only in the outward normal direction along the 0 axis. Along the
1 axis the gradient points inwards, which reflects the opposite signature.
Around the circle the gradient interpolates between these two extremes.
At points where x is null the gradient vector is tangential to the circle.

Contours of constant φ are circles in the spacetime plane, so the direction of
steepest increase points radially outwards. But if we form the gradient of φ we
obtain

∇φ = 2∇̇〈ẋγ0xγ0〉 = 2γ0xγ0. (6.11)

Figure 6.1 shows the direction of this vector for various points on the unit circle.
Clearly the vector does not point in the direction of steepest increase of φ.
Instead, ∇φ points in a direction ‘normal’ to tangent vectors in the circle. In
mixed signature spaces, the ‘normal’ does not point in the direction our Euclidean
intuition is used to. This example should be borne in mind when we consider
directed integration in spaces of mixed signature. (This example may appear
esoteric, but closed spacetime curves of this type are of considerable importance
in some modern attempts to construct a quantum theory of gravity.)

6.1.2 Vector fields

Suppose now that we have a vector field J(x). The full vector derivative ∇J

contains two terms, a scalar and a bivector. The scalar term is the divergence of
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J(x). In terms of the constant frame vectors {ek} we can write

∇·J =
∂

∂xk
ek ·J =

∂Jk

∂xk
= ∂kJk. (6.12)

The divergence can also be defined in terms of the geometric product as

∇·J = 1
2 (∇J + J̇∇̇). (6.13)

The simplest example of the divergence is for the vector x itself, for which we
find

∇·x =
∂xk

∂xk
= n, (6.14)

where n is the dimension of the space.
The remaining, antisymmetric, term defines the exterior derivative of the vec-

tor field. In terms of coordinates this can be written

∇∧J = ei∧(∂iJ) = ei∧ej ∂iJj . (6.15)

The components are the antisymmetrised terms in ∂iJj . In three dimensions
these are the components of the curl, though ∇∧J is a bivector, rather than an
(axial) vector. (In this chapter we write vectors in two and three dimensions in
bold face.) The three-dimensional curl requires a duality operation to return a
vector,

curl(J) = −I ∇∧J . (6.16)

The exterior derivative generalises the curl to arbitrary dimensions.
As an example, consider the exterior derivative of the position vector x. We

find that

∇∧x = ei∧ei = ei∧ej (ei ·ej) = 0, (6.17)

which follows because ei∧ej is antisymmetric on i and j, whereas ei ·ej is sym-
metric. Again, we can give an algebraic definition of the exterior derivative in
terms of the geometric product as

∇∧J = 1
2 (∇J − J̇∇̇). (6.18)

Equations (6.13) and (6.18) combine to give the familiar decomposition of a
geometric product:

∇J = ∇·J + ∇∧J. (6.19)

So, for example, we have ∇x = n.
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6.1.3 Multivector fields

The preceding definitions extend simply to the case of the vector derivative acting
on a multivector field. We have

∇A = ek∂kA, (6.20)

and for an r-grade multivector field Ar we write

∇·Ar = 〈∇Ar〉r−1, (6.21)

∇∧Ar = 〈∇Ar〉r+1. (6.22)

These define the interior and exterior derivatives respectively. The interior deriv-
ative is often referred to as the divergence, and the exterior derivative is some-
times called the curl. This latter name conflicts with the more familiar meaning
of ‘curl’ in three dimensions, however, and we will avoid this name where possi-
ble.

An important result for the vector derivative is that the exterior derivative of
an exterior derivative always vanishes,

∇∧(∇∧A) = ei∧∂i(ej∧∂jA)

= ei∧ej∧(∂i∂jA) = 0. (6.23)

This follows because ei∧ej is antisymmetric on i, j, whereas ∂i∂jA is symmetric,
due to the fact that partial derivatives commute. Similarly, the divergence of a
divergence vanishes,

∇·(∇·A) = 0, (6.24)

which is proved in the same way, or by using duality. (By convention, the inner
product of a vector and a scalar is zero.)

Because ∇ is a vector, it does not necessarily commute with other multivectors.
We therefore need to be careful in describing the scope of the operator. We use
the following series of conventions to clarify the scope:

(i) In the absence of brackets, ∇ acts on the object to its immediate right.
(ii) When the ∇ is followed by brackets, the derivative acts on all of the terms

in the brackets.
(iii) When the ∇ acts on a multivector to which it is not adjacent, we use

overdots to describe the scope.

The ‘overdot’ notation was introduced in the previous section, and is invaluable
when differentiating products of multivectors. For example, with this notation
we can write

∇(AB) = ∇AB + ∇̇AḂ, (6.25)

172

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.008
https:/www.cambridge.org/core


6.2 CURVILINEAR COORDINATES

which encodes a version of the product rule. If necessary, the overdots can be
replaced with partial derivatives by writing

∇̇AḂ = ekA∂kB. (6.26)

Later in this chapter we also employ the overdot notation for linear functions.
Suppose that f(a) is a position-dependent linear function. We write

∇̇ḟ(a) = ∇f(a) − ekf(∂ka), (6.27)

so that ∇̇ḟ(a) only differentiates the position dependence in the linear function,
and not in its argument.

We can continue to build up a series of useful basic results by differentiating
various multivectors that depend linearly on x. For example, consider

∇x·Ar = ek ek ·Ar, (6.28)

where Ar is a grade-r multivector. Using the results of section 4.3.2 we find that

∇x·Ar = rAr,

∇x∧Ar = (n − r)Ar, (6.29)

∇̇Arẋ = (−1)r(n − 2r)Ar,

where n is the dimension of the space.

6.2 Curvilinear coordinates

So far we have only expressed the vector derivative in terms of a fixed coordinate
frame (which is usually chosen to be orthonormal). In many applications, how-
ever, it is more convenient to work in a curvilinear coordinate system, where the
frame vectors vary from point to point. A general set of coordinates consist of a
set of scalar functions {xi(x)}, i = 1, . . . , n, defined over some region. In this re-
gion we can equally write x(xi), expressing the position vector x parametrically
in terms of the coordinates. If one of the coordinates is varied and all of the
others are held fixed we specify an associated coordinate curve. The derivatives
along these curves specify a set of frame vectors by

ei(x) =
∂x

∂xi
= lim

ε	→0

x(x1, . . . , xi + ε, . . . , xn) − x

ε
, (6.30)

where the ith coordinate is varied and all others are held fixed. The derivative
in the ei direction, ei ·∇, is found by moving a small amount along ei. But this
is precisely the same as varying the xi coordinate with all others held fixed. We
therefore have

ei ·∇ =
∂

∂xi
= ∂i. (6.31)
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In order that the coordinate system be valid over a given region we require that
throughout this region

e1∧e2∧· · ·∧en 	= 0. (6.32)

As this quantity can never pass through zero it follows that the frame has the
same orientation throughout the valid region.

We can construct a second frame directly from the coordinate functions by
defining

ei = ∇xi. (6.33)

From their construction we see that the {ei} vectors have vanishing exterior
derivative:

∇∧ei = ∇∧(∇xi) = 0. (6.34)

As the notation suggests, the two frames defined above are reciprocal to one
another. This is straightforward to check:

ei ·ej = ei ·∇xj =
∂xj

∂xi
= δj

i . (6.35)

This result is very useful because, when working with curvilinear coordinates,
one usually has simple expressions for either xi(x) or x(xi), but rarely both.
Fortunately, only one is needed to construct a set of frame vectors, and the
reciprocal frame can then be constructed algebraically (see section 4.3). This
construction provides a simple geometric picture for the gradient in a general
space. Suppose we view the coordinate x1(x) as a scalar field. The contours of
constant x1 are a set of (n−1)-dimensional surfaces. The remaining coordinates
x2, . . . , xn define a set of directions in this surface. At each point on the surface
of constant x1 the vector ∇x1 is orthogonal to all of the directions in the surface.
In Euclidean spaces this vector is necessarily orthogonal (normal) to the surface.
In other spaces this construct defines what we mean by normal.

Now suppose we have a function F (x) that is expressed in terms of the coor-
dinates as F (xi). A simple application of the chain rule gives

∇F = ∇xi ∂iF = ei∂iF. (6.36)

This is consistent with the decomposition

∇ = ei ∂

∂xi
= ei∂i = eiei ·∇, (6.37)

which holds as the {ei} and {ei} are reciprocal frames.

6.2.1 Tensor analysis

A consequence of curvilinear frame vectors is that one has to be careful when
working entirely in terms of coordinates, as is the case in tensor analysis. The
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problem is that for a vector, for example, we have J = J iei. If we just keep
the coordinates J i we lose the information about the position dependence in
the coordinate frame. When formulating the derivative of J in tensor analysis
we must introduce connection coefficients to keep track of the derivatives of the
frame vectors. This can often complicate derivations.

There are two cases of the vector derivative in curvilinear coordinates that do
not require connection coefficients. The first is the exterior derivative, for which
we can write

∇∧J = ∇∧(Jie
i) = (∇Ji)∧ei. (6.38)

It follows that the exterior derivative has coordinates ∂iJj − ∂jJi regardless of
chosen coordinate system. The second exception is provided by the divergence
of a vector. We have

∇·J = ∇·(J iei). (6.39)

If we define the volume factor V by

e1∧e2∧· · ·∧en = IV, (6.40)

where I is the unit pseudoscalar, we can write (following section 4.3)

ei = (−1)i−1en∧en−1∧· · ·∧ěi∧· · ·∧e1 IV. (6.41)

Recalling that each of the ei vectors has vanishing exterior derivative, one can
quickly establish that

∇·J =
1
V

∂

∂xi

(
V J i

)
. (6.42)

Similarly, the Laplacian ∇2 can be written as

∇2φ =
1
V

∂

∂xi

(
V gij ∂φ

∂xj

)
, (6.43)

where gij = ei ·ej .

6.2.2 Orthogonal coordinates in three dimensions

A number of the most useful coordinate systems are orthogonal systems of coor-
dinates in three dimensions. For these systems a number of special results hold.
We define a set of orthonormal vectors by first introducing the magnitudes

hi = |ei| = (ei ·ei)1/2. (6.44)

In terms of these we can write (no sums implied)

ei = hiêi, ei =
1
hi

êi. (6.45)
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We now use the {êi} as our coordinate frame and, since this frame is orthonormal,
we can work entirely with lowered indices. For a vector J we have

J = Jiêi =
3∑

i=1

Ji

hi
ei. (6.46)

It follows that we can write

∇·J =
1

h1h2h3

(
∂

∂x1
(h2h3J1) +

∂

∂x2
(h3h1J2) +

∂

∂x3
(h1h2J3)

)
. (6.47)

A compact formula for the Laplacian is obtained by replacing each Ji term with
1/hi ∂iφ,

∇2φ =
1

h1h2h3

(
∂

∂x1

(
h2h3

h1

∂φ

∂x1

)
+

∂

∂x2

(
h3h1

h2

∂φ

∂x2

)

+
∂

∂x3

(
h1h2

h3

∂φ

∂x3

))
. (6.48)

The components of the curl can be found in a similar manner. A number of
useful curvilinear coordinate systems are summarised below.

Cartesian coordinates

These are the basic starting point for all other coordinate systems. We introduce
a constant, right-handed orthonormal frame {σi}, σ1σ2σ3 = I. This notation
for a Cartesian frame is borrowed from quantum theory and is very useful in
practice. The coordinates in the {σi} frame are written, following standard
notation, as (x, y, z). To avoid confusion between the scalar coordinate x and
the three-dimensional position vector we write the latter as r. That is,

r = xσ1 + yσ2 + zσ3. (6.49)

Since the frame vectors are orthonormal we have h1 = h2 = h3 = 1, so the
divergence and Laplacian take on their simplest forms.

Cylindrical polar coordinates

These are denoted (ρ, φ, z) with ρ and φ the standard two-dimensional polar
coordinates

ρ =
(
x2 + y2

)1/2
, tanφ =

y

x
. (6.50)

The coordinates lie in the ranges 0 ≤ r < ∞ and 0 ≤ φ < 2π. The coordinate
vectors are

êρ = cos(φ)σ1 + sin(φ)σ2,

êφ = − sin(φ)σ1 + cos(φ)σ2, (6.51)

êz = σ3.
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6.2 CURVILINEAR COORDINATES

We have adopted the common convention of labelling the frame vectors with the
associated coordinate. The magnitudes are hρ = 1, hφ = ρ and hz = 1, and the
frame vectors satisfy

êρêφêz = σ1σ2σ3 = I (6.52)

and so form a right-handed set in the order (ρ, φ, z).

Spherical polar coordinates

Spherical polar coordinates arise in many problems in physics, particularly quan-
tum mechanics and field theory. They are typically labelled (r, θ, φ) and are
defined by

r = |r| = (r ·r)1/2, r cos(θ) = z, tan(φ) =
y

x
. (6.53)

The coordinate ranges are 0 ≤ r < ∞, 0 ≤ θ ≤ π and 0 ≤ φ < 2π. The
φ coordinate is ill defined along the z axis — a reflection of the fact that it is
impossible to construct a global coordinate system over the surface of a sphere.
The inverse relation giving r(r, θ, φ) is often useful,

r = r sin(θ)(cos(φ)σ1 + sin(φ)σ2) + r cos(θ)σ3. (6.54)

This expression makes it a straightforward exercise to compute the orthonormal
frame vectors, which are

êr = sin(θ)(cos(φ)σ1 + sin(φ)σ2) + cos(θ)σ3 = r−1r,

êθ = cos(θ)(cos(φ)σ1 + sin(φ)σ2) − sin(θ)σ3, (6.55)

êφ = − sin(φ)σ1 + cos(φ)σ2.

The associated normalisation factors are

hr = 1, hθ = r, hφ = r sin(θ). (6.56)

The orthonormal vectors satisfy êr êθ êφ = I so that {êr, êθ, êφ} form a right-
handed orthonormal frame. This frame can be obtained from the {ei} frame
through the application of a position-dependent rotor, so that êr = Rσ3R̃,
êθ = Rσ1R̃ and êφ = Rσ2R̃. The rotor is then given by

R = exp(−Iσ3φ/2) exp(−Iσ2θ/2). (6.57)

Spheroidal coordinates

These coordinates turn out to be useful in a number of problems in gravitation
and electromagnetism involving rotating sources. We introduce a vector a, so
that ±a denote the foci of a family of ellipses. The distances from the foci are
given by

r1 = |r + a|, r2 = |r − a|. (6.58)
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From these we define the orthogonal coordinates

u = 1
2 (r1 + r2), v = 1

2 (r1 − r2). (6.59)

The coordinate system is completed by rotating the ellipses around the a axis.
This defines an oblate spheroidal coordinate system. Prolate spheroidal coordi-
nates are formed by starting in a plane, defining (u1, u2) as above, and rotating
this system around the minor axis.

If we define

r̂1 =
r + a

r1
, r̂2 =

r − a

r2
, (6.60)

we see that

eu = 1
2 (r̂1 + r̂2), ev = 1

2 (r̂1 − r̂2), (6.61)

which are clearly orthogonal. The normalisation factors are found from

h2
u =

u2 − v2

u2 − a2
, h2

v =
u2 − v2

a2 − v2
. (6.62)

If we align a with the 3 axis and let φ take its spherical-polar meaning, the
coordinate frame is completed with the vector êφ, and

h2
φ = (u2 − a2)(a2 − v2). (6.63)

The frame vectors satisfy êuêφêv = I. The hyperbolic nature of the coordinate
system is often best expressed by redefining the u and v coordinates as a cosh(w)
and a cos(ϑ) respectively.

6.3 Analytic functions

The vector derivative combines the algebraic properties of geometric algebra with
vector calculus in a simple and natural way. In this section we show how the
vector derivative can be used to extend the definition of an analytic function
to arbitrary dimensions. We start by considering the vector derivative in two
dimensions to establish the link with complex analysis.

6.3.1 Analytic functions in two dimensions

Suppose that {e1, e2} define an orthonormal frame in two dimensions. This is
identified with the Argand plane by singling out e1 as the real axis. We denote
coordinates by (x, y) and write the position vector as r:

r = xe1 + ye2. (6.64)

With this notation the vector derivative is

∇ = e1
∂

∂x
+ e2

∂

∂y
. (6.65)
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6.3 ANALYTIC FUNCTIONS

In section 2.3.3 we showed that complex numbers sit naturally within the geo-
metric algebra of the plane. The pseudoscalar is the bivector I = e1e2, which
satisfies I2 = −1. Complex numbers therefore map directly onto even-grade
elements in the algebra by identifying the unit imaginary i with I. The position
vector r is mapped onto a complex number by pre-multiplying by the vector
representing the real axis:

z = x + Iy = e1r. (6.66)

Now suppose we introduce the complex field ψ = u + Iv. The vector derivative
applied to ψ yields

∇ψ =
(

∂u

∂x
− ∂v

∂y

)
e1 +

(
∂v

∂x
+

∂u

∂y

)
e2. (6.67)

The terms in brackets are precisely the ones that vanish in the Cauchy–Riemann
equations. The statement that ψ is an analytic function (a function that satisfies
the Cauchy–Riemann equations) reduces to the equation

∇ψ = 0. (6.68)

This is the fundamental equation which can be generalised immediately to higher
dimensions. These generalisations invariably turn out to be of mathematical and
physical importance, and it is is no exaggeration to say that equations of the
type of equation (6.68) are amongst the most studied in physics.

To complete the link with complex analysis we recall that the complex partial
derivative ∂z is defined by the properties

∂z

∂z
= 1,

∂z†

∂z
= 0 (6.69)

with the complex conjugate satisfying

∂z

∂z†
= 0,

∂z†

∂z†
= 1. (6.70)

From these we see that
∂

∂z
=

1
2

(
∂

∂x
− I

∂

∂y

)
,

∂

∂z†
=

1
2

(
∂

∂x
+ I

∂

∂y

)
. (6.71)

An analytic function is one that depends on z alone. That is, we can write
ψ(x + Iy) = ψ(z). The function is therefore independent of z†, and we have

∂ψ(z)
∂z†

= 0. (6.72)

This summarises the content of the Cauchy–Riemann equations, though this fact
is often obscured by the complex limiting argument favoured in many textbooks.
Comparing the preceding forms, we see that this equation is equivalent to

1
2

(
∂

∂x
+ I

∂

∂y

)
ψ = 1

2e1∇ψ = 0, (6.73)
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recovering our earlier equation.
It is instructive to see why solutions to ∇ψ = 0 can be constructed as power

series in z. We first see that

∇z = ∇(e1r) = 2e1 ·∇r − e1∇r = 2e1 − 2e1 = 0. (6.74)

This little manipulation drives most of analytic function theory! It follows im-
mediately, for example, that

∇(z − z0)n = n∇(e1r − z0)(z − z0)n−1 = 0, (6.75)

so a Taylor series expansion in z about z0 automatically returns an analytic
function. We will delay looking at poles until we have introduced the subject of
directed integration.

6.3.2 Generalized analytic functions

There are two problems with the standard presentation of complex analytic
function theory that prevent a natural generalisation to higher dimensions:

(i) Both the vector operator ∇ and the functions it operates on are mapped
into the same algebra by picking out a preferred direction for the real
axis. This only works in two dimensions.

(ii) The ‘complex limit’ argument does not generalise to higher dimensions.
Indeed, one can argue that it is not wholly satisfactory in two dimensions,
as it confuses the concept of a directional derivative with the concept of
being independent of z†.

These problems are solved by keeping the derivative operator ∇ as a vector,
while letting it act on general multivectors. The analytic requirement is then
replaced with the equation ∇ψ = 0. Functions satisfying this equation are said
to be monogenic. If ψ contains all grades it is clear that both the even-grade
and odd-grade components must satisfy this equation independently. Without
loss of generality, we can therefore assume that ψ has even grade.

We can construct monogenic functions by following the route which led to the
conclusion that z is analytic in two dimensions. We recall that ∇r = 3 and

∇(ar) = −a. (6.76)

It follows that

ψ = ra + 3ar (6.77)

is a monogenic for any constant vector a. The main difference with complex
analysis is that we cannot derive new monogenics simply from power series in
this solution, due to the lack of commutativity. One can construct monogenic
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functions from series of geometric products, but a more instructive route is to
classify monogenics via their angular properties.

First we assume that Ψ is a monogenic containing terms which scale uniformly
with r. If we introduce polar coordinates we can then write

Ψ(r) = rlψ(θ, φ). (6.78)

The function ψ(θ, φ) then satisfies

lrl−1erψ + rl∇ψ(θ, φ) = 0. (6.79)

It follows that ψ satisfies the angular eigenvalue equation

−r∧∇ψ = lψ. (6.80)

These angular eigenstates play a key role in the Pauli and Dirac theories of the
electron. Since Ψ satisfies ∇Ψ = 0, it follows that

∇2Ψ = 0. (6.81)

So each component of Ψ (in a constant basis) satisfies Laplace’s equation. It
follows that each component of ψ is a spherical harmonic, and hence that l is an
integer. We can construct a monogenic by starting with the function (x+yIσ3)l,
which is the three-dimensional extension of the complex analytic function zl. In
terms of polar coordinates

(x + yIσ3)l = rl sinl(θ) elφIσ3 , (6.82)

which gives us our first angular monogenic function

ψl
l = sinl(θ) elφIσ3 . (6.83)

The remaining monogenic functions are constructed from this by acting with an
operator which, in quantum terms, lowers the eigenvalue of the angular momen-
tum around the z axis. These are discussed in more detail in section 8.4.1.

6.3.3 The spacetime vector derivative

To construct the vector derivative in spacetime suppose that we introduce the
orthonormal frame {γµ} with associated coordinates xµ. We can then write

∇ = γµ ∂

∂xµ
= γ0

∂

∂t
+ γi ∂

∂xi
. (6.84)

This derivative is the key operator in all relativistic field theories, including
electromagnetism and Dirac theory. If we post-multiply by γ0 we see that

∇γ0 = ∂t + γiγ0∂i = ∂t − ∇, (6.85)
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where ∇ = σi∂i is the vector derivative in the relative space defined by the γ0

vector. Similarly,

γ0∇ = ∂t + ∇. (6.86)

These equations are consistent with

∇x = ∇(γ0γ0x) = (∂t − ∇)(t − r) = 4, (6.87)

where x is the spacetime position vector. The spacetime vector derivative satis-
fies

∇2 =
∂2

∂t2
− ∇2, (6.88)

which is the fundamental operator describing waves travelling at the speed of
light. The spacetime monogenic equation ∇ψ = 0 is discussed in detail in chap-
ters 7 and 8. We only note here that, if ψ is an even-grade element of the
spacetime algebra, the monogenic equation is precisely the wave equation for a
massless spin-1/2 particle.

6.3.4 Characteristic surfaces and propagation

The fact that ∇2 can give rise to either elliptic or hyperbolic operators, depending
on signature, suggests that the propagator theory for ∇ will depend strongly on
the signature. This is confirmed by a simple argument which can be modified
to apply to most first-order differential equations. Suppose we have a generic
equation of the type

∇ψ = f(ψ, x), (6.89)

where ψ is some multivector field, f(ψ, x) is a known function and x is the
position vector in an n-dimensional space. We are presented with data on some
(n− 1)-dimensional surface, and wish to propagate these initial conditions away
from the surface. If surfaces exist for which this is not possible they are known as
characteristic surfaces. Suppose that we construct a set of independent tangent
vectors in the surface, {e1, . . . , en−1}. Knowledge of ψ on the surface enables us
to calculate each of the directional derivatives ei ·∇ψ, i = 1, . . . , n − 1. We now
form the normal vector

n = I e1∧e2∧· · ·∧en−1, (6.90)

where I is the pseudoscalar for the space. Pre-multiplying equation (6.89) with
n we obtain

n·∇ψ = −n∧∇ψ + nf(ψ, x). (6.91)
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But we have

n∧∇ψ = I(e1∧e2∧· · ·∧en−1)·∇ψ

= I

n−1∑
i=1

(−1)i+1−n(e1∧· · ·∧ěi∧· · ·∧en−1) ei ·∇ψ, (6.92)

which is constructed entirely from known derivatives of ψ. Equation (6.91) then
tells us how to propagate ψ in the n direction. The only situation in which we
can fail to propagate ψ is when n still lies in the surface. This happens if n is
linearly dependent on the surface tangent vectors. If this is the case we have

n∧(e1∧e2∧· · ·∧en−1) = 0. (6.93)

But this implies that

(I−1n)∧n = I−1n·n = 0. (6.94)

We therefore only fail to propagate when n2 = 0, so characteristic surfaces are al-
ways null surfaces. This possibility can only arise in mixed signature spaces, and
unsurprisingly the propagators in these spaces can have quite different properties
to their Euclidean counterparts.

6.4 Directed integration theory

The true power of geometric calculus begins to emerge when we study directed
integration theory. This provides a very general and powerful integral theorem
which enables us to construct Green’s functions for the vector derivative in var-
ious spaces. These in turn can be used to generalise the many powerful results
from complex function theory to arbitrary spaces.

6.4.1 Line integrals

The simplest integrals to start with are line integrals. The line integral of a
multivector field F (x) along a line x(λ) is defined by∫

F (x)
dx

dλ
dλ =

∫
F dx = lim

n	→∞

n∑
i=1

F̄ i∆xi. (6.95)

In the final expression a set of successive points along the curve {xi} are intro-
duced, with x0 and xn the endpoints, and

∆xi = xi − xi−1, F̄ i = 1
2

(
F (xi−1) + F (xi)

)
. (6.96)

If the curve is closed then x0 = xn. The result of the integral is independent
of the way we choose to parameterise the curve, provided the parameterisation
respects the required ordering of points along the curve. Curves that double back
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on themselves are handled by referring to the parameterised form x(λ), which
tells us how the curve is traversed.

The definition of the integral (6.95) looks so standard that it is easy to overlook
the key new feature, which is that dx is a vector-valued measure, and the product
F dx is a geometric product between multivectors. This small extension to scalar
integration is sufficient to bring a wealth of new features. We refer to dx, and
its multivector-valued extensions, as a directed measure. The fact that dx is no
longer a scalar means that equation (6.95) is not the most general line integral
we can form. We can also consider integrals of the form∫

F (x)
dx

dλ
G(x) dλ =

∫
F (x) dx G(x), (6.97)

and more generally we can consider sums of terms like these. The most general
form of line integral can be written∫

L(∂λx;x) dλ =
∫

L(dx), (6.98)

where L(a) = L(a;x) is a multivector-valued linear function of a. The position
dependence in L can often be suppressed to streamline the notation.

Suppose now that the field F is replaced by the vector-valued function v(x).
We have ∫

v dx =
∫

v ·dx +
∫

v∧dx, (6.99)

which separates the directed integral into scalar and bivector-valued terms. If
v is the unit tangent vector along the curve then the scalar integral returns the
arc length. In many applications the scalar and bivector integrals are considered
separately. But to take advantage of the most powerful integral theorems in
geometric calculus we need to use the combined form, containing a geometric
product with the directed measure.

6.4.2 Surface integrals

The natural extension of a line integral is to a directed surface integral. Suppose
now that the the multivector-valued field F is defined over a two-dimensional
surface embedded in some larger space. If the surface is parameterised by two
coordinates x(x1, x2) we define the directed measure by the bivector

dX =
∂x

∂x1
∧ ∂x

∂x2
dx1 dx2 = e1∧e2 dx1 dx2, (6.100)

where ei = ∂ix. This measure is independent of how the surface is parameterised,
provided we orient the coordinate vectors in the desired order. Sometimes more
than one coordinate patch will be needed to parameterise the entire surface, but
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Figure 6.2 A triangulated surface. The surface is represented by a series of
points, and each set of three adjacent points defines a triangle, or simplex.
As more points are added the simplices become a closer fit to the true
surface. Each simplex is given the same orientation by ensuring that for
adjacent simplices, the common edge in traversed in opposite directions.

the directed measure dX is still defined everywhere. A directed surface integral
then takes the form ∫

F dX =
∫

Fe1∧e2 dx1 dx2, (6.101)

or a sum of such terms if more than one coordinate patch is required. Again, we
form the geometric product between the integrand and the measure. As in the
case of a line integral, this is not the most general surface integral that can be
considered, as the integrand can multiply the measure from the left or the right,
giving rise to different integrals.

As an example of a surface integral, consider a closed surface in three dimen-
sions, with unit outward normal n. We let F be given by the bivector-valued
function φnI−1, where φ is a scalar field. The surface integral is then∮

φnI−1 dX =
∮

φ|dS|. (6.102)

Here |dS| = I−1n dX is the scalar-valued measure over the surface. The directed
measure is usually chosen so that n dX has the same orientation as I. As a second
example, suppose that F = 1. In this case we can show that∮

dX = 0, (6.103)

which holds for any closed surface (see later). If the surface is open, the result
of the directed surface integral depends entirely on the boundary, since all the
internal simplices cancel out. This result is sometimes called the vector area,
though in geometric algebra the result is a bivector.

In order to construct proofs of some of the more important results it is nec-
essary to express the surface integral (6.101) in terms of a limit of a sum. This
involves the idea of a triangulated surface (figure 6.2). A set of points are chosen
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x0 x1

x2

e1

e2

Figure 6.3 A planar simplex. The points x0, x1, x2 define a triangle. The
order specifies how the boundary is traversed, which defines an orientation
for the simplex.

on the surface, and adjacent sets of three points define a series of planar trian-
gles, or simplices. As more points are added these triangles become smaller and
are an ever better model for the surface. (In computer graphics programs this
is precisely how ‘smooth’ surfaces are represented internally.) Each simplex has
an orientation attached such that, for a pair of adjacent simplices, the common
edge is traversed in opposite directions. In this way an initial simplex builds
up to define an orientation for the entire surface. For some surfaces, such as
the Mobius strip, it is not possible to define a consistent orientation over the
entire surface. For these it is not possible to define a directed integral, so our
presentation is restricted to orientable surfaces.

Suppose now that the three points x0, x1, x2 define the corners of a simplex,
with orientation specified by traversing the edges in the order x0 
→ x1 
→ x2

(see figure 6.3). We define the vectors

e1 = x1 − x0, e2 = x2 − x0. (6.104)

The surface measure is then defined by

∆X = 1
2e1∧e2 = 1

2 (x1∧x2 + x2∧x0 + x0∧x1). (6.105)

∆X has the orientation defined by the boundary, and an area equal to that of
the simplex. The final expression makes it clear that ∆X is invariant under even
permutations of the vertices. With this definition of ∆X we can express the
surface integral (6.101) as the limit:∫

F dX = lim
n	→∞

n∑
k=1

F̄ k∆Xk. (6.106)

The sum here runs over all simplices making up the surface, and for each simplex
F̄ is the average value of F over the simplex. For well-behaved integrals the value
in the limit is independent of the precise nature of the limiting process.
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6.4.3 n-dimensional surfaces

The simplex structure introduced in the previous section provides a means of
defining a directed integral for any dimension of surface. We discretise the surface
by considering a series of points, and adjacent sets of points are combined to
define a simplex. Suppose that we have an n-dimensional surface, and that
one simplex for the discretised surface has vertices x0, . . . , xn, with the order
specifying the desired orientation. For this simplex we define vectors

ei = xi − x0, i = 1, . . . , n, (6.107)

and the directed volume element is

∆X =
1
n!

e1∧· · ·∧en. (6.108)

A point in the simplex can be described in terms of coordinates λ1, . . . , λn by
writing

x = x0 +
n∑

i=1

λiei. (6.109)

Each coordinate lies in the range 0 ≤ λi ≤ 1, and the coordinates also satisfy

n∑
i=1

λi ≤ 1. (6.110)

Now suppose we have a multivector field F (x) defined over the surface. We
denote the value at each vertex by Fi = F (xi). A new function f(x) is then
introduced which linearly interpolates the Fi over the simplex. This can be
written

f(x) = F0 +
n∑

i=1

λi(Fi − F0). (6.111)

As the number of points increases and the simplices grow smaller, f(x) becomes
an ever better approximation to F (x), and the triangulated surface approaches
the true surface.

The directed integral of F over the surface is now approximated by the integral
of f over each simplex in the surface. To evaluate the integral over each simplex
we use the λi as coordinates, so that

dX = e1∧· · ·∧en dλ1 · · · dλn. (6.112)

It is then a straightforward exercise in integration to establish that∫
dX = ∆X (6.113)
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and ∫
λi dX =

1
n + 1

∆X, ∀λi. (6.114)

Combining these two results we find that the integral of f(x) over a single simplex
evaluates to ∫

f dX =
1

n + 1

(
n∑

i=0

Fi

)
∆X. (6.115)

The function is therefore replaced by its average value over the simplex. We
write this as F̄ . Summing over all the simplices making up the surface we can
now define ∫

F dX = lim
n	→∞

n∑
k=1

F̄ k ∆Xk, (6.116)

where k runs over all of the simplices in the surface. More generally, suppose
that L(An) is a position-dependent linear function of a grade-n multivector An.
We can then write ∫

L(dX) = lim
n	→∞

n∑
k=1

L̄k(∆Xk), (6.117)

with L̄k(∆Xk) the average value of L(∆Xk) over the vertices of each simplex.

6.4.4 The fundamental theorem of geometric calculus

Most physicists are familiar with a number of integral theorems, including the
divergence and Stokes’ theorems, and the Cauchy integral formula of complex
analysis. We will now show that these are all special cases of a more general
theorem in geometric calculus. In this section we will sketch of proof of this
important theorem. Readers who are not interested in the details of the proof
may want to jump straight to the following section, where some applications
are discussed. The proof given here uses simplices and triangulated surfaces,
which means that it is relevant to methods of discretising integrals for numerical
computation.

We start by introducing a notation for simplices which helps clarify the nature
of the boundary operator. We let (x0, x1, . . . , xk) denote the k-simplex defined
by the k + 1 points x0, . . . , xk. This is abbreviated to

(x)(k) = (x0, x1, . . . , xk). (6.118)

The order of points is important, as it specifies the orientation of the simplex.
If any two adjacent points are swapped then the simplex changes sign. The
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boundary operator for a simplex is denoted by ∂ and is defined by

∂(x)(k) =
k∑

i=0

(−1)i(x0, . . . , x̌i, . . . , xk)(k−1), (6.119)

where the check denotes that the term is missing from the product. So, for
example,

∂(x0, x1) = (x1) − (x0), (6.120)

which returns the two points at the end of a line segment. The boundary of a
boundary vanishes,

∂∂(x)(k) = 0. (6.121)

Proofs of this can be found in most differential geometry textbooks.
So far we have dealt only with ordered lists of points, not geometric sums or

products. To add some geometry we introduce the operator ∆ which returns the
directed content of a simplex,

∆(x)(k) =
1
k!

(x1 − x0)∧(x2 − x0)∧· · ·∧(xk − x0). (6.122)

This is the result of integrating the directed measure over a simplex∫
(x)(k)

dX = ∆(x)(k) = ∆X. (6.123)

The directed content of a boundary vanishes,

∆(∂(x)(k)) = 0. (6.124)

As an example, consider a planar simplex consisting of three points. We have

∂(x0, x1, x2) = (x1, x2) − (x0, x2) + (x0, x1). (6.125)

So the directed content of the boundary is

∆(∂(x0, x1, x2)) = (x2 − x1) − (x2 − x0) + (x1 − x0) = 0. (6.126)

The general result of equation (6.124) can be established by induction from the
case of a triangle. These results are sufficient to establish that the directed
integral over the surface of a simplex is zero:∮

∂(x)(k)

dS =
k∑

i=0

(−1)i

∫
(x̌i)(k−1)

dX = ∆(∂(x)(k)) = 0. (6.127)

A general volume is built up from a chain of simplices. Simplices in the
chain are defined such that, at any common boundary, the directed areas of
the bounding faces of two simplices are equal and opposite. It follows that the
surface integrals over two simplices cancel out over their common face. The
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surface integral over the boundary of the volume can therefore be replaced by
the sum of the surface integrals over each simplex in the chain. If the boundary
is closed we establish that∮

dS = lim
n	→∞

n∑
a=1

∮
dSa = 0. (6.128)

The sum runs over each simplex in the surface, with a labeling the simplex. It
is implicit in this proof that the surface bounds a volume which can be filled by
a connected set of simplices. So, as well as being oriented, the surface must be
closed and simply connected.

Next, we return to equation (6.114) and introduce a constant vector b. If we
define bi = b·ei we see that

k∑
i=1

biλ
i = b·(x − x0), (6.129)

which is valid for all vectors x in the simplex of interest. Multiplying equa-
tion (6.114) by bi and summing over i we obtain

∫
(x)(k)

b·(x − x0) dX =
1

k + 1

k∑
i=1

b·ei ∆X, (6.130)

where the integral runs over a simplex defined by k + 1 vertices. A simple re-
ordering yields∫

b·x dX =
1

k + 1

(
k∑

i=1

b·(xi − x0) + (k + 1)b·x0

)
∆X

= b·x̄ ∆X, (6.131)

where x̄ is the vector representing the (geometric) centre of the simplex,

x̄ =
1

k + 1

k∑
i=0

xi. (6.132)

Now suppose we have a k-simplex specified by the k + 1 points (x0, . . . , xk)
and we form the directed surface integral of b·x. We obtain∮

∂(x)(k)

b·x dS =
1

k + 1

k∑
i=0

(−1)ib·(x0 + · · · x̌i · · · + xn)∆(x̌i)(k−1). (6.133)

To evaluate the final sum we need the result that
k∑

i=0

(−1)ib·(x0 + · · · x̌i · · · + xn)∆(x̌i)(k−1) =
1
k!

b·(e1∧· · ·∧en). (6.134)
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The proof of this result is purely algebraic and is left as an exercise. We have
now established the simple result that∮

∂(x)(k)

b·x dS = b·(∆X), (6.135)

where ∆X = ∆((x)(k)). The order and orientations in this result are important.
The simplex (x)(k) is oriented, and the order of points specifies how the boundary
is traversed. With dS the oriented element over each boundary, and ∆X the
volume element for the simplex, we find that the correct expression for the surface
integral is b·(∆X).

We are now in a position to apply these results to the interpolated function
f(x) of equation (6.111). Suppose that we are working in a (flat) n-dimensional
space and consider a simplex with points (x0, . . . , xn). The simplex is chosen
such that its volume is non-zero, so the n vectors ei = xi − x0 define a (non-
orthonormal) frame. We therefore write

ei = xi − x0, (6.136)

and introduce the reciprocal frame {ei}. These vectors satisfy

ei ·(x − x0) = λi. (6.137)

It follows that the surface integral of f(x) over the simplex is given by∮
∂(x)(k)

f(x)dS =
n∑

i=1

(Fi − F0)
∮

ei ·(x − x0)dS

=
n∑

i=1

(Fi − F0)ei ·(∆X). (6.138)

But if we consider the directional derivatives of f(x) we find that

∂f(x)
∂λi

= Fi − F0. (6.139)

The result of the surface integral can therefore be written∮
∂(x)(k)

f(x)dS =
n∑

i=1

(Fi − F0)ei ·(∆X)

=
n∑

i=1

∂f

∂λi
ei ·(∆X) = ḟ∇̇·(∆X). (6.140)

Here we have used the result that ∇ = ei∂i, which follows from using the λi as
a set of coordinates.

We now consider a chain of simplices, and add the result of equation (6.140)
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over each simplex in the chain. The interpolated function f(x) takes on the same
value over the common boundary of two adjacent simplices, since f(x) is only
defined by the values at the common vertices. In forming a sum over a chain,
all of the internal faces cancel and only the surface integral over the boundary
remains. We therefore arrive at∮

f(x) dS =
∑

a

ḟ∇̇·(∆Xa), (6.141)

with the sum running over all of the simplices in the chain. Taking the limit as
more points are added and each simplex is shrunk in size we arrive at our first
statement of the fundamental theorem,∮

∂V

F dS =
∫

V

Ḟ ∇̇ dX. (6.142)

We have replaced the interpolated function f with F , which is obtained in the
limit as more points are added. We have also used the fact that ∇ lies en-
tirely within the space defined by the pseudoscalar measure dX to remove the
contraction on the right-hand side and write a geometric product.

The above proof is easily adapted for the case where the function sits to the
right of the measure, giving ∮

∂V

dS G =
∫

V

∇̇ dX Ġ. (6.143)

Since ∇ is a vector, the commutation properties with dX will depend on the
dimension of the space. A yet more general statement of the fundamental theo-
rem can be constructed by introducing a linear function L(An−1) = L(An−1;x).
This function takes a multivector An−1 of grade n − 1 as its linear argument,
and returns a general multivector. L is also position-dependent, and its linear
interpolation over a simplex is defined by

L(A) = L(A;x0) +
n∑

i=1

λi
(
L(A;xi) − L(A, x0)

)
. (6.144)

The linearity of L(A) means that sums and integrals can be moved inside the
argument, and we establish that∮

L(dS) = L

(∮
dS;x0

)
+

n∑
i=1

L

(∮
λidS;xi

)
−

n∑
i=1

L

(∮
λidS;x0

)

=
n∑

i=1

L(ei∆X;xi) − L(ei∆X;x0)

= L̇(∇̇∆X). (6.145)

There is no position dependence in the final term as the derivative is constant
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over the simplex. Building up a chain of simplices and taking the limit we prove
the general result ∮

∂V

L(dS) =
∫

V

L̇(∇̇dX). (6.146)

This holds for any linear function L(An−1) integrated over a closed region of
an n-dimensional flat space. This is still not the most general statement of the
fundamental theorem, as we will later prove a version valid for surfaces embedded
in a curved space, but equation (6.146) is sufficient to make contact with the
main integral theorems of vector calculus.

6.4.5 The divergence and Green’s theorems

To see the fundamental theorem of geometric calculus in practice, first consider
the scalar-valued function

L(A) = 〈JAI−1〉. (6.147)

Here J is a vector, and I is the (constant) unit pseudoscalar for the n-dimensional
space. The argument A is a multivector of grade n − 1. Equation (6.146) gives∫

V

〈J̇∇̇dXI−1〉 =
∫

V

∇·J |dX| =
∮

∂V

〈JdSI−1〉, (6.148)

where |dX| = I−1dX is the scalar measure over the volume of interest. The
normal to the surface, n is defined by

n|dS| = dS I−1, (6.149)

where |dS| is the scalar-valued measure over the surface. This definition ensures
that, in Euclidean spaces, ndS has the orientation defined by I, and in turn that
n points outwards. With this definition we arrive at∫

V

∇·J |dX| =
∮

∂V

n·J |dS|, (6.150)

which is the familiar divergence theorem. This way of writing the theorem hides
the fact that n|dS| should be viewed as a single entity, which can be important
in spaces of mixed signature.

Now return to the fundamental theorem in the form of equation (6.143), and
let G equal the vector J in two-dimensional Euclidean space. We find that∮

∂V

dS J =
∫

V

∇̇ dX J̇ = −
∫

V

∇J dX, (6.151)

where we have used the fact that dX is a pseudoscalar, so it anticommutes with
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vectors in two dimensions. Introducing Cartesian coordinates we have dX =
Idx dy, so ∮

∂V

dS J = −
∫

V

∇JI dx dy. (6.152)

If we let J = P e1 +Qe2 and take the scalar part of both sides, we prove Green’s
theorem in the plane∮

Pdx + Qdy =
∫ (

∂Q

∂x
− ∂P

∂y

)
dx dy. (6.153)

The line integral is taken around the perimeter of the area in a positive sense,
as specified by I = e1e2.

6.4.6 Cauchy’s integral formula

The fundamental theorem of geometric calculus enables us to view the Cauchy
integral theorem of complex variable theory in a new light. We let ψ denote an
even-grade multivector, which therefore commutes with dX, so we can write∫

∇ψ dX =
∮

ds ψ =
∮

∂r

∂λ
ψ dλ. (6.154)

In the final expression λ is a parameter along the (closed) curve. Now recall
from section 6.3.1 that we form the complex number z by z = e1r. We therefore
have ∮

ψdz =
∫

e1∇ψ dX, (6.155)

where the term on the left is now a complex line integral. The condition that ψ

is analytic can be written ∇ψ = 0 so we have immediately proved that the line
integral of an analytic function around a closed curve always vanishes.

Cauchy’s integral formula states that, for an analytic function,

f(a) =
1

2πi

∮
C

f(z)
z − a

dz, (6.156)

where the contour C encloses the point a and is traversed in a positive sense.
The precise form of the contour is irrelevant, because the difference between two
contour integrals enclosing a is a contour integral around a region not enclosing
a (see figure 6.4). In such a region f(z)/(z − a) is analytic so the difference has
zero contribution.

To understand Cauchy’s theorem in terms of geometric calculus we need to
focus on the properties of the Cauchy kernel 1/(z − a). We first write

1
z − a

=
(z − a)†

|(z − a)|2 =
r − a

(r − a)2
e1, (6.157)
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C1

C2

Figure 6.4 Contour integrals in the complex plane. The two contours C1

and C2 can be deformed into one another, provided the function to be
integrated has no singularities in the intervening region. In this case the
difference vanishes, by Cauchy’s theorem.

where a = e1a is the vector corresponding to the complex number a. The
essential quantity here is the vector (r − a)/(r − a)2, which we can write as

r − a

(r − a)2
= ∇ ln |r − a|. (6.158)

But ln |r−a| is the Green’s function for the Laplacian operator in two dimensions,

∇2 ln |r − a| = 2πδ(r − a). (6.159)

It follows that the vector part of the Cauchy kernel satisfies

∇ r − a

(r − a)2
= 2πδ(r − a). (6.160)

The Cauchy kernel is the Green’s function for the two-dimensional vector deriv-
ative! The existence of this Green’s function proves that the vector derivative is
invertible, which is not true of its separate divergence and curl components.

The Cauchy integral formula now follows from the fundamental theorem of
geometric calculus in the form of equation (6.155),∮

f(z)
z − a

dz = e1

∫
∇
(

r − a

(r − a)2
e1f(x)

)
dX

= e1

∫ (
2πδ(x − a)e1f(z) + ∇f(z)

r − a

(r − a)2
e1

)
I|dX|

= 2πIf(a), (6.161)

where we have assumed that f is analytic, ∇f(z) = 0. We can now understand
precisely the roles of each term in the theorem:
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(i) The dz encodes the tangent vector and forms a geometric product in the
integrand.

(ii) The (z − a)−1 is the Green’s function for the vector derivative ∇ and
ensures that the area integral only picks up the value at a.

(iii) The I (which replaces i) comes from the directed volume element dX =
I dx dy.

Much of this is hidden in conventional accounts, but all of these insights are
crucial to generalising the theorem. Indeed, we have already proved a more
general theorem in two dimensions applying to non-analytic functions. For these
we can now write, following section 6.3.1,

2πIf(a) =
∮

f

z − a
dz − 2

∫
∂f

∂z†
1

z − a
I|dX|. (6.162)

A second key ingredient in complex analysis is the series expansion of a func-
tion. In particular, if f(z) is analytic apart from a pole of order n at z = a, the
function has a Laurent series of the form

f(z) =
a−n

(z − a)n
· · · a−1

z − a
+

∞∑
i=0

ai(z − a)i. (6.163)

The powerful residue theorem states that for such a function∮
C

f(z) dz = 2πia−1. (6.164)

We now have a new interpretation for the residue term in a Laurent expansion —
it is a weighted Green’s function. The residue theorem just recovers the weight!
Geometric calculus unifies the theory of poles and residues, supposedly unique
to complex analysis, with that of Green’s functions and δ-functions.

We now have an alternative picture of complex variable theory in terms of
Green’s functions and surface data. Suppose, for example, that we start with a
function f(x) on the real axis. We seek to propagate this function into the upper
half-plane, subject to the boundary conditions that f falls to zero as |z| 
→ ∞.
The Cauchy formula tells us that we should propagate according to the formula

f(a) =
1

2πi

∫ ∞

−∞

f(x)
x − a

dx. (6.165)

But suppose now that we form the Fourier transform of the initial function f(x),

f(x) =
∫ ∞

−∞

dk

2π
f̄(k)eikx. (6.166)

We now have

f(a) =
1

2πi

∫ ∞

−∞

dk

2π
f̄(k)

∫ ∞

−∞

eikx

x − a
dx. (6.167)
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Now we only close the x integral in the upper half-plane for positive k. For
negative k there is no residue term, since a lies in the the upper half-plane. The
Cauchy integral formula now returns

f(a) =
∫ ∞

0

dk

2π
f̄(k)eika. (6.168)

This shows that only the part of the function consistent with the desired bound-
ary conditions is propagated in the positive y direction. The remaining part of
the function propagates in the −y direction, if similar boundary conditions are
imposed in the lower half plane. In this way the boundary conditions and the
Green’s function between them specify precisely which parts of a function are
propagated in the desired direction. No restrictions are placed on the boundary
values f(x), which need not be part of an analytic function.

A second example, which generalises nicely, is the unit circle. Suppose we have
initial data f(θ) defined over the unit circle. We write f(θ) as

f(θ) =
∞∑
−∞

fneinθ. (6.169)

The terms in exp(inθ) are replaced by zn over the unit circle, and we then choose
whether to evaluate in interior or exterior closure of the Cauchy integral. The
result is that only the negative powers are propagated outwards from the circle,
resulting in the function

f(z) =
∞∑

n=1

f−nz−n, |z| > 1. (6.170)

(The constant component f0 is technically propagated as well, but this can be
removed trivially.) These observations are simple from the point of view of
complex variable theory, but are considerably less obvious in propagator theory.

6.4.7 Green’s functions in Euclidean spaces

The extension of complex variable theory to arbitrary Euclidean spaces is now
straightforward. The analogue of an analytic function is a multivector ψ sat-
isfying ∇ψ = 0. We choose to work with even-grade multivectors to simplify
matters. The fundamental theorem states that∮

∂V

dS ψ =
∫

∇ψ dX = 0. (6.171)

where we have used the fact that ψ commutes with the pseudoscalar measure
dX. For any monogenic function ψ, the directed integral of ψ over a closed
surface must vanish.

197

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.008
https:/www.cambridge.org/core


GEOMETRIC CALCULUS

The Green’s function for the vector derivative in n dimensions is simply

G(x; y) =
1
Sn

x − y

|x − y|n , (6.172)

where x and y are vectors and Sn is the surface area of the unit ball in n-
dimensional space. The Green’s function satisfies

∇G(x; y) = ∇·G(x; y) = δ(x − y). (6.173)

In order to allow for the lack of commutativity between G and ψ we use the
fundamental theorem in the form∮

∂V

GdS ψ =
∫

V

(Ġ∇̇ψ + G∇ψ) dX

=
∫

V

Ġ∇̇ψ dX, (6.174)

where we have used the fact that ψ is a monogenic function. Setting G equal
to the Green’s function of equation (6.172) we find that Cauchy’s theorem in
n dimensions can be written in the form

ψ(y) =
1

ISn

∮
∂V

x − y

|x − y|n dS ψ(x). (6.175)

This relates the value of a monogenic function at a point to the value of a surface
integral over a region surrounding the point.

One consequence of equation (6.175) is that a generalisation of Liouville’s
theorem applies to monogenic functions in Euclidean spaces. We define the
modulus function

|M | = 〈MM †〉1/2, (6.176)

which is a well-defined positive-definite function for all multivectors M in a
Euclidean algebra. The modulus function is easily shown to satisfy Schwarz
inequality in the form

|A + B| ≤ |A| + |B|. (6.177)

If we let a denote a unit vector and let ∇y denote the derivative with respect to
the vector y we find that

a·∇yψ(y) = − 1
ISn

∮
∂V

a(x − y)2 + na·(x − y) (x − y)
|x − y|n+2

dS ψ(x). (6.178)

It follows that

|a·∇yψ(y)| ≤ 1
Sn

∮
∂V

n + 1
|x − y|n |dS| |ψ(x)|. (6.179)

But if ψ is bounded, |ψ(x)| never exceeds some given value. Taking the surface
of integration out to large radius r = |x|, we find that the right-hand side falls
off as 1/r. This is sufficient to prove that the directional derivative of ψ must
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vanish in all directions, and the only monogenic function that is bounded over
all space is constant ψ.

Equation (6.175) enables us to propagate a function off an initial surface in
Euclidean space, subject to suitable boundary conditions. Suppose, for example,
that we wish to propagate ψ off the surface of the unit ball, subject to the
condition that the function falls to zero at large distance. Much like the two-
dimensional case, we can write

ψ =
∞∑

l=−∞
αlψl, (6.180)

where the ψl are angular monogenics, satisfying

x∧∇ψ = −lψ. (6.181)

Each angular monogenic is multiplied by rl to yield a full monogenic function,
and only the negative powers have their integral closed over the exterior region.
The result is the function

ψ =
∞∑

l=1

α−lr
−lψ−l, r > 1. (6.182)

Similarly, the positive powers are picked up if we solve the interior problem.

6.4.8 Spacetime propagators

Propagation in mixed signature spaces is somewhat different to the Euclidean
case. There is no analogue of Liouville’s theorem to call on, so one can easily
construct bounded solutions to the monogenic equation which are non-singular
over all space. Plane wave solutions to the massless Dirac equation are an ex-
ample of such functions. Furthermore, the existence of characteristic surfaces
has implications for the how boundary values are specified. To see this, consider
a two-dimensional Lorentzian space with basis vectors {γ0, γ1}, γ2

0 = −γ2
1 = 1,

and pseudoscalar I = γ1γ0. The monogenic equation is ∇ψ = 0, where ψ is an
even-grade multivector built from a scalar and pseudoscalar terms. We define
the null vectors

n± = γ0 ± γ1. (6.183)

Pre-multiplying the monogenic equation by n+ we find that

n+ ·∇ψ = −n+∧∇ψ = I (n+I)·∇ψ = −In+ ·∇ψ. (6.184)

where we have used the result that In+ = n+. It follows that

(1 + I)n+ ·∇ψ = 0, (6.185)
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and similarly,

(1 − I)n− ·∇ψ = 0. (6.186)

If we take ψ and decompose it into ψ = ψ+ + ψ−,

ψ± = 1
2 (1 ± I)ψ, (6.187)

we see that the values of the separate ψ± components have vanishing derivatives
along the respective null vectors n±. Propagation of ψ from an initial surface
is therefore quite straightforward. The function is split into ψ±, and the values
of these are transported along the respective null vectors. That is, ψ+ has the
same value along each vector in the n+ direction, and the same for ψ−. There
is no need for a complicated contour integral.

The fact that the values of ψ are carried along the characteristics illustrates a
key point. Any surface on which initial values are specified can cut a character-
istic surface only once. Otherwise the initial values are unlikely to be consistent
with the differential equation. For the monogenic equation, ∇ψ = 0, suitable
initial conditions consist of specifying ψ along the γ1 axis, for example. But
the fundamental theorem involves integrals around closed loops. The theorem
is still valid in a Lorentzian space, so it is interesting to see what happens to
the boundary data if we attempt to construct an interior solution with arbitrary
surface data. The first step is to construct the Lorentzian Green’s function. This
can be found routinely via its Fourier transformation. With x = x0γ0 + x1γ1 we
find

G(x) = i

∫
dω

2π

dk

2π

ωγ0 + kγ1

ω2 − k2
ei(kx1 − ωx0)

=
i

2

∫
dω

2π

dk

2π

(
γ0 + γ1

ω − k
+

γ0 − γ1

ω + k

)
ei(kx1 − ωx0)

=
ε(x0)

4
(
δ(x1 − x0)(γ0 + γ1) + δ(x1 + x0)(γ0 − γ1)

)
. (6.188)

The function ε(x0) takes the value +1 or −1, depending on whether x0 is positive
or negative respectively.

To apply the fundamental theorem, suppose we take the contour of figure 6.5,
which runs along the γ1 axis for two different times ti < tf and is closed at
spatial infinity. We assume that the function we are propagating, ψ, falls off at
large spatial distance, and write ψ(x) as ψ(x0, x1). The fundamental theorem
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ti

tf

−∞ ∞

Figure 6.5 A spacetime contour. The contour is closed at spatial infinity.

then gives

ψ(y) =I

∫ ∞

−∞
dλ G(tiγ0 + λγ1 − y)γ1ψ(ti, λ)

− I

∫ ∞

−∞
dλ G(tfγ0 + λγ1 − y)γ1ψ(tf , λ)

=
1
4
(1 + I)

(
ψ(ti, y1 − y0 + ti) + ψ(tf , y1 − y0 + tf )

)
− 1

4
(1 − I)

(
ψ(ti,−y1 + y0 + ti) + ψ(tf ,−y1 + y0 + tf )

)
. (6.189)

The construction of ψ(y) in the interior region has a simple interpretation. For
the function ψ+(y), for example, we form the null vector n+ through y. The
value at y is then the average value at the two intersections with the boundary.
A similar construction holds for ψ−. Much like the Euclidean case, only the part
of the function on the boundary that is consistent with the monogenic equation
is propagated to the interior.

These insights hold in other Lorentzian spaces, such as four-dimensional space-
time. The Green’s functions become more complicated, and typically involve
derivatives of δ-functions. These are more usefully handled via their Fourier
transforms, and are discussed in more detail in section 8.5. In addition, the lack
of a Liouville’s theorem means that any monogenic function can be added to a
Green’s function to generate a new Green’s function. This has no consequences
if one rigorously applies surface integral formulae. In quantum theory, however,
this is not usually the case. Rather than a rigorous application of the generalised
Green’s theorem, it is common instead to talk about propagators which transfer
initial data from one timeslice to a later one. Used in this role, the Green’s func-
tions we have derived are referred to as propagators. As we are not specifying
data over a closed surface, adding further terms to our Green’s function can have
an effect. These effects are related to the desired boundary conditions and are
crucial to the formulation of a relativistic quantum field theory. There one is led
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to employ the complex-valued Feynman propagator, which ensures that positive
frequency modes are propagated forwards in time, and negative frequency modes
are propagated backwards in time. We will meet this object in greater detail in
section 8.5.

6.5 Embedded surfaces and vector manifolds

We now seek a generalisation of the preceding results where the volume integral is
taken over a curved surface. We will do this in the setting of the vector manifold
theory developed by Hestenes and Sobczyk (1984). The essential concept is to
treat a manifold as a surface embedded in a larger, flat space. Points in the
manifold are then treated as vectors, which simplifies a number of derivations.
Furthermore, we can exploit the coordinate freedom of geometric algebra to
derive a set of general results without ever needing to specify the dimension
of the background space. The price we pay for this approach is that we are
working with a more restrictive concept of a manifold than is usually the case
in mathematics. For a start, the surface naturally inherits a metric from the
embedding space, so we are already restricting to Riemannian manifolds. We will
also insist that a pseudoscalar can be uniquely defined throughout the surface,
making it orientable.

While this may all appear quite restrictive, in fact these criteria rule out hardly
any structures of interest in physics. This approach enables us to quickly prove
a number of key results in Riemannian geometry, and to unite these with results
for the exterior geometry of the manifold, achieving a richer general theory. We
are not prevented from discussing topological features of surfaces either. Rather
than build up a theory of topology which makes no reference to the metric,
we instead build up results that are unaffected if the embedding is (smoothly)
transformed.

We define a vector manifold as a set of points labelled by vectors lying in a
geometric algebra of arbitrary dimension and signature. If we consider a path in
the surface x(λ), the tangent vector is defined in the obvious way by

x′ =
∂x(λ)

∂λ

∣∣∣∣
λ0

= lim
ε	→0

x(λ0 + ε) − x(λ0)
ε

. (6.190)

An advantage of the embedding picture is that the meaning of the limit is well
defined, since the numerator exists for all ε. This is true even if, for finite epsilon,
the difference vector does not lie entirely in the tangent space and only becomes a
tangent vector in the limit. Standard formulations of differential geometry avoid
any mention of an embedding, however, so have to resort to a more abstract
definition of a tangent vector.

An immediate consequence of this approach is that we can define the path
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length as

s =
∫ λ2

λ1

|x′ ·x′|1/2 dλ. (6.191)

The embedded surface therefore inherits a metric from the ‘ambient’ background
space. All finite-dimensional Riemannian manifolds can be studied in this way
since, given a manifold, a natural embedding in a larger flat space can always be
found. In applications such as general relativity one is usually not interested in
the properties of the embedding, since they are physically unmeasurable. But in
many other applications, particularly those involving constrained systems, the
embedding arises naturally and useful information is contained in the extrinsic
geometry of a manifold.

6.5.1 The pseudoscalar and projection

Suppose that we next introduce a set of paths in the surface all passing through
the same point x. The paths define a set of tangent vectors {e1, . . . , en}. We as-
sume that these are independent, so that they form a basis for the n-dimensional
tangent space at the point x. The exterior product of the tangent vectors defines
the pseudoscalar for the tangent space I(x):

I(x) ≡ e1∧e2∧· · ·∧en/|e1∧e2∧· · ·∧en|. (6.192)

The modulus in the denominator is taken as a positive number, so that I has
the orientation specified by the tangent vectors. The pseudoscalar will satisfy

I2 = ±1, (6.193)

with the sign depending on dimension and signature. Clearly, to define I in
this manner requires that the denominator in (6.192) is non-zero. This provides
a restriction on the vector manifolds we consider here, and rules out certain
structures in mixed signature spaces. The unit circle in the Lorentzian plane
(figure 6.1), for example, falls outside the class of surfaces of studied here, as
the tangent space has vanishing norm where the tangent vectors become null.
Of course, there is no problem in referring to a closed spacetime curve as a
vector manifold. The problem arises when attempting to generalise the integral
theorems of the previous sections to such spaces.

The pseudoscalar I(x) contains all of the geometric information about the
surface and unites both its intrinsic and extrinsic properties. As well as assuming
that I(x) can be defined globally, we will also assume that I(x) is continuous
and differentiable over the entire surface, that it has the same grade everywhere,
and that it is single-valued. The final assumption implies that the manifold is
orientable, and rules out objects such as the Mobius strip, where the pseudoscalar
is double-valued. Many of the restrictions on the pseudoscalar mentioned above
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can be relaxed to construct a more general theory, but this is only achieved at
some cost to the ease of presentation. We will follow the simpler route, as the
results developed here are sufficiently general for our purposes in later chapters.

The pseudoscalar I(x) defines an operator which projects from an arbitrary
multivector onto the component that is intrinsic to the manifold. This operator
is

P(Ar(x), x) =

{
Ar(x)·I(x) I−1(x) = Ar ·I I−1, r ≤ n

0 r > n
. (6.194)

which defines an operator at every point x on the manifold. It is straightforward
to prove that P satisfies the essential requirement of a projection operator, that
is,

P2(A) = P
(
P(A)

)
= P(A). (6.195)

The effect of P on a vector a is to project onto the component of a that lies
entirely in the tangent space at the point x. Such vectors are said to be intrinsic
to the manifold. The complement,

P⊥(a) = a − P(a), (6.196)

lies entirely outside the tangent space, and is said to be extrinsic to the manifold.
Suppose now that A(x) is a multivector field defined over some region of the

manifold. We do not assume that A is intrinsic to the manifold. Given a vector
a in the tangent space, the directional derivative along a is defined in the obvious
manner:

a·∇A(x) = lim
ε	→0

A(x + εa) − A(x)
ε

. (6.197)

Again, the presence of the embedding enables us to write this limit without
ambiguity. The derivative operator a·∇ is therefore simply the vector derivative
in the ambient space contracted with a vector in the tangent space. Given a set of
linearly independent tangent vectors {ei}, we can now define a vector derivative
∂ intrinsic to the manifold by

∂ = ei ei ·∇ = P(∇). (6.198)

This is simply the ambient space vector derivative projected onto the tangent
space. The use of the ∂ symbol should not cause confusion with the boundary
operator introduced in section 6.4.4. The definition of ∂ requires the existence
of the reciprocal frame {ei}, which is why we restricted to manifolds over which
I is globally defined. The projection of the vector operator ∂ satisfies

P(∂) = ∂. (6.199)

The contraction of ∂ with a tangent vector a satisfies a·∂ = a·∇, which is simply
the directional derivative in the a direction.
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6.5.2 Directed integration for embedded surfaces

Now that we have defined the ∂ operator it is a straightforward task to write
down a generalized version of the fundamental theorem of calculus appropri-
ate for embedded surfaces. We can essentially follow through the derivation
of section 6.4.4 with little modification. The volume to be integrated over is
again triangulated into a chain of simplices. The only difference now is that the
pseudoscalar for each simplex varies from one simplex to another. This changes
very little. For example we still have∮

dS = 0, (6.200)

which holds for the directed integral over the closed boundary of any simply-
connected vector manifold.

The linear interpolation results used in deriving equation (6.138) are all valid,
because we can again fall back on the embedding picture. In addition, the
assumption that the pseudoscalar I(x) is globally defined means that the recip-
rocal frame required in equation (6.138) is well defined. The only change that
has to be made is that the ambient derivative ∇ is replaced by its projection
into the manifold, because we naturally assemble the inner product of ∇ with
the pseudoscalar. The most general statement of the fundamental theorem can
now be written as ∮

∂V

L(dS) =
∫

V

L̇(∂̇dX) =
∫

V

L̇(∇̇·dX). (6.201)

The form of the volume integral involving ∂ is generally more useful as it forms
a geometric product with the volume element. The function L can be any
multivector-valued function in this equation — it is not restricted to lie in the
tangent space. An important feature of this more general theorem is that if we
write dX = I|dX| we see that the directed element dX is position-dependent.
But this position dependence is not differentiated in equation (6.201). It is only
the integrand that is differentiated.

There are two main applications of the general theorem derived here. The first
is a generalisation of the divergence theorem to curved spaces. We again write

L(A) = 〈JAI−1〉, (6.202)

where J is a vector field in the tangent space, and I is the unit pseudoscalar for
the n-dimensional curved space. Equation (6.201) now gives∮

∂V

n·J |dS| =
∫

V

(∂ ·J + 〈J∂̇İ−1I〉)|dX|, (6.203)

where |dX| = I−1dX and n|dS| = dS I−1. The final term in the integral van-
ishes, as can be shown by first writing I−1 = ±I and using

〈J∂̇İI〉 = 1
2 〈J∂̇(İI + Iİ)〉 = 1

2 〈J∂(I2)〉 = 0. (6.204)
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It follows that the divergence theorem in curved space is essentially unchanged
from the flat-space version, so∫

V

∂ ·J |dX| =
∮

∂V

n·J |dS|. (6.205)

As a second application we derive Stokes’ theorem in three dimensions. Sup-
pose that σ denotes an open, connected surface in three dimensions, with bound-
ary ∂σ. The linear function L takes a vector as its linear argument and we define

L(a) = J ·a. (6.206)

Equation (6.201) now gives∮
∂σ

J ·dl =
∫

σ

〈J̇ ∇̇·dX〉 = −
∫

σ

(∇∧J)·dX, (6.207)

where the line integral is taken around the boundary of the surface, and since the
embedding is specified we have chosen a form of the integral theorem involving
the three-dimensional derivative ∇. We now define the normal vector to the
surface by

dX = In|dX|, (6.208)

where I is the three-dimensional (right-handed) pseudoscalar. This equation
defines the vector n normal to the surface. The direction in which this points
depends on the orientation of dX. Around the boundary, for example, we can
denote the tangent vector at the boundary by l, and the vector pointing into
the surface as m. Then dX has the orientation specified by l∧m, and from
equation (6.208) we see that l,m,n must form a right-handed set. This extends
inwards to define the normal vector n over the surface (see figure 6.6). We now
have ∮

∂σ

J ·dl =
∫

σ

−(I∇∧J)·n |dX| =
∫

σ

(curlJ)·n |dX|, (6.209)

which is the familiar Stokes’ theorem in three dimensions. This is only the
scalar part of a more general (and less familiar) theorem which holds in three
dimensions. To form this result we remove the projection onto the scalar part,
to obtain ∮

∂σ

dl J = −I

∫
σ

n∧∇ J |dX|. (6.210)

A version of this result holds for any open n-dimensional surface embedded in a
flat space of dimension n + 1.

6.5.3 Intrinsic and extrinsic geometry

Suppose now that the directional derivative a ·∂ acts on a tangent vector field
b(x) = P(b(x)). There is no guarantee that the resulting vector also lies entirely
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σ

∂σ

l

m

n

n

Figure 6.6 Orientations for Stokes’ theorem. The bivector measure dX
defines an orientation over the surface and at the boundary. With l and m
the tangent and inward directions at the boundary, the normal n is defined
so that l, m, n form a right-handed set.

in the tangent space, even if a does. For example, consider the simple case of a
circle in the plane. The derivative of the tangent vector around the circle is a
radial vector, which is entirely extrinsic to the manifold. In order to restrict to
quantities intrinsic to the manifold we define a new derivative — the covariant
derivative D — as follows:

a·DA(x) = P(a·∂A(x)). (6.211)

The operator a ·D acts on multivectors in the tangent space, returning a new
multivector field in the tangent space. Since the a·∂ operator satisfies Leibniz’s
rule, the covariant derivative a·D must as well,

a·D(AB) = P
(
a·∂(AB)

)
= (a·DA)B + Aa·DB. (6.212)

The vector operator D is then defined in the obvious way from the covariant
directional derivatives,

D = ei ei ·D. (6.213)

So, for example, we can write

DAr = ei(ei ·DAr) = P(∂Ar). (6.214)

The result decomposes into grade-raising and grade-lowering terms, so we write

D·Ar = 〈DAr〉r−1,

D∧Ar = 〈DAr〉r+1.
(6.215)

So, like ∂, D has the algebraic properties of a vector in the tangent space. Acting
on a scalar function α(x) defined over the manifold the two derivatives coincide,
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so

∂α(x) = Dα(x). (6.216)

Suppose now that a is a tangent vector to the manifold, and we look at how
the pseudoscalar changes along the a direction. It should be obvious, from
considering a 2-sphere for example, that the resulting quantity must lie at least
partly outside the manifold. We let {ei} denote an orthonormal frame, so

I = e1e2 · · · en. (6.217)

It follows that

a·∂ I I−1 =
n∑

i=1

e1 · · ·
(
a·Dei + P⊥(a·∂ ei)

)
· · · en I−1

= a·D I I−1 + P⊥(a·∂ ei)∧ei. (6.218)

The final term is easily shown to be independent of the choice of frame. But
a ·DI must remain in the tangent space, so it can only be a multiple of the
pseudoscalar I. It follows that

(a·D I)I = 〈(a·D I)I〉 = 1
2 〈a·D(I2)〉 = 0, (6.219)

so

a·D I = 0. (6.220)

That is, the (unit) pseudoscalar is a covariant constant over the manifold. Equa-
tion (6.218) now simplifies to give

a·∂ I = P⊥(a·∂ ei)∧ei I = −S(a)I, (6.221)

which defines the shape tensor S(a). This is a bivector-valued, linear function
of its vector argument a, where a is a tangent vector. Since the result of a·∂ I

has the same grade as I, we can write

a·∂I = I×S(a) (6.222)

with

S(a)·I = S(a)∧I = 0. (6.223)

The fact that S(a)·I = 0 confirms that S(a) lies partly outside the manifold, so
that P(S(a)) = 0.

The shape tensor S(a) unites the intrinsic and extrinsic geometry of the man-
ifold in a single quantity. It can be thought of as the ‘angular momentum’ of
I(x) as it slides over the manifold. The shape tensor provides a compact relation
between directional and covariant derivatives. We first form

b·S(a) = biP⊥(a·∂ ei) = P⊥(a·∂ b), (6.224)
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where a and b are tangent vectors. It follows that

a·∂ b = P(a·∂ b) + P⊥(a·∂ b) = a·D b + b·S(a), (6.225)

which we can rearrange to give the neat result

a·D b = a·∂ b + S(a)·b. (6.226)

Applying this result to the geometric product bc we find that

a·D(bc) = (a·∂ b)c + S(a)·b c + b(a·∂ c) + b S(a)·c
= a·∂(bc) + S(a)×(bc), (6.227)

where × is the commutator product, A×B = (AB − BA)/2. It follows that for
any multivector field A taking its values in the tangent space we have

a·DA = a·∂A + S(a)×A. (6.228)

The fact that S(a) is bivector-valued ensures that S(a)×A does not alter the
grade of A. As a check, setting A = I recovers equation (6.222). If we now write

a·∂ b = a·∂ P(b) = a·∂̇ Ṗ(b) + P(a·∂b) = a·∂̇ Ṗ(b) + a·Db (6.229)

we establish the further relation

a·∂̇ Ṗ(b) = b·S(a). (6.230)

This holds for any pair of tangent vectors a and b.

6.5.4 Coordinates and derivatives

A number of important results can be derived most simply by introducing a
coordinate frame. In a region of the manifold we introduce local coordinates xi

and define the frame vectors

ei =
∂x

∂xi
. (6.231)

From the definition of ∂ it follows that ei = ∂xi. The {ei} are usually referred
to as tangent vectors and the reciprocal frame {ei} as cotangent vectors (or 1-
forms). The fact that the space is curved implies that it may not be possible to
construct a global coordinate system. The 2-sphere is the simplest example of
this. In this case we simply patch together a series of local coordinate systems.
The covariant derivative along a coordinate vector, ei · D, satisfies

ei ·DA = DiA = ei ·∂A + S(ei)×A = ∂iA + Si×A, (6.232)

which defines the Di and Si symbols.
The tangent frame vectors satisfy

∂iej − ∂jei = (∂i∂j − ∂j∂i)x = 0. (6.233)
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Projecting this result into the manifold establishes that

Diej − Djei = 0. (6.234)

Projecting out of the manifold we similarly establish the result

ei ·Sj = ej ·Si. (6.235)

In terms of arbitrary tangent vectors a and b this can be written as

a·S(b) = b·S(a). (6.236)

The shape tensor can be written in terms of the coordinate vectors as

S(a) = ek∧P⊥(a·∂ek). (6.237)

It follows that

Si = ek∧P⊥(∂iek) = ek∧P⊥(∂kei). (6.238)

The tangent vectors therefore satisfy

∂∧ei = ek∧
(
P(∂kei) + P⊥(∂kei)

)
= D∧ei + Si. (6.239)

If we decompose a vector in the tangent space as a = aiei we establish the general
result that

∂∧a = D∧a + S(a). (6.240)

This gives a further interpretation to the shape tensor. It is the object which
picks up the component of the curl of a tangent vector which lies outside the
tangent space. As we can write

∂∧a = ∂∧
(
P(a)

)
= ∂̇∧Ṗ(a) + P(∂∧a) = D∧a + ∂̇∧Ṗ(a), (6.241)

we establish the further result

∂̇∧Ṗ(a) = S(a). (6.242)

This is easily seen to be consistent with the definition of the shape tensor in
terms of the derivative of pseudoscalar.

If we now apply the preceding to the case of the curl of a gradient of a scalar,
we find that

∂∧∂φ = P(∇)∧P(∇φ) = P(∇∧∇φ) + ∂̇∧Ṗ(∇φ). (6.243)

But the ambient derivative satisfies the integrability condition ∇∧∇ = 0. It
follows that we have

∂∧∂φ = S(∇φ), (6.244)

which lies outside the manifold. The covariant derivative therefore satisfies

D∧(Dφ) = 0. (6.245)
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An important application of this result is to the coordinate scalars themselves.
We find that

D∧(Dxi) = D∧ei = 0, (6.246)

which can also be proved directly from equation (6.234). Applying this result to
an arbitrary vector a = aie

i we find that

D∧a = D∧(aje
j) = ei∧ej(∂iaj) = 1

2ei∧ej(∂iaj − ∂jai). (6.247)

This demonstrates that the D∧ operator is precisely the exterior derivative of
differential geometry.

6.5.5 Riemannian geometry

To understand further how the shape tensor can specify the intrinsic geometry
of a surface, we now make contact with Riemannian geometry. In Riemannian
geometry one focuses entirely on the intrinsic properties of a manifold. It is
customary to formulate the subject using the metric tensor as the starting point.
In terms of the {ei} coordinate frame the metric tensor is defined in the expected
manner:

gij = ei ·ej . (6.248)

In what follows we will not place any restriction on the signature of the tangent
space. Some texts prefer to use the adjective ‘Riemannian’ to refer to extensions
of Euclidean geometry to curved spaces (as Riemann originally intended). But
in the physics literature it is quite standard now to refer to general relativity as
a theory of Riemannian geometry, despite the Lorentzian signature.

After the metric, the next main object in Riemannian geometry is the Christof-
fel connection. The directional covariant derivative, Di, restricts the result of its
action to the tangent space. The result of its action on one of the {ei} vectors
can therefore be decomposed uniquely in the {ei} frame. The coefficients of this
define the Christoffel connection by

Γi
jk = (Djek)·ei. (6.249)

The components of the connection are clearly dependent on the choice of coordi-
nate system, as well as the underlying geometry. It follows that a connection is
necessary even when working in a curvilinear coordinate system in a flat space.
A connection on its own does not imply that a space is curved. A typical use
of the Christoffel connection is in finding the components in the {ei} frame of a
covariant derivative a·D b, for example. We form

(a·D b)·ei = aj
(
Dj(bkek)

)
·ei = aj(∂jb

i + Γi
jkbk), (6.250)

which shows how the connection accounts for the position dependence in the
coordinate frame.
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The components of the Christoffel connection can be found directly from the
metric without referring to the frame vectors themselves. To achieve this we first
establish a pair of results. The first is that the connection Γi

jk is symmetric on
the jk indices. This follows from

Γi
jk − Γi

kj = (Djek − Dkej)·ei = 0, (6.251)

where we have used equation (6.234). The second result is for the curl of a frame
vector,

D∧ei = D∧(gije
j) = (Dgij)∧ej . (6.252)

We can now write

Γi
jk = 1

2ei ·(Djek + Dkej)

= 1
2ei ·

(
ej ·(Dgkl∧el) + ek ·(Dgjl∧el) + Dgjk

)
= 1

2ei ·(∂jgkle
l + ∂kgjle

l − Dgjk)

= 1
2gil(∂jgkl + ∂kgjl − ∂lgjk), (6.253)

which recovers the familiar definition of the Christoffel connection.
We now seek a method of encoding the intrinsic curvature of a Riemannian

manifold. Suppose we form the commutator of two covariant derivatives

[Di,Dj ]A = ∂i(∂jA + Sj×A) + Si×(∂jA + Sj×A)

−∂j(∂iA + Si×A) − Sj×(∂iA + Si×A)

= (∂iSj − ∂jSi)×A + (Si×Sj)×A, (6.254)

where we have used the Jacobi identity of section 4.1.3. Remarkably, all deriva-
tives of the multivector A have cancelled out and what remains is a commutator
with a bivector. To simplify this we form

∂iSj − ∂jSi = −∂i(∂jI I−1) + ∂j(∂iI I−1)

= −SjISiI
−1 + SiISjI

−1

= −2Si×Sj , (6.255)

where we have used the fact that S(a) anticommutes with I. On substituting
this result in equation (6.254) we obtain the simple result

[Di,Dj ]A = −(Si×Sj)×A. (6.256)

The commutator of covariant derivatives defines the Riemann tensor. We denote
this by R(a∧b), where

R(ei∧ej)×A = [Di,Dj ]A. (6.257)

R(a∧b) is a bivector-valued linear function of its bivector argument. In terms of
the shape tensor we have

R(a∧b) = P
(
S(b)∧S(a)

)
. (6.258)
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The projection is required here because the Riemann tensor is defined to be
entirely intrinsic to the manifold. The Riemann tensor (and its derivatives) fully
encodes all of the local intrinsic geometry of a manifold. Since it can be derived
easily from the shape tensor, it follows that the shape tensor also captures all
of the intrinsic geometry. In addition to this, the shape tensor tells us about
the extrinsic geometry — how the manifold is embedded in the larger ambient
space.

The Riemann tensor can also be expressed entirely in terms of intrinsic quan-
tities. To achieve this we first write

R(ei∧ej)·ek = [Di,Dj ]ek = Di(Γa
jkea) − Dj(Γa

ikea). (6.259)

It follows that

Rijk
l = R(ei∧ej)·(ek∧el)

= ∂iΓl
jk − ∂jΓl

ik + Γa
jkΓl

ia − Γa
ikΓl

ja, (6.260)

recovering the standard definition of Riemannian geometry. An immediate ad-
vantage of the geometric algebra route is that many of the symmetry properties
of Rijk

l follow immediately from the fact that R(a∧b) is a bivector-valued lin-
ear function of a bivector. This immediately reduces the number of degrees of
freedom to n2(n − 1)2/4.

A further symmetry of the Riemann tensor can be found as follows:

R(ei∧ej)·ek = DiDjek − DjDiek

= DiDkej − DjDkei

= [Di,Dk]ej − [Dj ,Dk]ei + Dk(Diej − Djei)

= R(ei∧ek)·ej − R(ej∧ek)·ei. (6.261)

It follows that

a·R(b∧c) + c·R(a∧b) + b·R(c∧a) = 0, (6.262)

for any three vectors a, b, c in the tangent space. This equation tells us that
a vector quantity vanishes for all trivectors a∧ b∧ c, which provides a set of
n2(n − 1)(n − 2)/6 scalar equations. The number of independent degrees of
freedom in the Riemann tensor is therefore reduced to

1
4
n2(n − 1)2 − 1

6
n2(n − 1)(n − 2) =

1
12

n2(n2 − 1). (6.263)

This gives the values 1, 6 and 20 for two, three and four dimensions respectively.
Further properties of the Riemann tensor are covered in more detail in later
chapters, where in particular we are interested in its relevance to gravitation.

The fact that Riemannian geometry is founded on the covariant derivative
D, as opposed to the projected vector derivative ∂ limits the application of the
integral theorem of equation (6.201). If one attempts to add multivectors from
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different points in the surface, there is no guarantee that the result remains
intrinsic. The only quantities that can be combined from different points on the
surface are scalars, or functions taking their values in a different space (such as a
Lie group). The most significant integral theorem that remains is a generalization
of Stokes’ theorem, applicable to a grade-r multivector Ar and an open surface σ

of dimension r + 1. For this case we have∮
∂σ

Ar ·dS =
∫

σ

(Ȧr∧∂̇)·dX = (−1)r

∫
σ

(D∧Ar)·dX, (6.264)

which only features intrinsic quantities. A particular case of this is when r =
n−1, which recovers the divergence theorem. This is important for constructing
conservation theorems in curved spaces.

6.5.6 Transformations and maps

The study of maps between vector manifolds helps to clarify some of the re-
lationships between the structures defined in this chapter and more standard
formulations of differential geometry. Suppose that f(x) defines a map from one
vector manifold to another. We denote these M and M′, so that

x′ = f(x) (6.265)

associates a point in the manifold M′ with one in M. We will only consider
smooth, differentiable, invertible maps between manifolds. In the mathematics
literature these are known as diffeomorphisms. These are a subset of the more
general concept of a homeomorphism, which maps continuously between spaces
without the restriction of smoothness. Somewhat surprisingly, these two con-
cepts are not equivalent. It is possible for two manifolds to be homeomorphic,
but not admit a diffeomorphism between them. This implies that it is possible
for a single topological space to admit more than one differentiable structure.
The first example of this to be discovered was the sphere S7, which admits 28 dis-
tinct differentiable structures! In 1983 Donaldson proved the even more striking
result that four-dimensional space R4 admits an infinite number of differentiable
structures.

A path in M, x(λ), maps directly to a path in M′. The map accordingly
induces a map between tangent vectors, as seen by forming

∂x′(λ)
∂λ

=
∂f
(
x(λ)

)
∂λ

= f(v), (6.266)

where v is the tangent vector in M, v = ∂λx(λ) and the linear function f is
defined by

f(a) = a·∂f(x) = f(a;x). (6.267)

The function f(a) takes a tangent vector in M as its linear argument, and returns
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the image tangent vector in M′. If we denote the latter by a′, and write out the
position dependence explicitly, we have

a′(x′) = f(a(x);x). (6.268)

This map is appropriate for tangent vectors, so applies to the coordinate frame
vectors {ei}. These map to an equivalent frame for the tangent space to M′,

e′i = f(ei). (6.269)

The reciprocal frame in the transformed space is therefore given by

ei′ = f̄−1(ei). (6.270)

The fact that the map x 
→ f(x) is assumed to be invertible ensures that the
adjoint function f̄(a) is also invertible.

Under transformations, therefore, vectors in one space can transform in two
different ways. If they are tangent vectors they transform under the action
of f(a). If they are cotangent vectors they transform under action of f̄−1(a).
In differential geometry it is standard practice to maintain a clear distinction
between these types of vectors, so one usually thinks of tangent and cotangent
vectors as lying in separate linear spaces. The contraction relation ei ·ej = δi

j

identifies the spaces as dual to each other. This relation is metric-independent
and is preserved by arbitrary diffeomorphisms. These maps relate differentiable
manifolds, and two diffeomorphic spaces are usually viewed as the same manifold.

A metric is regarded as an additional construct on a differentiable manifold,
which maps between the tangent and cotangent spaces. In the vector manifold
picture this map is achieved by constructing the reciprocal frame using equa-
tion (4.94). In using this relation we are implicitly employing a metric in the
contraction with the pseudoscalar. For the theory of vector manifolds it is there-
fore useful to distinguish objects and operations that transform simply under
diffeomorphisms. These will define the metric-independent features of a vector
manifold. Metric-dependent quantities, like the Riemann tensor, invariably have
more complicated transformation laws.

The exterior product of a pair of tangent vectors transforms as

ei∧ej 
→ f(ei)∧f(ej) = f(ei∧ej). (6.271)

For example, if I ′ is the unit pseudoscalar for M′ we have

f(I) = det (f)I ′ (6.272)

and for invertible maps we must have det (f) 	= 0. Similarly, for cotangent vectors
we see that

ei∧ej 
→ f̄−1(ei)∧ f̄−1(ej) = f̄−1(ei∧ej). (6.273)

So exterior products of like vectors give rise to higher grade objects in a manner
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that is unchanged by diffeomorphisms. Metric invariants are constructed from
inner products between tangent and cotangent vectors. Since the derivative of a
scalar field is

∂φ = ei∂iφ, (6.274)

we see that ∂φ is a cotangent vector, and we can write

∂′ = f̄−1(∂). (6.275)

A similar result holds for the covariant derivative D. If a is a tangent vector the
directional derivative of a scalar field a·∂φ is therefore an invariant,

a′ ·∂′φ′ = f(a)· f̄−1(∂)φ = a·∂φ, (6.276)

where φ′(x′) = φ(x).
In constructing the covariant derivative in section 6.5.3, we made use of the

projection operation P(a). This is a metric operation, as it relies on a contraction
with I. Hence the covariant derivatives Diej do depend on the metric (via the
connection). To establish a metric-independent operation we let a and b represent
tangent vectors and form

a·∂b − b·∂a = a·Db − b·Da + a·S(b) − b·S(a)

= a·Db − b·Da. (6.277)

The shape terms cancel, so the result is intrinsic to the manifold. Under a
diffeomorphism the result transforms to

a·∂f(b) − b·∂f(a) = f(a·∂b − b·∂a) + a·∂̇ ḟ(b) − b·∂̇ ḟ(a). (6.278)

But f(a) is the differential of the map f(x), so we have

(∂i∂j − ∂j∂i)f(x) = ∂if(ej) − ∂jf(ei) = ∂̇i ḟ(ej) − ∂̇j ḟ(ei) = 0. (6.279)

It follows that, for tangent vectors a and b,

a·∂̇ ḟ(b) − b·∂̇ ḟ(a) = 0. (6.280)

We therefore define the Lie derivative Lab by

Lab = a·∂b − b·∂a. (6.281)

This results in a new tangent vector, and transforms under diffeomorphisms as

Lab 
→ L′
a′b′ = f(Lab). (6.282)

Relations between tangent vectors constructed from the Lie derivative will there-
fore be unchanged by diffeomorphisms.

A similar construction is possible for cotangent vectors. If we contract equa-
tion (6.279) with f̄−1(ek) we obtain

f(ej)·
(
∂j f̄

−1(ek)
)
− f(ei)·

(
∂i f̄

−1(ek)
)

= 0. (6.283)
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Now multiplying by f̄−1(ei∧ej) and summing we find that

P′(f̄−1(∂)∧ f̄−1(ek)
)

= 0. (6.284)

This result can be summarised simply as

D′∧ek′ = D′∧ f̄−1(ek) = 0. (6.285)

This is sufficient to establish that the exterior derivative of a cotangent vector
results in a cotangent bivector (equivalent to a 2-form). The result transforms
in the required manner:

D∧A 
→ D′∧A′ = f̄−1(D∧A). (6.286)

This is the result that makes the exterior algebra of cotangent vectors so powerful
for studying the topological features of manifolds. This algebra is essentially that
of differential forms, as is explained in section 6.5.7. For example, a form is said
to be closed if its exterior derivative is zero, and to be exact if it can be written
as the exterior derivative of a form of one degree lower. Both of these properties
are unchanged by diffeomorphisms, so the size of the space of functions that are
closed but not exact is a topological feature of a space. This is the basis of de
Rham cohomology.

It is somewhat less common to see diffeomorphisms discussed when studying
Riemannian geometry. More usually one focuses attention on the restricted class
of isometries, which are diffeomorphisms that preserve the metric. These define
symmetries of a Riemannian space. In the vector manifold setting, however, it is
natural to study the effect of maps on metric-dependent quantities. The reason
being that vector manifolds inherit their metric structure from the embedding,
and if the embedding is changed by a diffeomorphism, the natural metric is
changed as well. One does not have to inherit the metric from an embedding.
One can easily impose a metric on a vector manifold by defining a linear transfor-
mation over the manifold. This takes us into the subject of induced geometries,
which is closer to the spirit of the approach to gravity adopted in chapter 14.
Similarly, when transforming a vector manifold, one need not insist that the
transformed metric is that inherited by the new embedding. One can instead
simply define a new metric on the transformed space directly from the original
one.

The simplest example of a diffeomorphism inducing a new geometry is to
consider a flat plane in three dimensions. If the plane is distorted in the third
direction, and the new metric taken as that implied by the embedding, the surface
clearly becomes curved. Formulae for the effects of such transformations are
generally quite complex. Most can be derived from the transformation properties
of the projection operation,

P′ = fPf−1. (6.287)
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This identity ensures that the projection and transformation formulae can be
applied in either order. If we now form

e′i ·S′
j = P′

⊥
(
∂jf(ei)

)
= f(ei ·Sj) + P′

⊥
(
∂̇j ḟ(ei)

)
, (6.288)

we see that the shape tensor transforms according to

a′ ·S′(b′) = f(a·S(b)) + P′
⊥
(
b·∂̇ ḟ(a)

)
. (6.289)

Further results can be built up from this. For example, the new Riemann tensor
is constructed from the commutator of the transformed shape tensor.

6.5.7 Differential geometry and forms

So far we have been deliberately loose in relating objects in vector manifold the-
ory to those of modern differential geometry texts. In this section we clarify the
relations and distinctions between the viewpoints. In the subject of differential
geometry it is now common practice to identify directional derivatives as tangent
vectors, so that the tangent vector a is the scalar operator

a = ai ∂

∂xi
. (6.290)

Tangent vectors form a linear space, denoted TxM, where x labels a point in
the manifold M. This notion of a tangent vector is slightly different from that
adopted in the vector manifold theory, where we explicitly let the directional
derivative act on the vector x. As explained earlier, the limit implied in writing
∂x/∂xi is only well defined if an embedding picture is assumed. The reason
for the more abstract definition of a tangent vector in the differential geometry
literature is to remove the need for an embedding, so that a topological space
can be viewed as a single distinct entity. There are arguments in favour, and
against, both viewpoints. For all practical purposes, however, the philosophies
behind the two viewpoints are largely irrelevant, and calculations performed in
either scheme will return the same results.

The dual space to TxM is called the cotangent space and is denoted T ∗
xM.

Elements of T ∗
xM are called cotangent vectors, or 1-forms. The inner product

between a tangent and cotangent vector can be written as 〈ω, a〉. A basis for the
dual space is defined by the coordinate differentials dxi, so that

〈dxi, ∂/∂xj〉 = δi
j . (6.291)

A 1-form therefore implicitly contains a directed measure on a manifold. So, if
α is a 1-form we have

α = αidxi = A·(dx), (6.292)
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where A is a grade-1 multivector in the vector manifold sense. Similarly, if dX

is a directed measure over a two-dimensional surface, we have

dX = ei∧ej dxi dxj , (6.293)

so that

(ej∧ei)·dX = dxi dxj − dxj dxi. (6.294)

An arbitrary 2-form can be written as

α2 =
1
2!

αij(dxi dxj − dxj dxi) = A†
2 ·dX. (6.295)

Here A2 is the multivector

A2 =
1
2!

αij ei∧ej , (6.296)

which has the same components as the differential form. More generally, an
r-form αr can be written as

αr = A†
r ·dXr = Ar ·dX†

r . (6.297)

Clearly there is little difference in working with the r-form αr or the equivalent
multivector Ar. So, for example, the outer product of two 1-forms results in the
2-form

α1∧β1 = αiβi(ei∧ej)·dX†
2 = (A1∧B1)·dX†

2 , (6.298)

where dX2 is a two-dimensional surface measure and A1, B1 are the grade-1
multivectors with components αi and βi respectively. Similarly, the exterior
derivative of an r-form is given by

dαr = (D∧Ar)·dX†
r+1. (6.299)

The fact that forms come packaged with an implicit measure allows for a
highly compact statement of Stokes’ theorem, as given in equation (6.264). In
ultra-compact notation this says that∫

σr

dα =
∮

∂σr

α, (6.300)

where α is an (r − 1)-form integrated over an open r-surface σr. This is entirely
equivalent to equation (6.264), as can be seen by writing∫

σr

dα =
∫

σr

(Ȧ†
r−1∧Ḋ)·dXr =

∮
∂σr

(A†
r−1)·dSr−1 =

∮
∂σr

α. (6.301)

One can proceed in this manner to establish a direct translation scheme between
the languages of differential forms and vector manifolds. Many of the expressions
are so similar that there is frequently little point in maintaining a distinction.

If the language of differential forms is applied in a metric setting, an important
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additional concept is that of a duality transformation, also known as the Hodge
∗ (star) operation. To define this we first introduce the volume form

Ω =
√
|g|dx1∧dx2∧· · ·∧dxn =

√
|g|(en∧en−1∧· · ·∧e1)·dX. (6.302)

The pseudoscalar for a vector manifold, given a coordinate frame with the spec-
ified orientation, is given by

I =
1√
|g|

(e1∧e2∧· · ·∧en). (6.303)

This definition was chosen earlier to ensure that I2 = ±1 and that I keeps the
orientation specified by the frame. It follows that

Ω = I−1 ·dX, (6.304)

so that the equivalent multivector is I−1†. This will equal ±I, depending on
signature. The Hodge ∗ of an r-form αr is the (n − r)-form

∗αr =

√
|g|

r!(m − r)!
ωi1,...,ir

εi1,...,ir
jr+1,...,jn

dxjr+1∧· · ·∧dxjn , (6.305)

where εi1,...,in
denotes the alternating tensor. If Ar is the multivector equivalent

of αr, the Hodge ∗ takes on the rather simpler expression

∗Ar = (I−1Ar)† = (I−1 ·Ar)†. (6.306)

In effect, we are multiplying by the pseudoscalar, as one would expect for a
duality relation. Applied twice we find that

∗∗Ar =
(
I−1(I−1 ·Ar)†

)† = (−1)r(m−r)Ar(I†I). (6.307)

In spaces with Euclidean signature, I†I = +1. In spaces of mixed signature
the sign depends on whether there are an even or odd number of basis vectors
with negative norm. It is a straightforward exercise to prove the main results for
the Hodge ∗ operation, given equation (6.307) and the fact that I is covariantly
conserved.

6.6 Elasticity

As a more extended application of some of the ideas developed in this chapter,
we discuss the foundations of the subject of elasticity. The behaviour of a solid
object is modelled by treating the object as a continuum. Locally, the strains
in the object will tend to be small, but these can build up to give large global
displacements. As such, it is important to treat the full, non-linear theory of
elasticity. Only then can one be sure about the validity of various approximation
schemes, such as assuming small deflections.
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Our discussion is based on a generalisation of the ideas employed in the treat-
ment of a rigid body. We first introduce an undeformed, reference configuration,
with points in this labelled with the vector x. This is sometimes referred to as
the material configuration. Points in the spatial configuration, y, are obtained
by a non-linear displacement f of the reference configuration, so that

y = y(x, t) = f(x, t). (6.308)

We use non-bold vectors to label points in the body, and bold to label tangent
vectors in either the reference or spatial body. We assume that the background
space is flat, three-dimensional Euclidean space.

6.6.1 Body strains

To calculate the strains in the body, consider the image of the vector between
two nearby points in the reference configuration,

(x + εa) − x 
→ y(x + εa) − y(x) = εf(a) + O(ε2), (6.309)

where f is the deformation gradient,

f(a) = a·∇y = a·∇f(x, t). (6.310)

The function f maps a tangent vector in the reference configuration to the equiva-
lent vector in the spatial configuration. That is, if x(λ) is a curve in the reference
configuration with tangent vector

x′ =
∂x(λ)

∂λ
, (6.311)

then the spatial curve has tangent vector f(v). The length of the curve x(λ) in
the reference configuration is∫ ∣∣∣∣∂x

∂λ

∣∣∣∣ dλ =
∫
|x′| dλ. (6.312)

The length of the induced curve in the spatial configuration is therefore∫
dλ
(
f(x′)2

)1/2 =
∫

dλ
(
x′ · f̄ f(x′)

)1/2
. (6.313)

We define the (right) Cauchy–Green tensor C, by

C(a) = f̄ f(a). (6.314)

This tensor is a symmetric, positive-definite map between vectors in the reference
configuration. It describes a set of positive dilations along the principal directions
in the reference configuration. The eigenvalues of C can be written as (λ2

1, λ
2
2, λ

2
3),

where the λi define the principal stretches. The deviations of these from unity
measure the strains in the material.
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e1

e2

f(e1)
f(e2)

y = f(x, t)

Figure 6.7 An elastic body. The function f(x, t) maps points in the refer-
ence configuration to points in the spatial configuration. Coordinate curves
e1 and e2 map to f(e1) and f(e2). The normal vector in the spatial config-
uration therefore lies in the f̄−1(e3) direction.

6.6.2 Body stresses

If we take a cut through the body then the contact force between the surfaces will
be a function of the normal to the surface (and position in the body). Cauchy
showed that, under reasonable continuity conditions, this force must be a linear
function of the normal, which we write σ(n) = σ(n;x). The tensor σ(n) maps
a vector normal to a surface in the spatial configuration onto the force vector,
also in the spatial configuration. We will verify shortly that σ is symmetric.

The total force on a volume segment in the body involves integrating σ(n) over
the surface of the volume. But, as with the rigid body, it is simpler to perform
all calculations back in the reference copy. To this end we let xi denote a set of
coordinates for position in the reference body. The associated coordinate frame
is {ei}, with reciprocal frame {ei}. Suppose now that x1 and x2 are coordinates
for a surface in the reference configuration. The equivalent normal in the spatial
configuration is (see figure 6.7)

n = f(e1)∧f(e2) I−1 = det (f) f̄−1(e3). (6.315)

The force over this surface is found by integrating the quantity

σ
(
f(e1∧e2)I−1

)
dx1 dx2 = det (f)σ(̄f−1(e3))dx1 dx2. (6.316)

We therefore define the first Piola–Kirchoff stress tensor T by

T(a) = det (f)σf̄−1(a). (6.317)

The stress tensor T takes as its argument a vector normal to a surface in the
reference configuration, and returns the contact force in the spatial body. The
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force balance equation tells us that, for any sub-body, we have

d

dt

∫
d3x ρv =

∮
T(ds) +

∫
d3x ρb, (6.318)

where ρ is the density in the reference configuration, v = ẏ is the spatial velocity,
and b is the applied body force. The fundamental theorem immediately converts
this to the local equation

ρv̇ = Ť(∇̌) + ρb. (6.319)

The check symbol is used for the scope of the derivative, to avoid confusion with
time derivatives (denoted with an overdot). This equation is sensible as ∇ is
the vector derivative in the reference configuration, and Ť(∇̌) is a vector in the
spation configuration.

The total torque on a volume element, centred on y0, is (ignoring body forces)

M =
∮

(y − y0)∧T(ds). (6.320)

This integral runs over the reference body, and returns a torque in the spatial
configuration. This must be equated with the rate of change of angular momen-
tum, which is

d

dt

∫
d3x ρ(y − y0)∧ẏ =

∫
d3x (y − y0)∧Ť(∇̌)

=
∮

(y − y0)∧T(ds) −
∫

d3x y̌∧T(∇̌). (6.321)

Equating this with M we see that

y̌∧T(∇̌) = (∂if(x))∧T(ei) = f(ei)∧T(ei) = 0. (6.322)

It follows that

f(ei)∧T(ei) = det (f) f(ei)∧σf̄−1(ei) = 0, (6.323)

and we see that σ must be a symmetric tensor in order for angular momentum
to be conserved.

It is often convenient to work with a version of T that is symmetric and defined
entirely in the material frame. We therefore define the second Piola–Kirchoff
stress tensor T by

T (a) = f−1T(a). (6.324)

It is meaningless to talk about symmetries of T, since it maps between differ-
ent spaces, whereas T is defined entirely in the reference configuration and, by
construction, is symmetric.

The equations of motion for an elastic material are completed by defining a
constitutive relation. This relates the stresses to the strains in the body. These
relations are most easily expressed in the reference copy as a relationship between
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T and C. There is no universal definition of the strain tensor E , though for certain
applications a useful definition is

E(a) = C1/2(a) − a. (6.325)

This tensor is zero if the material is undeformed. Linear materials have the prop-
erty that T and E are linearly related by a rank-4 tensor. This can, in principle,
have 36 independent degrees of freedom, all of which may need to be determined
experimentally. If the material is homogeneous then the components of the rank-
4 tensor are constants. If the material is also isotropic then the 36 degrees of
freedom reduce to two. These are usually given in terms of the bulk modulus B

and shear modulus G, with T and E related by an expression of the form

T (a) = 2GE(a) + (B − 2
3G)tr(E)a. (6.326)

In many respects this is the simplest material one can consider, though even in
this case the non-linearity of the force law makes the full equations very hard to
analyse. The analysis can be aided by the fact that these materials are described
by an action principle, as discussed in section 12.4.1.

6.7 Notes

The treatment of vector manifolds presented here is a condensed version of the
theory developed by Hestenes & Sobczyk in the book Clifford Algebra to Geo-
metric Calculus (1984) and in a series of papers by Garret Sobczyk. There are
a number of differences in our presentation, however. Most significant is our
definition of the orientations in the fundamental theorem of integral calculus.
Our definition of the boundary operator ensures that a boundary inherits its
orientation from the directed volume measure. Hestenes & Sobczyk used the
opposite specification for their boundary operator, which gives rise to a number
of (fairly trivial) differences. A significant advantage of our conventions is that
in two dimensions the pseudoscalar has the correct orientation implied by the
imaginary in the Cauchy integral formula.

A further difference is that from the outset we have emphasised both the
implied embedding of a vector manifold, and the fact that this gives rise to a
metric. A vector manifold thus has greater structure than a differentiable man-
ifold in the sense of differential geometry. For applications to finite-dimensional
Riemannian geometry the different approaches are entirely equivalent, as any
finite-dimensional Riemannian manifold can be embedded in a larger dimen-
sional flat space in such a way that the metric is generated by the embedding.
This result was proved by John Nash in 1956. His remarkable story is the subject
of the book A Beautiful Mind by Sylvia Nasar (1998) and, more recently, a film
of the same name. In other applications of differential geometry the full range
of validity of the vector manifold approach has yet to be fully established. The
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approach certainly does give streamlined proofs of a number of key results. But
whether this comes with some loss of generality is an open question.

A final, small difference in our approach here to the original one of Hestenes &
Sobczyk is our definition of the shape tensor. We have only considered the shape
tensor S(a) taking intrinsic vectors as its linear argument. This concept can be
generalised to define a function that can act linearly on general vectors. One of
the most interesting properties of this generalized version of the shape tensor is
that it provides a natural square root of the Ricci tensor. This theory is developed
in detail in chapter 5 of Clifford Algebra to Geometric Calculus, to which readers
are referred for further information. There is no shortage of good textbooks on
modern differential geometry. The books by Nakahara (1990), Schutz (1980)
and Göckeler & Schucker (1987) are particularly strong on emphasising physical
applications. Elasticity is described in the books by Marsden & Hughes (1994)
and Antman (1995).

6.8 Exercises

6.1 Confirm that the vector derivative is independent of the choice of coor-
dinate system.

6.2 If we denote the curl of a vector field J in three dimensions by ∇×J ,
show that

∇×J = −I∇∧J.

Hence prove that

∇·(∇×J) = 0,

∇×(∇×J) = ∇(∇·J) − ∇2J .

6.3 An oblate spheroidal coordinate system can be defined by

a cosh(u) sin(v) =
√

(x2 + y2),

a sinh(u) cos(v) = z,

tan(φ) = y/x,

where (x, y, z) denote standard Cartesian coordinates and a is a scalar.
Prove that

e2
u = e2

v = a2
(
sinh2(u) + cos2(v)

)
= ρ2,

which defines the quantity ρ. Hence prove that the Laplacian becomes

∇2ψ =
1

ρ2 cosh(u)
∂

∂u

(
cosh(u)

∂ψ

∂u

)
+

1
ρ2 sin(v)

∂

∂v

(
sin(v)

∂ψ

∂v

)

+
1

a2 cosh2(u) sin2(v)
∂2ψ

∂φ2
,
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and investigate the properties of separable solutions in oblate spheroidal
coordinates.

6.4 Prove that over the surface of a tetrahedron the directed surface integral
satisfies ∮

dS = 0.

By considering pairs of adjacent tetrahedra, prove that this integral
vanishes for all orientable, connected closed surfaces.

6.5 For a circle in a plane confirm that the line integral around the perimeter
satisfies ∮

b·x dl = b·A,

where A is the oriented area of the circle.
6.6 Prove that

k∑
i=0

(−1)ib·(x0 + · · · x̌i · · · + xn)∆(x̌i)(k−1) =
1
k!

b·(e1∧· · ·∧en),

where the notation follows section 6.4.4.
6.7 Suppose that σ is an n-dimensional surface embedded in a flat space of

dimensions n + 1 with (constant) unit pseudoscalar I. Prove that∮
∂σ

dSJ = −I

∫
σ

l∧∇J |dX|,

where the normal l is defined by dX = Il |dX|.
6.8 The shape tensor is defined by

a·∂I = IS(a) = I×S(a).

Prove that the shape tensor satisfies

a·S(b) = b·S(a)

and

∂̇∧Ṗ(a) = S(a),

where P projects into the tangent space, and a and b are tangent vectors.
6.9 An open two-dimensional surface in three-dimensional space is defined

by

r(x, y) = xe1 + ye2 + α(r)e3,

where r = (x2 + y2)1/2 and the {ei} are a standard Cartesian frame.
Prove that the Riemann tensor can be written

R(a∧b) =
α′α′′

r(1 + α′2)2
a∧b,
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where the primes denote differentiation with respect to r. The scalar
factor κ in R(a∧b) = κa∧b is called the Gaussian curvature.

6.10 A linear, isotropic, homogeneous material is described by a bulk modulus
B and shear modulus G. By linearising the elasticity equations, show
that the longitudinal and transverse sound speeds vl and vt are given by

v2
l =

1
3ρ

(
3B + 4G

)
, v2

t =
G

ρ
.

6.11 Consider an infinite linear, isotropic, homogeneous material containing
a spherical hole into which air is pumped. Show that, in the linearised
theory, the radial stress τr is related to the radius of the hole r by
τr ∝ r−3. Discuss how the full non-linear theory might modify this
result.
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7

Classical electrodynamics

Geometric algebra offers a number of new techniques for studying problems in
electromagnetism and electrodynamics. These are described in this chapter. We
will not attempt a thorough development of electrodynamics, which is a vast
subject with numerous specialist areas. Instead we concentrate on a number
of selected applications which highlight the advantages that geometric algebra
can bring. There are two particularly significant new features that geometric
algebra adds to traditional formulations of electrodynamics. The first is that,
through employing the spacetime algebra, all equations can be studied in the
appropriate spacetime setting. This is much more transparent than the more
traditional approach based on a 3+1 formulation involving retarded times. The
spacetime algebra simplifies the study of how electromagnetic fields appear to
different observers, and is particularly powerful for handling accelerated charges
and radiation. These results build on the applications of spacetime algebra
described in section 5.5.3.

The second major advantage of the geometric algebra treatment is a new,
compact formulation of Maxwell’s equations. The spacetime vector derivative
and the geometric product enable us to unite all four of Maxwell’s equations
into a single equation. This is one of the most impressive results in geometric
algebra. And, as we showed in chapter 6, this is more than merely a cosmetic
exercise. The vector derivative is invertible directly, without having to pass via
intermediate, second-order equations. This has many implications for scattering
and propagator theory. Huygen’s principle is encoded directly, and the first-order
theory is preferable for numerical computation of diffraction effects. In addition,
the first-order formulation of electromagnetism means that plane waves are easily
handled, as are their polarisation states.
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7.1 MAXWELL’S EQUATIONS

7.1 Maxwell’s equations

Before writing down the Maxwell equations, we remind ourselves of the notation
introduced in chapter 5. We denote an orthonormal spacetime frame by {γµ},
with coordinates xµ = γµ ·x. The spacetime vector derivative is

∇ = γµ∂µ, ∂µ =
∂

∂xµ
. (7.1)

The spacetime split of the vector derivative is

∇γ0 = (γ0∂t + γi∂i)γ0 = ∂t − σi∂i = ∂t − ∇, (7.2)

where the σi = γiγ0 denote a right-handed orthonormal frame for the relative
space defined by the timelike vector γ0. The three-dimensional vector derivative
operator is

∇ = σi
∂

∂xi
= σi∂i, (7.3)

and all relative vectors are written in bold.
The four Maxwell equations, in SI units, are

∇·D = ρ, ∇·B = 0,

−∇×E =
∂

∂t
B, ∇×H =

∂

∂t
D + J ,

(7.4)

where
D = ε0E + P ,

H =
1
µ0

B − M ,
(7.5)

and the × symbol denotes the vector cross product. The cross product is ubiq-
uitous in electromagnetic theory, and it will be encountered at various points in
this chapter. To avoid any confusion, the commutator product (denoted by ×)
will not be employed in this chapter.

The first step in simplifying the Maxwell equations is to assume that we are
working in a vacuum region outside isolated sources and currents. We can then
remove the polarisation and magnetisation fields P and M . We also replace the
cross product with the exterior product, and revert to natural units (c = ε0 =
µ0 = 1), so that the equations now read

∇·E = ρ, ∇·B = 0,

∇∧E = −∂t(IB), ∇∧B = I(J + ∂tE).
(7.6)

We naturally assemble equations for the separate divergence and curl parts of
the vector derivative. We know that there are many advantages in uniting these
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into a single equation involving the vector derivative. First we take the two
equations for E and combine them into the single equation

∇E = ρ − ∂t(IB). (7.7)

A similar manipulation combines the B-field equations into

∇(IB) = −J − ∂tE, (7.8)

where we have multiplied through by I. This equation is a combination of
(spatial) bivector and pseudoscalar terms, whereas equation (7.7) contains only
scalar and vector parts. It follows that we can combine all of these equations
into the single multivector equation

∇(E + IB) + ∂t(E + IB) = ρ − J . (7.9)

This is already a significant compactification of the original equations. We have
not lost any information in writing this, since each of the separate Maxwell
equations can be recovered by picking out terms of a given grade.

In section 5.5.3 we introduced the Faraday bivector F . This represents the
electromagnetic field strength and is defined by

F = E + IB. (7.10)

The combination of relative vectors and bivectors tells us that this quantity is a
spacetime bivector. Many authors have noticed that the Maxwell equations can
be simplified if expressed in terms of the complex quantity E + iB. The reason
is that the spacetime pseudoscalar has negative square, so can be represented by
the unit imaginary for certain applications. It is important, however, to work
with I in the full spacetime setting, as I anticommutes with spacetime vectors.

In terms of the field strength the Maxwell equations reduce to

∇F + ∂tF = ρ − J . (7.11)

We now wish to convert this to manifestly Lorentz covariant form. We introduce
the spacetime current J , which has

ρ = J ·γ0, J = J∧γ0. (7.12)

It follows that

ρ − J = γ0 ·J + γ0∧J = γ0J. (7.13)

But we know that ∂t +∇ = γ0∇. We can therefore pre-multiply equation (7.11)
by γ0 to assemble the covariant equation

∇F = J. (7.14)

This unites all four Maxwell equations into a single spacetime equation based on
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the geometric product with the vector derivative. An immediate consequence is
seen if we multiply through by ∇, giving

∇2F = ∇J = ∇·J + ∇∧J. (7.15)

Since ∇2 is a scalar operator, the left-hand side can only contain bivector terms.
It follows that the current J must satisfy the conservation equation

∇·J =
∂ρ

∂t
+ ∇·J = 0. (7.16)

This equation tells us that the total charge generating the fields must be con-
served.

The equation ∇F = J separates into a pair of spacetime equations for the
vector and trivector parts,

∇·F = J, ∇∧F = 0. (7.17)

In tensor language, these correspond to the pair of spacetime equations

∂µFµν = Jν , εµνρσ∂νFρσ = 0. (7.18)

These two tensor equations are as compact a formulation of the Maxwell equa-
tions as tensor algebra can achieve, and the same is true of differential forms.
Only geometric algebra enables us to combine the Maxwell equations (7.17) into
the single equation ∇F = J .

7.1.1 The vector potential

The fact that ∇∧F = 0 tells us that we can introduce a vector field A such that

F = ∇∧A. (7.19)

The equation ∇∧F = ∇∧∇∧A = 0 then follows automatically. The field
A is known as the vector potential. We shall see in later chapters that the
vector potential is key to the quantum theory of how matter interacts with
radiation. The vector potential is also the basis for the Lagrangian treatment of
electromagnetism, described in chapter 12.

The remaining source equation tells us that the vector potential satisfies

∇·(∇∧A) = ∇2A −∇(∇·A) = J. (7.20)

There is some residual freedom in A beyond the restriction of equation (7.19).
We can always add the gradient of a scalar field to A, since

∇∧(A + ∇λ) = ∇∧A + ∇∧(∇λ) = F. (7.21)

For historical reasons, this ability to alter A is referred to as a gauge freedom.
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Before we can solve the equations for A, we must therefore specify a gauge. A
natural way to absorb this freedom is to impose the Lorentz condition

∇·A = 0. (7.22)

This does not totally specify A, as the gradient of a solution of the wave equation
can still be added, but this remaining freedom can be removed by imposing
appropriate boundary conditions. The Lorentz gauge condition implies that
F = ∇A. We then recover a wave equation for the components of A, since

∇F = ∇2A = J. (7.23)

One route to solving the Maxwell equations is to solve the associated wave equa-
tion ∇2A = J , with appropriate boundary conditions applied, and then compute
F at the end. In this chapter we explore alternative, more direct routes.

The fact that a gauge freedom exists in the formulation in terms of A suggests
that some conjugate quantity should be conserved. This is the origin of the
current conservation law derived in equation (7.16). Conservation of charge is
therefore intimately related to gauge invariance. A more detailed understanding
of this will be provided by the Lagrangian framework.

7.1.2 The electromagnetic field strength

In uniting the Maxwell equations we introduced the electromagnetic field strength
F = E+IB. This is a covariant spacetime bivector. Its components in the {γµ}
frame give rise to the tensor

Fµν = γν ·(γµ ·F ) = (γν∧γµ)·F. (7.24)

These are the components of a rank-2 antisymmetric tensor which, written out
as a matrix, has entries

Fµν =




0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


 . (7.25)

This matrix form of the field strength is often presented in textbooks on relativis-
tic electrodynamics. It has a number of disadvantages. Amongst these are that
Lorentz transformations cannot be handled elegantly and the natural complex
structure is hidden.

Writing F = E + IB decomposes F into the sum of a relative vector E and
a relative bivector IB. The separate E and IB fields are recovered from

E = 1
2 (F − γ0Fγ0),

IB = 1
2 (F + γ0Fγ0).

(7.26)
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This shows clearly how the split into E and IB fields depends on the observer
velocity (γ0 here). Observers in relative motion see different fields. For example,
suppose that a second observer has velocity v = Rγ0R̃ and constructs the rest
frame basis vectors

γ′
µ = RγµR̃. (7.27)

This observer measures components of an electric field to be

E′
i = (γ′

iγ
′
0)·F = (RσiR̃)·F = σi ·(R̃FR). (7.28)

The effect of a Lorentz transformation can therefore be seen by taking F to
R̃FR. The fact that bivectors are subject to the same rotor transformation law
as vectors is extremely useful for computations.

Suppose now that two observers measure the F -field at a point. One has 4-
velocity γ0, and the other is moving at relative velocity v in the γ0 frame. This
observer has 4-velocity

v = Rγ0R̃, R = exp(αv̂/2), (7.29)

where v = tanh(α)v̂. The second observer measures the {γµ} components of
R̃FR. To find these we decompose F into terms parallel and perpendicular to
v,

F = F‖ + F⊥, (7.30)

where

vF‖ = F‖v, vF⊥ = −F⊥v. (7.31)

We quickly see that the parallel components are unchanged, but the perpendic-
ular components transform to

R̃F⊥R = exp(−αv̂)F⊥ = γ(1 − v)F⊥, (7.32)

where γ is the Lorentz factor (1−v2)−1/2. This result is sufficient to immediately
establish the transformation law

E′
⊥ = γ(E + v×B)⊥,

B′
⊥ = γ(B − v×E)⊥.

(7.33)

Here the primed vectors are formed from E′ = E′
iσi, for example. These have

the components of F in the new frame, but combined with the original basis
vectors.

Further useful information about the F field is contained in its square, which
defines a pair of Lorentz-invariant terms. We form

F 2 = 〈FF 〉 + 〈FF 〉4 = a0 + Ia4, (7.34)
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which is easily seen to be Lorentz-invariant,

(R̃FR)(R̃FR) = R̃FFR = a0 + Ia4. (7.35)

Both the scalar and pseudoscalar terms are independent of the frame in which
they are measured. In the γ0 frame these are

α = 〈(E + IB)(E + IB)〉 = E2 − B2 (7.36)

and

β = −〈I(E + IB)(E + IB)〉 = 2E ·B. (7.37)

The former yields the Lagrangian density for the electromagnetic field. The
latter is seen less often. It is perhaps surprising that E ·B is a full Lorentz
invariant, rather than just being invariant under rotations.

7.1.3 Dielectric and magnetic media

The Maxwell equations inside a medium, with polarisation and magnetisation
fields P and M , were given in equation (7.4). These separate into a pair of
spacetime equations. We introduce the spacetime bivector field G by

G = D + IH. (7.38)

Maxwell’s equations are now given by the pair of equations

∇∧F = 0,

∇·G = J.
(7.39)

The first tells us that F has vanishing curl, so can still be obtained from a
vector potential, F = ∇∧A. The second equation tells us how the D and H

fields respond to the presence of free sources. These equations on their own are
insufficient to fully describe the behaviour of electromagnetic fields in matter.
They must be augmented by constitutive relations which relate F and G. The
simplest examples of these are for linear, isotropic, homogeneous materials, in
which case the constitutive relations amount to specifying a relative permittivity
εr and permeability µr. The fields are then related by

D = εrE, B = µrH. (7.40)

More complicated models for matter can involve considering responses to differ-
ent frequencies, and the presence of preferred directions on the material. The
subject of suitable constitutive relations is one of heuristic model building. We
are, in effect, seeking models which account for the quantum properties of matter
in bulk, without facing the full multiparticle quantum equations.
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7.2 Integral and conservation theorems

A number of important integral theorems exist in electromagnetism. Indeed,
the subject of integral calculus was largely shaped by considering applications
to electromagnetism. Here the results are all derived as examples of the funda-
mental theorem of integral calculus, derived in chapter 6.

7.2.1 Static fields

We start by deriving a number of results for static field configurations. When
the fields are static the Maxwell equations reduce to the pair

∇E =
ρ

ε0
, ∇B = µ0IJ , (7.41)

where (for this section) we have reinserted the constants ε0 and µ0. A current J

is static if the charge flows at a constant rate. The fact that ∇∧E = 0 implies
that around any closed path ∮

∂σ

E ·dl = 0, (7.42)

which applies for all static configurations. We can therefore introduce a potential
φ such that

E = −∇φ. (7.43)

The potential φ is the timelike component of the vector potential A, φ = γ0 ·A.
One can formulate many of the main results of electrostatics directly in terms
of φ. Here we adopt a different approach and work directly with the E and B

fields.
An extremely important integral theorem is a straightforward application of

Gauss’ law (indeed this is Gauss’ original law)∮
∂V

E ·n |dA| =
1
ε0

∫
V

ρ |dX| =
Q

ε0
, (7.44)

where Q is the enclosed charge. In this formula n is the outward pointing normal,
formed from dA = In|dA|, where dA is the directed measure over the surface,
and the scalar measure |dX| is simply

|dX| = dx dy dz. (7.45)

For the next application, recall from section 6.4.7 the form of the Green’s function
for the vector derivative in three dimensions,

G(r; r′) =
1
4π

r − r′

|r − r′|3 . (7.46)
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An application of the fundamental theorem tells us that∫
V

(Ġ∇̇E + G ∇E)|dX| = −I

∮
∂V

G dA E. (7.47)

If we assume that the sources are localised, so that E falls off at large distance, we
can take the integral over all space and the right-hand side will vanish. Replacing
G by the Green’s function above we find that the field from a static charge
distribution is given by

E(r) =
1

4πε0

∫
ρ(r′)(r − r′)
|r − r′|3 |dX ′|. (7.48)

If ρ is a single δ-function source, ρ = Qδ(r′ − r0), we immediately recover the
Coulomb field

E(r) =
Q

4πε0

(r − r0)
|r − r0|3

. (7.49)

Unsurprisingly, this is simply a weighted Green’s function.
For the magnetic field B, the absence of magnetic monopoles is encoded in

the integral equation ∮
B ·dA = 0. (7.50)

This tells us that the integral curves of B always form closed loops. This is true
both inside and outside matter, and holds in the time-dependent case as well.
Next we apply the integral theorem of equation (7.47) with E replaced by B. If
we again assume that the fields are produced by localised charges and fall off at
large distances, we derive

IB(r) = −µ0

4π

∫
(r − r′)
|r − r′|3 J(r′) |dX ′|. (7.51)

The scalar term in the integrand vanishes as a consequence of the static conser-
vation law ∇ ·J = 0. The bivector term gives the magnetic field bivector IB.
Now suppose that the current is carried entirely in an ‘ideal’ wire. This is taken
as an infinitely thin wire carrying a current J ,

J = J

∫
dλ

dy(λ)
dλ

δ
(
r − y(λ)

)
= J

∫
dl δ

(
r − y(λ)

)
. (7.52)

We have little option but to use J for the current as the more standard symbol I is
already taken for the pseudoscalar. The result is that the B-field is determined
by a line integral along the wire. This is the Biot–Savart law, which can be
written

B(r) =
µ0J

4π

∫
dl′×(r − r′)
|r − r′|3 , (7.53)

where r′ is the position vector to the line element dl′.
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7.2 INTEGRAL AND CONSERVATION THEOREMS

A further integral theorem for magnetic fields is found if we consider the
integral around a loop enclosing a surface σ. We have∮

∂σ

B ·dl =
∫

σ

(Ḃ∧∇̇)·dA = µ0

∫
σ

J ·(−I dA). (7.54)

Again, we write dA = In|dA|, where n is the unit right-handed normal. That
is, if we grip the surface in our right hands in the manner specified by the
line integral, our thumbs point in the normal direction. The result is that we
integrate J ·n over the surface. This returns the total current through the loop,
J , recovering Ampère’s law, ∮

∂σ

B ·dl = µ0J. (7.55)

This is routinely used for finding the magnetic fields surrounding electrical cir-
cuits.

7.2.2 Time-varying fields

If the fields vary in time, some of the preceding formulae remain valid, and
others only require simple modifications. The two applications of Gauss’ law,
equations (7.44) and (7.50), remain unchanged. The two applications of Stokes’
theorem acquire an additional term. For the E-field we have∮

∂σ

E ·dl =
d

dt

∫
σ

(IB)·dA = −dΦ
dt

, (7.56)

where Φ is the linked magnetic flux. The flux is the integral of B·n over the area
enclosed by the loop, with n the unit normal. Magnetic flux is an important
concept for understanding inductance in circuits.

For the magnetic field we can derive a similar formula,∮
∂σ

B ·dl = µ0J + ε0µ0
d

dt

∫
σ

E ·n |dA|. (7.57)

This is useful when studying boundary conditions at surfaces of media carrying
time-varying currents. The equations involving the Euclidean Green’s function
are no longer valid when the sources vary with time. In section 7.5 we discuss an
alternative Green’s function suitable for the important case of electromagnetic
radiation.

7.2.3 The energy-momentum tensor

The energy density contained in a vacuum electromagnetic field, measured in
the γ0 frame, is

ε = 1
2 (E2 + B2), (7.58)
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CLASSICAL ELECTRODYNAMICS

where we have reverted to natural units. In section 7.1.2 we saw that the quantity
E2−B2 is Lorentz-invariant. This is not true of the energy density, which should
clearly depend on the observer performing the measurement. The total energy
in a volume V is found by integrating ε over the volume. If we look at how this
varies in time, assuming no sources are present, we find that

d

dt

∫
V

|dX| 1
2 (E2 + B2) =

∫
V

|dX| 〈−E∇(IB) + IB∇E〉

=
∮

∂V

|dA|n·
(
E ·(IB)

)
. (7.59)

We therefore establish that the field momentum is described by the Poynting
vector

P = −E ·(IB) = E×B. (7.60)

The energy and momentum should be the components of a spacetime 4-vector
P , so we form

P = (ε + P )γ0 = 1
2 (E2 + B2)γ0 + 1

2 (IBE − EIB)γ0

= 1
2 (E + IB)(E − IB)γ0

= 1
2F (−γ0Fγ0)γ0 = − 1

2Fγ0F. (7.61)

This quantity is still observer-dependent as it contains a factor of γ0. We have in
fact constructed the energy-momentum tensor of the electromagnetic field. We
write this as

T(a) = − 1
2FaF = 1

2FaF̃ . (7.62)

This is clearly a linear function of a and, since it is equal to its own reverse, the
result is automatically a vector. It is instructive to contrast our neat form of the
energy-momentum tensor with the tensor formula

Tµ
ν = 1

4δµ
ν FαβFαβ + FµαFαν . (7.63)

The geometric algebra form of equation (7.62) does a far better job of capturing
the geometric content of the electromagnetic energy-momentum tensor.

The energy-momentum tensor T(a) returns the flux of 4-momentum across the
hypersurface perpendicular to a. This is the relativistic extension of the stress
tensor, and it is as fundamental to field theory as momentum is to the mechanics
of point particles. All relativistic fields, classical or quantum, have an associated
energy-momentum tensor that contains information about the distribution of
energy in the fields, and acts as a source of gravitation. The electromagnetic
energy-momentum tensor demonstrates a number of properties that turn out
to be quite general. The first is that the energy-momentum tensor is (usually)
symmetric. For example, we have

a·T(b) = − 1
2 〈aFbF 〉 = −1

2 〈FaFb〉 = T(a)·b. (7.64)
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7.2 INTEGRAL AND CONSERVATION THEOREMS

The reason for qualifying the above statement is that quantum spin gives rise to
an antisymmetric contribution to the (matter) energy-momentum tensor. This
will be discussed in more details when we look at Dirac theory.

A second property of the electromagnetic energy-momentum tensor is that the
energy density v ·T(v) is positive for any timelike vector v. This is clear from
the definition of ε in equation (7.58). The expression for ε is appropriate the γ0

frame, but the sign of ε cannot be altered by transforming to a different frame.
The reason is that

〈vFvF 〉 = 〈Rγ0R̃FRγ0R̃F 〉 = 〈γ0F
′γ0F

′〉, (7.65)

where F ′ = R̃FR. Transforming to a different velocity is equivalent to back-
transforming the fields in the γ0 frame, so keeps the energy density positive.
Matter which does not satisfy the inequality v ·T(v) ≥ 0 is said to be ‘exotic’,
and has curious properties when acting as a source of gravitational fields.

The third main property of energy-momentum tensors is that, in the absence
of external sources, they give rise to a set of conserved vectors. This is because
we have

∇·T(a) = 0 ∀ constant a. (7.66)

Equivalently, we can use the symmetry of T(a) to write

Ṫ(∇̇)·a = 0, ∀ a, (7.67)

which implies that

Ṫ(∇̇) = 0. (7.68)

For the case of electromagnetism, this result is straightforward to prove:

Ṫ(∇̇) = − 1
2 [Ḟ ∇̇F + F∇F ] = 0, (7.69)

which follows since ∇F = Ḟ ∇̇ = 0 in the absence of sources.
Conservation of the energy-momentum tensor implies that the total flux of

energy-momentum over a closed hypersurface is zero:∫
∂V

|dA|T(n) = 0, (7.70)

where ∂V is a closed 3-surface with directed measure dA = nI |dA|. That the flux
vanishes is a simple application of the fundamental theorem of integral calculus
(in flat spacetime),∫

∂V

T(n |dA|) =
∫

∂V

T(dAI−1) =
∫

V

Ṫ(∇̇) dX I−1 = 0. (7.71)

Given that T(γ0) is the energy-momentum density in the γ0 frame, the total
4-momentum is

Ptot =
∫

|dX|T(γ0). (7.72)
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S1

S2

t

Figure 7.1 Hypersurface integration. The integral over a hypersurface of
a (spacetime) conserved current is independent of the chosen hypersurface.
The two surfaces S1 and S2 can be joined at spatial infinity (provided the
fields vanish there). The difference is therefore the integral over a closed
3-surface, which vanishes by the divergence theorem.

The conservation equation (7.68) guarantees that, in the absence of charges, the
total energy-momentum is conserved. We see that

d

dt
Ptot =

∫
|dX| ∂tT(γ0) =

∫
|dX| Ṫ(∇̇γ0), (7.73)

where we have used the fact that ∇ = γ0∂t − ∇γ0. The final integral here is a
total derivative and so gives rise to a boundary term, which vanishes provided
the fields fall off sufficiently fast at large distances. Similarly, we can also see
that Ptot is independent of the chosen timelike axis. It is a covariant (non-local)
property of the field configuration. The proof comes from considering the integral
over two distinct spacelike hypersurfaces (figure 7.1). If the integrals are joined
at infinity (which introduces zero contribution) we form a closed integral of T(n).
This vanishes from the conservation equation, so the total energy-momentum is
independent of the choice of hypersurface.

In the presence of additional sources the electromagnetic energy-momentum
tensor is no longer conserved. The total energy-momentum tensor, including
both the matter and electromagnetic content will be conserved, however. This is
a general feature of field theory in a flat spacetime, though the picture is altered
somewhat if gravitational fields are present. The extent to which the separate
tensors for each field are not conserved contains useful information about the
flow of energy-momentum. For example, suppose that an external current is
present, so that

Ṫ(∇̇) = − 1
2 (−JF + FJ) = J ·F. (7.74)

An expression of the form J ·F was derived in the Lorentz force law, discussed
in section 5.5.3. In the γ0 frame, J ·F decomposes into

J ·F = 〈(ρ + J)γ0(E + IB)〉1 = −
(
J ·E + ρE + J×B

)
γ0. (7.75)
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7.3 THE ELECTROMAGNETIC FIELD OF A POINT CHARGE

x0(τ)

x

X

Surface of constant τ

Figure 7.2 Field from a moving point charge. The charge follows the
trajectory x0(τ), and X = x− x0(τ) is the retarded null vector connecting
the point x to the worldline. The time τ can be viewed as a scalar field
with each value of τ extended out over the forward null cone.

The timelike component, J ·E, is the work done — the rate of change of energy
density. The relative vector term is the rate of change of field momentum, and
so is closely related to the force on a point particle.

7.3 The electromagnetic field of a point charge

We now derive a formula for the electromagnetic fields generated by a radiating
charge. This is one of the most important results in classical electromagnetic
theory. Suppose that a charge q moves along a worldline x0(τ), where τ is
the proper time along the worldline (see figure 7.2). An observer at spacetime
position x receives an electromagnetic influence from the point where the charge’s
worldline intersects the observer’s past light-cone. The vector

X = x − x0(τ) (7.76)

is the separation vector down the light-cone, joining the observer to this inter-
section point. Since this vector must be null, we can view the equation

X2 = 0 (7.77)

as defining a map from spacetime position x to a value of the particle’s proper
time τ . That is, for every spacetime position x there is a unique value of the (re-
tarded) proper time along the charge’s worldline for which the vector connecting
x to the worldline is null. In this sense, we can write τ = τ(x), and treat τ as a
scalar field.
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The Liénard–Wiechert potential for the retarded field from a point charge
moving with an arbitrary velocity v = ẋ0 is

A =
q

4π

v

|X ·v| . (7.78)

This solution is obtained from the wave equation ∇2A = J using the appropriate
retarded Green’s function

Gret(r, t) =
1

4π|r|δ(|r| − t). (7.79)

A similar solution exists if the advanced Green’s function is used. The question
of which is the correct one to use is determined experimentally by the fact that
no convincing detection of an advanced (acausal) field has ever been reported.
A deeper understanding of these issues is provided by the quantum treatment of
radiation.

If the charge is at rest in the γ0 frame, we have

x0(τ) = τγ0 = (t − r)γ0, (7.80)

where r is the relative 3-space distance from the observer to the charge. The
null vector X is therefore

X = r(γ0 + er). (7.81)

For this simple case the 4-potential A is a pure 1/r electrostatic field:

A =
q

4π

γ0

|X ·γ0|
=

q

4πr
γ0. (7.82)

The same result is obtained if the advanced Green’s function is used. The differ-
ence between the advanced and retarded solutions is only seen when the charge
radiates. We know that radiation is not handled satisfactorily in the classical
theory because it predicts that atoms are not stable and should radiate. Is-
sues concerning the correct Green’s function cannot be fully resolved without a
quantum treatment.

7.3.1 The field strength

The aim now is to differentiate the potential of equation (7.78) to find the field
strength. First, we differentiate the equation X2 = 0 to obtain

0 = γµ(∂µX)·X = ∇̇ ẋ·X −∇τ (∂τx0)·X
= X −∇τ (v ·X). (7.83)

It follows that

∇τ =
X

X ·v . (7.84)
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7.3 THE ELECTROMAGNETIC FIELD OF A POINT CHARGE

The gradient of τ points along X, which is the direction of constant τ . This is
a peculiarity of null surfaces that was first encountered in chapter 6. In finding
an expression for ∇τ we have demonstrated how the particle proper time can
be treated as a spacetime scalar field. Fields of this type are known as adjunct
fields — they carry information, but do not exist in any physical sense.

To differentiate A we need an expression for ∇(X ·v). We find that

∇(X ·v) = ∇̇(Ẋ)·v + ∇τ X ·(∂τv)

= v −∇τ + ∇τ X ·v̇, (7.85)

where v̇ = ∂τv. Provided X is defined in terms of the retarded time, X ·v will
always be positive and there is no need for the modulus in the denominator of
equation (7.78). We are now in a position to evaluate ∇A. We find that

∇A =
q

4π

(
∇v

X ·v − 1
(X ·v)2

∇(X ·v)v
)

=
q

4π

(
Xv̇

(X ·v)2
− 1

(X ·v)2
− (X X ·v̇ − X)v

(X ·v)3

)

=
q

4π

(
X∧v̇

(X ·v)2
+

X∧v − X ·v̇ X∧v

(X ·v)3

)
. (7.86)

The result is a pure bivector, so ∇·A = 0 and the A field of equation (7.78) is
in the Lorentz gauge. This is to be expected, since the solution is obtained from
the wave equation ∇2A = J .

We can gain some insight into the expression for F by writing

X ·v X∧v̇ − X ·v̇ X∧v = −X
(
X ·(v̇∧v)

)
= 1

2Xv̇∧vX, (7.87)

which uses the fact that X2 = 0. Writing Ωv = v̇∧v for the acceleration bivector
of the particle, we arrive at the compact formula

F =
q

4π

X∧v + 1
2XΩvX

(X ·v)3
. (7.88)

One can proceed to show that, away from the worldline, F satisfies the free-
field equation ∇F = 0. The details are left as an exercise. The solution (7.88)
displays a clean split into a velocity term proportional to 1/(distance)2 and a
long-range radiation term proportional to 1/(distance). The term representing
the distance is simply X · v. This is just the distance between the events x and
x0(τ) as measured in the rest frame of the charge at its retarded position. The
first term in equation (7.88) is the Coulomb field in the rest frame of the charge.
The second, radiation, term:

Frad =
q

4π

1
2XΩvX

(X ·v)3
, (7.89)

is proportional to the rest frame acceleration projected down the null vector X.
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The fact that this term falls of as 1/(distance) implies that the energy-momentum
tensor contains a term which falls of as the inverse square of distance. This gives
a non-vanishing surface integral at infinity in equation (7.73) and describes how
energy is carried away from the source.

7.3.2 Constant velocity

A charge with constant velocity v has the trajectory

x0(τ) = vτ, (7.90)

where we have chosen an origin so that the particle passes through this point at
τ = 0. The intersection of x0(τ) with the past light-cone through x is determined
by

(x − vτ)2 = 0 ⇒ τ = v ·x −
(
(v ·x)2 − x2

)1/2
. (7.91)

We have chosen the earlier root to ensure that the intersection lies on the past
light-cone. We now form X ·v to find

X ·v = (x − vτ)·v =
(
(v ·x)2 − x2

)1/2
. (7.92)

We can write this as |x∧v| since

|x∧v|2 = x·
(
v ·(x∧v)

)
= (x·v)2 − x2. (7.93)

The acceleration bivector vanishes since v is constant, and X∧v = x∧v. It follows
that the Faraday bivector is simply

F =
q

4π

x∧v

|x∧v|3 . (7.94)

This is the Coulomb field solution with the velocity γ0 replaced by v. This
solution could be obtained by transforming the Coulomb field via

F 
→ F ′ = RF (R̃xR)R̃, (7.95)

where v = Rγ0R̃. Covariance of the field equations ensures that this process
generates a new solution.

We next decompose F into electric and magnetic fields in the γ0 frame. This
requires the spacetime split

x∧v = 〈xγ0γ0v〉2 = γ〈(t + r)(1 − v)〉2 = γ(r − vt) − γr∧v, (7.96)

where v is the relative velocity and γ is the Lorentz factor. We now have

E =
qγ

4πd3
(r − vt), B =

qγ

4πd3
Ir∧v. (7.97)

Here, the effective distance d can be written

d2 = γ2(|v|t − v ·r/|v|)2 + r2 − (r ·v)2/v2. (7.98)
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7.3 THE ELECTROMAGNETIC FIELD OF A POINT CHARGE

The electric field points towards the actual position of the charge at time t, and
not its retarded position at time τ . The same is true of the advanced field, hence
the retarded and advanced solutions are equal for charges with constant velocity.

7.3.3 Linear acceleration

Suppose that an accelerating charged particle follows the trajectory

x0(τ) = a
(
sinh(gτ)γ0 + cosh(gτ)γ3

)
, (7.99)

where a = g−1 (see figure 7.3). The velocity is given by

v(τ) = cosh(gτ)γ0 + sinh(gτ)γ3 = egτσ3γ0 (7.100)

and the acceleration bivector is simply

v̇v = gσ3. (7.101)

The charge has constant (relativistic) acceleration in the γ3 direction. We again
seek the retarded solution of X2 = 0. This is more conveniently expressed in a
cylindrical polar coordinate system, with

r = ρ(cos(φ)σ1 + sin(φ)σ2) + zσ3, (7.102)

so that r2 = ρ2 + z2. We then find the following equivalent expressions for the
retarded proper time:

egτ =
1

2a(z − t)

(
a2 + r2 − t2 −

(
(a2 + r2 − t2)2 − 4a2(z2 − t2)

)1/2
)
,

e−gτ =
1

2a(z + t)

(
a2 + r2 − t2 +

(
(a2 + r2 − t2)2 − 4a2(z2 − t2)

)1/2
)
.

(7.103)

These equations have a solution provided z + t > 0. As the trajectory assumes
that the charge has been accelerating for ever, a horizon is formed beyond which
no effects of the charge are felt (figure 7.3). Constant eternal acceleration of this
type is unphysical and in practice we only consider the acceleration taking place
for a short period.

We can now calculate the radiation from the charge. First we need the effective
distance

X ·v =

(
(a2 + r2 − t2)2 − 4a2(z2 − t2)

)1/2

2a
. (7.104)

This vanishes on the path of the particle (ρ = 0 and z2 − t2 = a2), as required.
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S

Figure 7.3 Constant acceleration. The spacetime trajectory of a particle
with constant acceleration is a hyperbola. The asymptotes are null vectors
and define future and past horizons. Any signal sent from within the shaded
region S will never be received by the particle.

The remaining factor in F is

X ∧ v + 1
2Xv̇vX = x∧v − aσ3 +

1
2a

(x − x0)σ3(x − x0)

=
1
2a

xσ3x − a

2
σ3

=
1
2a

(z2 − ρ2 − t2 − a2)σ3 +
zρ

a
σρ +

tρ

a
Iσφ, (7.105)

where σρ and σφ are the unit spatial axial and azimuthal vectors respectively.
An instructive way to display the information contained in the expression for F

is to plot the field lines of E at a fixed time. We assume that the charge starts
accelerating at t = t1, and stops again at t = t2. There are then discontinuities in
the electric field line directions on the two appropriate light-spheres. In figure 7.4
the acceleration takes place for a short period of time, so that a pulse of radiation
is sent outwards. In figure 7.5 the charge began accelerating from rest at t =
−10a. The pattern is well developed, and shows clearly the refocusing of the
field lines onto the ‘image charge’. The image position corresponds to the place
the charge would have reached had it not started accelerating. Of course, the
image charge is not actually present, and the field lines diverge after they cross
the light-sphere corresponding to the start of the acceleration.

For many applications we are only interested in the fields a long way from the
source. In this region the fields can usually be approximated by simple dipole
or higher order multipole fields. Suppose that the charge accelerates for a short
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Figure 7.4 Field lines from an accelerated charge I. The charge accelerated
for −0.2a < t < 0.2a, leaving an outgoing pulse of transverse radiation field.
The field lines were computed at t = 5a.

period and emits a pulse of radiation. In the limit r � a the pulse will arrive
at some time which, to a good approximation, is centred around the time that
minimises X ·v. This time is given by

t0 =
√

r2 − a2. (7.106)

At t = t0 the proper distance X ·v evaluates to ρ, the distance from the z axis.
The point on the axis ρ away from the observer is where the charge would appear
to be if it were not accelerating. For the large distance approximation to be valid
we therefore also require that ρ is large, so that the proper distance from the
source is large. (For small ρ and z > a a different procedure can be used.) We
can now obtain an approximate formula for the radiation field at a fixed location
r, with r, ρ � a, around t = t0. For this we define

δt = t − t0 (7.107)

so that the proper distance is approximated by

X ·v ≈
(
ρ2 + r2δ2

t /a2
)1/2

. (7.108)
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Figure 7.5 Field lines from an accelerated charge II. The charge began its
acceleration at t1 = −10a and has thereafter accelerated uniformly. The
field lines are plotted at t = 3a.

The remaining terms in F become

X ∧ v + 1
2Xv̇vX ≈ rρ

a
(σθ + Iσφ) , (7.109)

where σθ and σφ are unit spherical-polar basis vectors. The final formula is

F ≈ q

4π

rρ

a

(
ρ2 +

r2δ2
t

a2

)−3/2

(σθ + Iσφ) , (7.110)

which describes a pure, outgoing radiation field a large distance from a linearly
accelerating source. The magnitude of the acceleration is controlled by g = a−1.

7.3.4 Circular orbits and synchrotron radiation

As a further application, consider a charge moving in a circular orbit. The
worldline is defined by

x0 = τ cosh(α) γ0 + a
(
cos(ωτ)γ1 + sin(ωτ)γ2

)
, (7.111)

where a = ω−1 sinh(α). The particle velocity is

v = cosh(α) γ0 + sinh(α)
(
− sin(ωτ)γ1 + cos(ωτ)γ2

)
= Rγ0R̃, (7.112)
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Figure 7.6 Field lines from a rotating charge I. The charge has α = 0.1,
which gives rise to a smooth, wavy pattern.

where the rotor R is given by

R = e−ωτIσ3/2eασ2/2. (7.113)

We must first locate the retarded null vector X. The equation X2 = 0 reduces
to

t = τ cosh(α) +
(
r2 + a2 − 2aρ cos(ωτ − φ)

)1/2
, (7.114)

which is an implicit equation for τ(x). No simple analytic solution exists, but
a numerical solution is easy to achieve. This is aided by the observation that,
for fixed r, the mapping between t and τ is monotonic and τ is bounded by the
conditions

t −
(
r2 + 2aρ + a2

)1/2
< τ cosh(α) < t −

(
r2 − 2aρ + a2

)1/2
. (7.115)

Once we have a satisfactory procedure for locating τ on the retarded light-cone,
we can straightforwardly employ the formula for F in numerical simulations. The
first term required is the effective distance X · v, which is given by

X ·v = cosh(α)
(
r2 + a2 − 2aρ cos(ωτ − φ)

)1/2 + ρ sinh(α) sin(ωτ − φ). (7.116)

The remaining term to compute, X ∧ v + Xv̇vX/2, is more complicated, as can
be seen from the behaviour shown in figures 7.6, 7.7 and 7.8. They show the
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Figure 7.7 Field lines from a rotating charge II. The charge has an in-
termediate velocity, with α = 0.4. Bunching of the field lines is clearly
visible.

field lines in the equatorial plane of a rotating charge with ω = 1. For ‘low’
speeds we get the gentle, wavy pattern of field lines shown in figure 7.6. The
case displayed in figure 7.7 is for an intermediate velocity (α = 0.4), and displays
many interesting features. By α = 1 (figure 7.8) the field lines have concentrated
into synchrotron pulses, a pattern which continues thereafter.

Synchrotron radiation is important in many areas of physics, from particle
physics through to radioastronomy. Synchrotron radiation from a radiogalaxy,
for example, has a ≈ 108 m and r ≈ 1025 m. A power-series expansion in a/r

is therefore quite safe! Typical values of cosh(α) are 104 for electrons producing
radio emission. In the limit r � a, the relation between t and τ simplifies to

t − r ≈ τ cosh(α) − a sin(θ) cos(ωτ − φ). (7.117)

The effective distance reduces to

X ·v ≈ r cosh(α)
(
1 + tanh(α) sin(θ) sin(ωτ − φ)

)
, (7.118)

and the null vector X given by the simple expression

X ≈ r(γ0 + er). (7.119)

In the expression for F of equation (7.88) we can ignore the X ∧ v (Coulomb)

250

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.009
https:/www.cambridge.org/core


7.4 ELECTROMAGNETIC WAVES

Figure 7.8 Field lines from a rotating charge III. The charge is moving at
a highly relativistic velocity, with α = 1. The field lines are concentrated
into a series of synchrotron pulses.

term, which is negligible compared with the long-range radiation term. For the
radiation term we need the acceleration bivector

v̇v = −ω sinh(α) cosh(α)
(
cos(ωτ)σ1 + sin(ωτ)σ2

)
+ ω sinh2(α)Iσ3. (7.120)

The radiation term is governed by XΩvX/2, which simplifies to

1
2Xv̇vX ≈ ωr2 cosh(α) sinh(α)(cos(θ) cos(ωτ − φ)σθ(1 − σr)

+ ωr2 sinh(α)
(
cosh(α) sin(ωτ − φ) + sinh(α) sin(θ)

)
σφ(1 − σr). (7.121)

These formulae are sufficient to initiate studying synchrotron radiation. They
contain a wealth of physical information, but a detailed study is beyond the
scope of this book.

7.4 Electromagnetic waves

For many problems in electromagnetic theory it is standard practice to adopt a
complex representation of the electromagnetic field, with the implicit assump-
tion that only the real part represents the physical field. This is particularly
convenient when discussing electromagnetic waves and diffraction, as studied in
this and the following section. We have seen, however, that the field strength
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F is equipped with a natural complex structure through the pseudoscalar I.
We should therefore not be surprised to find that, in certain cases, the for-
mal imaginary i plays the role of the pseudoscalar. This is indeed the case for
circularly-polarised light. But one cannot always identify i with I, as is clear
when handling plane-polarised light. The formal complexification retains its use-
fulness in such applications and we accordingly adopt it here. It is important
to remember that this is a formal exercise, and that real parts must be taken
before forming bilinear objects such as the energy-momentum tensor. The study
of electromagnetic waves is an old and well-developed subject. Unfortunately, it
suffers from the lack of a single, universal set of conventions. As far as possible,
we have followed the conventions of Jackson (1999).

We seek vacuum solutions to the Maxwell equations which are purely oscilla-
tory. We therefore start by writing

F = Re
(
F0e−ik·x). (7.122)

The vacuum equation ∇F = 0 then reduces to the algebraic equation

kF0 = 0. (7.123)

Pre-multiplying by k we immediately see that k2 = 0, as expected of the wavevec-
tor. The constant bivector F0 must contain a factor of k, as nothing else totally
annihilates k. We therefore must have

F0 = k∧n = kn, (7.124)

where n is some vector satisfying k·n = 0. We can always add a further multiple
of k to n, since

k(n + λk) = kn + λk2 = k∧n. (7.125)

This freedom in n can be employed to ensure that n is perpendicular to the
velocity vector of some chosen observer.

As an example, consider a wave travelling in the γ3 direction with frequency
ω as measured in the γ0 frame. This implies that γ0·k = ω, so the wavevector is
given by

k = ω(γ0 + γ3), (7.126)

and the phase term is

−ik ·x = −iω(t − z). (7.127)

The vector n can be chosen to just contain γ1 and γ2 components, so we can
write

F = −(γ0 + γ3)(α1γ1 + α2γ2) cos(k ·x)

= (1 + σ3)(α1σ1 + α2σ2) cos(k ·x). (7.128)
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7.4 ELECTROMAGNETIC WAVES

This solution represents plane-polarised light, as both the E and B fields lie in
fixed planes, 90◦ apart, and only their magnitudes oscillate in time.

An arbitrary phase can be added to the cosine term, so the most general
solution for a wave travelling in the +z direction is

F = (1 + σ3)
(
(α1σ1 + α2σ2) cos(k ·x) + (β1σ1 + β2σ2) sin(k ·x)

)
, (7.129)

where the constants αi and βi, are all real. This general solution can describe
all possible states of polarisation. A convenient representation is to introduce
the complex coefficients

c1 = α1 + iβ1, c2 = α2 + iβ2. (7.130)

These form the components of the complex Jones vector (c1, c2). In terms of
these components we can write

F = Re
(
(1 + σ3)(c1σ1 + c2σ2)e−ik·x), (7.131)

and it is a straightforward matter to read off the separate E and B fields.
The multivector (1 + σ3) has a number of interesting properties. It absorbs

factors of σ3, as can be seen from

σ3(1 + σ3) = 1 + σ3. (7.132)

In addition, (1 + σ3) squares to give a multiple of itself,

(1 + σ3)2 = 1 + 2σ3 + σ2
3 = 2(1 + σ3). (7.133)

This property implies that (1+σ3) does not have an inverse, so in a multivector
expression it acts as a projection operator. The combination (1 + σ3)/2 has the
particular property of squaring to give itself back again. Multivectors with this
property are said to be idempotent and are important in the general classification
of Clifford algebras and their spinor representations. In spacetime applications
idempotents invariably originate from a null vector, in the manner that (1+σ3)
originates from a spacetime split of γ0 + γ3.

7.4.1 Circularly-polarised light

Many problems are more naturally studied using a basis of circularly-polarised
states, as opposed to plane-polarised ones. These arise when c1 and c2 are π/2
out of phase. One form is given by α1 = −β2 = E0 and α2 = β1 = 0, where E0

denotes the magnitude of the electric field. For this solution we can write

F = E0(1 + σ3)
(
σ1 cos(k ·x) − σ2 sin(k ·x)

)
= E0(1 + σ3)σ1e−Iσ3ω(t − z). (7.134)

In a plane of constant z (a wavefront) the E field rotates in a clockwise (negative)
sense, when viewed looking back towards the source (figure 7.9). In the optics
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x

y

E = E0σ1e
−Iσ3ω(t − z)

ω

Figure 7.9 Right-circularly-polarised light. In the z = 0 plane the E vector
rotates clockwise, when viewed from above. The wave vector points out of
the page. In space, at constant time, the E field sweeps out a right-handed
helix.

literature this is known as right-circularly-polarised light. The reason for this is
that, at constant time, the E field sweeps out a helix in space which defines a
right-handed screw. If you grip the helix in your right hand, your thumb points
in the direction in which the helix advances if tracked along in the sense defined
by your grip. This definition of handedness for a helix is independent of which
way round you chose to grip it.

Left-circularly-polarised light has the E field rotating with the opposite sense.
The general form of this solution is

F = (1 + σ3)(α1σ1 + α2σ2)eIσ3k·x. (7.135)

Particle physicists prefer an alternative labelling scheme for circularly-polarised
light. The scheme is based, in part, on the quantum definition of angular mo-
mentum. In the quantum theory, the total angular momentum consists of a
spatial part and a spin component. Photons, the quanta of electromagnetic ra-
diation, have spin-1. The spin vector for these can either point in the direction
of propagation, or against it, depending on the orientation of rotation of the E

field. It turns out that for right-circularly-polarised light the spin vector points
against the direction of propagation, which is referred to as a state of negative
helicity. Conversely, left-circularly-polarised light has positive helicity.

Equation (7.132) enables us to convert phase rotations with the bivector Iσ3
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7.4 ELECTROMAGNETIC WAVES

into duality rotations governed by the pseudoscalar I. This relies on the relation

(1 + σ3)eIσ3φ = (1 + σ3)
(
cos(φ) + Iσ3 sin(φ)

)
= (1 + σ3)

(
cos(φ) + I sin(φ)

)
= (1 + σ3)eIφ. (7.136)

The general solution for right-circularly-polarised light can now be written

F = (1 + σ3)eIσ3k·x(α1σ1 + α2σ2)

= (1 + σ3)(α1σ1 + α2σ2)eIk·x. (7.137)

In this case the complex structure is now entirely geometric, generated by the
pseudoscalar. This means that there is no longer any need to take the real part
of the solution, as the bivector is already entirely real. A similar trick can be
applied to write the constant terms as

(1 + σ3)(α1σ1 + α2σ2) = (1 + σ3)σ1(α1 − Iα2), (7.138)

so that the coefficient also becomes ‘complex’ on the pseudoscalar. The general
form for right-hand circularly-polarised light solution can now be written

F = (1 + σ3)σ1αReIk·x, (7.139)

where αR is a scalar + pseudoscalar combination. Left-hand circularly-polarised
light is described by reversing the sign of the exponent to −Ik ·x. General
polarisation states can be built up as linear combinations of these circularly
polarised modes, so we can write

F = (1 + σ3)σ1

(
αReIk·x + αLe−Ik·x). (7.140)

Here both the coefficients αL and αR are scalar + pseudoscalar combinations.
The complexification is now based on the pseudoscalar, and we can use αR and
αL as alternative, geometrically meaningful, complex coefficients for describing
general polarisation states. For completeness, the αL and αR parameters are
related to the earlier plane-polarised coefficients αi and βi by

αR = 1
2 (α1 − β2) + 1

2 (α2 + β1)I,

αL = 1
2 (α1 + β2) + 1

2 (α2 − β1)I.
(7.141)

The preceding solutions all assume that the wave vector is entirely in the σ3

direction. More generally, we can introduce a right-handed coordinate frame
{ei}, with e3 pointing along the direction of propagation. The solutions then all
generalise straightforwardly. In more covariant notation the circularly-polarised
modes can also be written

F = kn
(
αReIk·x + αLe−Ik·x), (7.142)

where k ·n = 0.
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7.4.2 Stokes parameters

A useful way of describing the state of polarisation in light emitted from some
source is through the Stokes parameters. The general definition of these involves
time averages of the fields, which we denote here with an overbar. To start with
we assume that the light is coherent, so that all modes are in the same state.
We first define the Stokes parameters in terms of the plane-polarised coefficients.
The electric field is given by

E = Re
(
(c1σ1 + c2σ2)e−ik·x) = Re(E), (7.143)

where E denotes the complex amplitude. The first Stokes parameter gives the
magnitude of the electric field,

s0 = 2E2 = 〈EE∗〉, (7.144)

where the star denotes complex conjugation. This evaluates straightforwardly
to

s0 = |c1|2 + |c2|2. (7.145)

The remaining three Stokes parameters describe the relative amounts of radiation
present in various polarisation states. If we denote the real components of E by
Ex and Ey the parameters are defined by

s1 = 2(E2
x − E2

y) = |c1|2 − |c2|2

s2 = 4ExEy = 2Re(c1c
∗
2) (7.146)

s3 = 4Ex(t)Ey(t + π/(2ω)) = −2Im(c1c
∗
2).

The Stokes parameters can equally well be written in terms of the αL and αR

coefficients of circularly-polarised modes:

s0 = 2(|αL|2 + |αR|2),
s1 = 4〈αLαR〉,
s2 = −4〈IαLαR〉,
s3 = 2(|α2

L| − |αR|2).

(7.147)

For coherent light the Stokes parameters are related by

s2
0 = s2

1 + s2
2 + s2

3. (7.148)

The sµ can therefore be viewed algebraically as the components of a null vector,
though its direction in space has no physical significance. This representation for
‘observables’ in terms of a null vector is typical of a two-state quantum system.
We can bring this out neatly in the spacetime algebra by introducing the three-
dimensional rotor

κ = 〈αL〉 + 〈IαL〉Iσ3 − 〈αR〉Iσ2 − 〈IαR〉Iσ1. (7.149)
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The (quantum) origin of this object is explained in section 8.1. The rotor κ

satisfies

κκ† = 1
2s0, κσ3κ

† = 1
2siσi. (7.150)

It follows that in spacetime

2κ(γ0 + γ3)κ̃ = 2κ(1 + σ3)κ†γ0 = s0γ0 + siγi, (7.151)

and since we have rotated a null vector we automatically obtain a null vector.
The unit spatial vector

ŝ =
s

s0
, s = siσi (7.152)

can be represented by a point on a sphere. For light polarisation states this
is called the Poincaré sphere. For spin-1/2 systems the equivalent construction
is known as the Bloch sphere. The construction is also useful for describing
partially coherent light. In this case the light can be viewed as originating from
a set of discrete (incoherent) sources. The single null vector is replaced by an
average over the sources,

s =
n∑

k=1

sk (7.153)

and the unit vector ŝ is replaced by

s =
s∧γ0

s·γ0
=

n∑
k=1

ωk

ω
ŝk, ω =

n∑
k=1

ωk. (7.154)

The resulting polarisation vector s has s2 ≤ 1, so now defines a vector inside the
Poincaré sphere. The length of this vector directly encodes the relative amounts
of coherent and incoherent light present.

The preceding discussion also makes it a simple matter to compute how the
Stokes parameters appear to observers moving at different velocities. Suppose
that a second observer with velocity v = e0 sets up a frame {eµ}. This is done in
such a way that the wave vector still travels in the e3 direction, which requires
that

e3 =
k − k ·v v

k ·v . (7.155)

If the old and new frames are related by a rotor, eµ = RγµR̃, then equa-
tion (7.155) restricts R to satisfy

RkR̃ = λk. (7.156)

Rather than work in the new frame, it is simpler to back-transform the field F

and work in the original {γµ} frame. We define

F ′ = R̃F (RxR̃)R =
1
λ

kn′
(
αReIk·x/λ + αLe−Ik·x/λ

)
, (7.157)
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where n′ = R̃nR and k = ω(γ0+γ3). We can again choose n′ to be perpendicular
to γ0 by adding an appropriate multiple of k. It follows that the only change to
the final vector n can be a rotation in the Iσ3 plane. Performing a spacetime
split on γ0, and assuming that the original n was −γ1, we obtain

F ′ =
1
λ

(1 + σ3)σ1e−φIσ3

(
αReIk·x/λ + αLe−Ik·x/λ

)
, (7.158)

where φ is the angle of rotation in the Iσ3 plane. The rotation can again be
converted to a phase factor on I, so the overall change is that αR and αL are
multiplied by λ−1 exp(Iφ). The rescaling has no effect on the unit vector on
the Poincaré sphere, so the only change is a rotation through 2φ in the Iσ3

plane. This implies that the σ3 component of the vector on the Poincaré sphere
is constant, which is sensible. This component determines the relative amounts
of left and right-circularly-polarised light present, and this ratio is independent
of which observer measures it. Similar arguments apply to the case of partially
coherent light.

7.5 Scattering and diffraction

We turn now to the related subjects of the scattering and diffraction of electro-
magnetic waves. This is an enormous subject and our aim here is to provide
little more than an introduction, highlighting in particular a unified approach
based on the free-space multivector Green’s function. This provides a first-order
formulation of the scattering problem, which is valuable in numerical compu-
tation. We continue to adopt a complex representation for the electromagnetic
field, and will concentrate on waves of a single frequency. The time dependence
is then expressed via

F (x) = F (r)e−iωt, (7.159)

so that the Maxwell equations reduce to

∇F − iωF = 0. (7.160)

This is the first-order equivalent of the vector Helmholtz equation. Throughout
this section we work with the full, complex quantities, and suppress all factors
of exp(iωt). All quadratic quantities are assumed to be time averaged.

If sources are present the Maxwell equations become

(∇ − iω)F = ρ − J . (7.161)

Current conservation tells us that the (complex) current satisfies

iωρ = ∇·J . (7.162)

Provided that all the sources are localised in some region in space, there can be
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no electric monopole term present. This follows because

Q =
∫

|dX|ρ =
1
iω

∮
J ·n |dA|, (7.163)

where n is the outward normal. Taking the surface to totally enclose the sources,
so that J vanishes over the surface of integration, we see that Q = 0.

7.5.1 First-order Green’s function

The main result we employ in this section is Green’s theorem in three dimensions
in the general form ∫

V

(Ġ∇̇ F + G∇F ) |dX| =
∮

∂V

GnF dA (7.164)

where n is the outward-pointing normal vector over the surface ∂V . If F satisfies
the vacuum Maxwell equations, we have∮

∂V

GnF dA =
∫

V

(Ġ∇̇ + iωG)F |dX|. (7.165)

We therefore seek a Green’s function satisfying

Ġ∇̇ + iωG = δ(r). (7.166)

It will turn out that G only contains (complex) scalar and vector terms, so (by
reversing both sides) this equation is equivalent to

(∇ + iω)G = δ(r). (7.167)

The Green’s function is easily found from the Green’s function for the (scalar)
Helmholtz equation,

φ(r) = − 1
4πr

eiωr. (7.168)

This is appropriate for outgoing radiation. Choosing the outgoing Green’s func-
tion is equivalent to imposing causality by working with retarded fields. The
function φ satisfies

(∇2 + ω2)φ = δ(r) = (∇ + iω)(∇ − iω)φ. (7.169)

We therefore see that the required first-order Green’s function is

G(r) = (∇ − iω)φ

=
eiωr

4π

(
iω

r
(1 − σr) +

r

r3

)
, (7.170)

where σr = r/r is the unit vector in the direction of r. This Green’s function is
the key to much of scattering theory. With a general argument it satisfies

(∇ + iω)G(r − r′) = δ(r − r′) (7.171)
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or, equivalently,

(∇′ − iω)G(r − r′) = −δ(r − r′), (7.172)

where ∇′ denotes the vector derivative with respect to r′.

7.5.2 Radiation and multipole fields

As a first application, suppose that a localised system of charges in free space,
with sinusoidal time dependence, generates outgoing radiation fields. We could
find these by generalising our point source solutions of section 7.3, but here we
wish to exploit our new Green’s function. We can now immediately write down
the solution

F (r) = −
∫

V

G(r′ − r)
(
ρ(r′) − J(r′)

)
|dX ′|, (7.173)

where the integral is over a volume enclosing all of the sources. Equation (7.172)
guarantees that this equation solves the Maxwell equations (7.161), subject to
the boundary condition that only outgoing waves are present at large distances.
It is worth stressing that the geometric algebra formulation is crucial to the way
we have a single integral yielding both the electric and magnetic fields.

Often, one is mainly interested in the radiation fields present at large distances
from the source. These are the contributions to F which fall off as 1/r. To isolate
these terms we use the expansion

eiω|r − r′| = eiωre−iωσr ·r′
+ O(r−1), (7.174)

so that the Green’s function satisfies

lim
r 	→∞

G(r′ − r) =
iω

4πr
eiωr(1 + σr)e−iωσr ·r′

. (7.175)

We therefore find that the limiting form of F can be written

F (r) = − iω

4πr
eiωr(1 + σr)

∫
e−iωσr ·r′(

ρ(r′) − J(r′)
)
|dX ′|. (7.176)

As expected, the multivector is controlled by the idempotent term (1 + σr) =
(γ0 + er)γ0, appropriate for outgoing radiation.

A multipole expansion of the radiation field is achieved by expanding (7.176)
in a series in ωd, where d is the dimension of the source. To leading order, and
recalling that no monopole term is present, we find that∫

e−iωσr ·r′(
ρ(r′) − J(r′)

)
|dX ′| ≈

∫
(−J − iωρσr ·r′)|dX ′|

=
∫

(−J + σr ·J) |dX ′|, (7.177)
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Fi

Fs

Figure 7.10 Scattering by a localised object. The incident field Fi sets up
oscillating currents in the object, which generate an outgoing radiation field
Fs.

where we have integrated by parts to obtain the final expression. This result is
more commonly expressed in terms of the electric dipole moment p, via∫

J |dX| = −
∫

r ∇·J |dX| = −iω

∫
rρ(r) |dX| = −iωp. (7.178)

The result is that the F field is given by

F (r) =
ω2

4πr
eiωr(1 + σr)(p − σr ·p). (7.179)

An immediate check is that the scalar term in F vanishes, as it must. The
electric and magnetic dipole fields can be read off easily now as

E =
ω2

4πr
eiωrσr σr∧p, IB =

ω2

4πr
eiωrσr∧p. (7.180)

These formulae are quite general for any (classical) radiating object.

7.6 Scattering

The geometry of a basic scattering problem is illustrated in figure 7.10. A
(known) field Fi is incident on a localised object. Usually the incident radia-
tion is taken to be a plane wave. This radiation sets up oscillating currents in
the scatterer, which in turn generate a scattered field Fs. The total field F is
given by

F = Fi + Fs, (7.181)

and both Fi and Fs satisfy the vacuum Maxwell equations away from the scat-
terers.

The essential difficulty is how to solve for the currents set up by the incident
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radiation. This is extremely complex and a number of distinct approaches are
described in the literature. One straightforward result is for scattering from a
small uniform dielectric sphere. For this situation we have

p = 4πa3 εr − 1
εr + 2

Ei, (7.182)

where a is the radius of the sphere. From equation (7.180) we see that the ratio
of incident to scattered radiation is controlled by ω2. This ratio determines the
differential cross section via

dσ

dΩ
= r2 |e∗ ·Es|2

|e∗ ·Ei|2
, (7.183)

where the complex vector e determines the polarisation. The cross section clearly
depends of the polarisation of the incident wave. Summing over polarisations
the differential cross section is

dσ

dΩ
= ω4a6

(
εr − 1
εr + 2

)2 1 + cos2(θ)
2

. (7.184)

The factor of ω4 = λ−4 is typical of Rayleigh scattering. These results are central
to Rayleigh’s explanation of blue skies and red sunsets.

Suppose now that we know the fields over a closed surface enclosing a volume
V . Provided that F satisfies the vacuum Maxwell equations throughout V we
can compute Fs directly from

Fs(r′) =
∮

∂V

G(r − r′)nFs(r) |dS|. (7.185)

We take the volume V to be bounded by two surfaces, S1 and S2, as shown in
figure 7.11. The surface S1 is assumed to lie just outside the scatterers, so that
J = 0 over S1. The surface S2 is assumed to be spherical, and is taken out to
infinity. In this limit only the 1/r terms in G and F can contribute to the surface
integral over S2. But from equation (7.175) we know that

lim
r 	→∞

G(r − r′) =
iω

4πr
eiωr(1 − σr)e−iωσr ·r′

, (7.186)

whereas Fs contains a factor of (1 + σr). It follows that the integrand GnFs

contains the term

(1 − σr)σr(1 + σr) = 0. (7.187)

This is identically zero, so there is no contribution from the surface at infinity.
The result is that the scattered field is given by

Fs(r) =
1
4π

∮
S1

eiωd
(

iω

d
+

iω(r − r′)
d2

− r − r′

d3

)
n′Fs(r′) |dS(r′)|, (7.188)
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S1S2

∞

Figure 7.11 Surfaces for Green’s theorem. The surface S2 can be taken
out to infinity, and S1 lies just outside the scattering surface.

where

d = |r − r′|. (7.189)

Since n is the outward pointing normal to the volume, this points into the scat-
terers. This result contains all the necessary polarisation and obliquity factors,
often derived at great length in standard optics texts.

A significant advantage of this first-order approach is that it clearly embodies
Huygens’ principle. The scattered field Fs is propagated into the interior simply
by multiplying it by a Green’s function. This accords with Huygen’s original idea
of reradiation of wavelets from any given wavefront. Two significant problems
remain, however. The first is how to specify Fs over the surface of integration.
This requires detailed modelling of the polarisation currents set up by the in-
cident radiation. A subtlety here is that we do not have complete freedom to
specify F over the surface. The equation ∇F = iωF implies that the compo-
nents of E and B perpendicular to the boundary surface are determined by the
derivatives of the components in the surface. This reduces the number of degrees
of freedom in the problem from six to four, as is required for electromagnetism.

A further problem is that, even if Fs has been found, the integrals in equa-
tion (7.188) cannot be performed analytically. One can approximate to the
large r regime and, after various approximations, recover Fraunhofer and Fres-
nel optics. Alternatively, equation (7.188) can be used as the basis for numerical
simulations of scattered fields. Figure 7.12 shows the type of detailed patterns
that can emerge. The plot was calculated using the two-dimensional equivalent
of equation (7.188). The total energy density is shown, where the scattering
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CLASSICAL ELECTRODYNAMICS

Figure 7.12 Scattering in two dimensions. The plots show the intensity
of the electric field, with higher intensity coloured lighter. The incident
radiation enters from the bottom right of the diagram and scatters off a
conductor with complicated surface features. The conductor is closed in
the shadow region. Various diffraction effects are clearly visible. The right-
hand plot is a close-up near the surface and shows the complicated pattern
of hot and cold regions that can develop.

is performed by a series of perfect conductors. A good check that the calcula-
tions have been performed correctly is that all the expected shadowing effects
are present.

7.7 Notes

There is a vast literature on electromagnetism and electrodynamics. For this
chapter we particularly made use of the classic texts by Jackson (1999) and
Schwinger et al. (1998), both entitled Classical Electrodynamics. The former
of these also contains an exhaustive list of further references. Applications of
geometric algebra to electromagnetism are discussed in the book Multivectors
and Clifford Algebra in Electrodynamics by Jancewicz (1989). This is largely an
introductory text and stops short of tackling the more advanced applications.

We are grateful to Stephen Gull for producing the figures in section 7.3 and for
stimulating much of the work described in this chapter. Further material can be
found in the Banff series of lectures by Doran et al (1996a). Readers interested
in the action at a distance formalism of Wheeler and Feynman can do no better
than return to their original 1949 paper. It is a good exercise to convert their
arguments into a more streamlined geometric algebra notation!
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7.8 EXERCISES

7.8 Exercises

7.1 A circular current loop has radius a and lies in the z = 0 plane with
its centre at the origin. The loop carries a current J . Write down an
integral expression for the B field, and show that on the z axis,

B =
µ0Ja2

2(a2 + z2)3/2
σ3.

7.2 An extension to the Maxwell equations which is regularly discussed is
how they are modified in the presence of magnetic monopoles. If ρm and
Jm denote magnetic charges and currents, the relevant equations are

∇·D = ρe, ∇·B = ρm,

−∇×E =
∂

∂t
B + Jm, ∇×H =

∂

∂t
D + Je.

Prove that in free space these can be written

∇F = Je + JmI,

where Jm = (ρm + Jm)γ0. A duality transformation of the E and B

fields is defined by

E′ = E cos(α) + B sin(α), B′ = B cos(α) − B sin(α).

Prove that this can be written compactly as F ′ = F e−Iα. Hence find
the equivalent transformation law for the source terms such that the
equations remain invariant, and prove that the electromagnetic energy-
momentum tensor is also invariant under a duality transformation.

7.3 A particle follows the trajectory x0(τ), with velocity v = ẋ and acceler-
ation v̇. If X is the retarded null vector connecting the point x to the
worldline, show that the electromagnetic field at x is given by

F =
q

4π

X∧v + 1
2XΩvX

(X ·v)3
,

where Ωv = v̇∧v. Prove directly that F satisfies ∇F = 0 off the particle
worldline.

7.4 Prove the following formulae relating the retarded A and F fields for a
point charge to the null vector X:

A = − q

8πε0
∇2X, F = − q

8πε0
∇3X.

These expressions are of interest in the ‘action at a distance’ formulation
of electrodynamics, as discussed by Wheeler and Feynman (1949).
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7.5 Confirm that, at large distances for the source, the radiation fields due
to both linearly and circularly accelerating charges go as

Frad ≈ 1
r
(1 + σr)a,

where σr ·a = 0.
7.6 From the solution for the fields due to a point charge in a circular orbit

(section 7.3.4), explain why synchrotron radiation arrives in pulses.
7.7 For the κ defined in equation (7.149), verify that κσ3κ

† = siσi, where
si are Stokes parameters.

7.8 A rotor R relates two frames by e′µ = ReµR̃. In both frames the vector
e3 vector is defined by

e3 = e′3 =
k − k ·e0 e0

k ·e0
,

where k is a fixed null vector. Prove that for this relation to be valid for
both frames we must have

RkR̃ = λk.

How many degrees of freedom are left in the rotor R if this equation
holds?

7.9 In optical problems we are regularly interested in the effects of a planar
aperture on incident plane waves. Suppose that the aperture lies in the
z = 0 plane, and we are interested in the fields in the region z > 0. By
introducing the Green’s function

G′(r; r′) = G(r − r′) − G(r − r̄′),

where r̄ = −σ3rσ3, prove that the field in the region z > 0 is given by

Fs(r′) =
∫

dx dy
z′eIωd

2πd3
(1 − iωd)Fs(x, y, 0), (E7.1)

where d = |r − r′|. In the Kirchoff approximation we assume that Fs

over the aperture can be taken as the incident plane wave. By working
in the large r and small angle limit, prove the Fraunhofer result that
the transmitted amplitude is controlled by the Fourier transform of the
aperture function.

7.10 Repeat the analysis of the previous question for a two-dimensional arrange-
ment. You will need to understand some of the properties of Hankel
functions.
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8

Quantum theory and spinors

In this chapter we study the application of geometric algebra to both non-
relativistic and relativistic quantum mechanics. We concentrate on the quan-
tum theory of spin-1/2 particles, whose dynamics is described by the Pauli and
Dirac equations. For interactions where spin and relativity are not important
the dynamics reduces to that of the Schrödinger equation. There are many good
textbooks describing this topic and we will make no attempt to cover it here. We
assume, furthermore, that most readers have a basic understanding of quantum
mechanics, and are familiar with the concepts of states and operators.

Both the Pauli and Dirac matrices arise naturally as representations of the
geometric algebras of space and spacetime. It is no surprise, then, that much of
quantum theory finds a natural expression within geometric algebra. To achieve
this, however, one must reconsider the standard interpretation of the quantum
spin operators. Like much discussion of the interpretation of quantum theory,
certain issues raised here are controversial. There is no question about the va-
lidity of our algebraic approach, however, and little doubt about its advantages.
Whether the algebraic simplifications obtained here are indicative of a deeper
structure embedded in quantum mechanics is an open question.

In this chapter we only consider the quantum theory of single particles in
background fields. Multiparticle systems are considered in the following chapter.
Amongst the results discussed in this section are the angular separation of the
Dirac equation, and a method of calculating cross sections that avoids the need
for spin sums. Both of these results are used in chapter 14 for studying the
behaviour of fermions in gravitational backgrounds.

8.1 Non-relativistic quantum spin

The Stern–Gerlach experiment was the first to demonstrate the quantum nature
of the magnetic moment. In this experiment a beam of particles passes through
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N

S
Spin up

Spin down

Figure 8.1 The Stern–Gerlach experiment. A particle beam is sent
through a highly non-uniform B field. What emerges is a set of discrete,
evenly-spaced beams.

a non-uniform magnetic field B. Classically, one would expect the force on each
particle to be governed by the equation

f = µ·∇B, (8.1)

where µ is the magnetic moment. This would give rise to a continuous distrib-
ution after passing through the field. Instead, what is observed is a number of
evenly-spaced discrete bands (figure 8.1). The magnetic moment is quantised in
the same manner as angular momentum.

When silver atoms are used to make up the beam there is a further surprise:
only two beams emerge on the far side. Silver atoms contain a single electron
in their outermost shell, so it looks as if electrons have an intrinsic angular
momentum which can take only two values. This is known as its spin, though no
classical picture should be inferred from this name. The double-valued nature
of the spin suggests that the electron’s wavefunction should contain two terms,
representing a superposition of the possible spin states,

|ψ〉 = α| ↑〉 + β| ↓〉, (8.2)

where α and β are complex numbers. Such a state can be represented in matrix
form as the spinor

|ψ〉 =
(

α

β

)
. (8.3)

If we align the z axis with the spin-up direction, then the operator returning the
spin along the z axis must be

ŝ3 = λ

(
1 0
0 −1

)
, (8.4)

where λ is to be determined. The spin is added to the orbital angular momentum
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8.1 NON-RELATIVISTIC QUANTUM SPIN

to give a conserved total angular momentum operator ̂ = l̂ + ŝ. For this to
make sense the spin operators should have the same commutation relations as
the angular momentum operators l̂i,

l̂i = −i--hεijkxj∂k, [l̂i, l̂j ] = i--hεijk l̂k. (8.5)

This is sufficient to specify the remaining operators, up to an arbitrary phase
(see exercise 8.1). The result is that the spin operators are given by

ŝk = 1
2
--hσ̂k, (8.6)

where the σ̂k are the familiar Pauli matrices

σ̂1 =
(

0 1
1 0

)
, σ̂2 =

(
0 −i

i 0

)
, σ̂3 =

(
1 0
0 −1

)
. (8.7)

The ‘hat’ notation is used to record the fact that these are viewed explicitly as
matrix operators, rather than as elements of a geometric algebra. The Pauli
matrices satisfy the commutation relations,

[σ̂i, σ̂j ] = 2iεijkσ̂k. (8.8)

They also have the property that two different matrices anticommute,

σ̂1σ̂2 + σ̂2σ̂1 = 0, etc. (8.9)

and all of the matrices square to the identity matrix,

σ̂2
1 = σ̂2

2 = σ̂2
3 = I. (8.10)

These are precisely the relations obeyed by a set of orthonormal vectors in space.
We denote such a set by {σk}. The crucial distinction is that the Pauli matrices
are operators in quantum isospace, whereas the {σk} are vectors in real space.

The σ̂k operators act on two-component complex spinors as described in equa-
tion (8.3). Spinors belong to two-dimensional complex vector space, so have four
real degrees of freedom. A natural question to ask is whether an equivalent
representation can be found in terms of real multivectors, such that the matrix
action is replaced by multiplication by the {σk} vectors. To find a natural way
to do this we consider the observables of a spinor. These are the eigenvalues of
Hermitian operators and, for two-state systems, the relevant operators are the
Pauli matrices. We therefore form the three observables

sk = 1
2
--hnk = 〈ψ|ŝk|ψ〉. (8.11)

The nk are the components of a single vector in the quantum theory of spin.
Focusing attention on the components of this vector, we have

n1 = 〈ψ|σ̂1|ψ〉 = αβ∗ + α∗β,

n2 = 〈ψ|σ̂2|ψ〉 = i(αβ∗ − α∗β),

n3 = 〈ψ|σ̂3|ψ〉 = αα∗ − ββ∗.

(8.12)
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QUANTUM THEORY AND SPINORS

The magnitude of the vector with components nk is

|n|2 = (αβ∗ + α∗β)2 − (αβ∗ − α∗β)2 + (αα∗ − ββ∗)2

= (|α|2 + |β|2)2 = 〈ψ|ψ〉2. (8.13)

So, provided the state is normalised to 1, the vector n must have unit length.
We can therefore introduce polar coordinates and write

n1 = sin(θ) cos(φ),

n2 = sin(θ) sin(φ),

n3 = cos(θ).

(8.14)

Comparing equation (8.14) with equation (8.12) we see that we must have

α = cos(θ/2)eiγ , β = sin(θ/2)eiδ (8.15)

where δ − γ = φ. It follows that the spinor can be written in terms of the polar
coordinates of the vector observable as

|ψ〉 =

(
cos(θ/2)e−iφ/2

sin(θ/2)eiφ/2

)
ei(γ + δ)/2. (8.16)

The overall phase factor can be ignored, and what remains is a description in
terms of half-angles. This suggests a strong analogy with rotors. To investigate
this analogy, we use the idea that polar coordinates can be viewed as part of an
instruction to rotate the 3 axis onto the chosen vector. To expose this we write
the vector n as

n = sin(θ)
(
cos(φ)σ1 + sin(φ)σ2

)
+ cos(θ)σ3. (8.17)

This can be written

n = Rσ3R
†, (8.18)

where

R = e−φIσ3/2e−θIσ2/2. (8.19)

This suggests that there should be a natural map between the normalised spinor
of equation (8.16) and the rotor R. Both belong to linear spaces of real dimension
four and both are normalised. Expanding out the rotor R the following one-to-
one map is found:

|ψ〉 =
(

a0 + ia3

−a2 + ia1

)
↔ ψ = a0 + akIσk. (8.20)

This map will enable us to perform all operations involving spinors without
leaving the geometric algebra of space. Throughout this chapter we use the ↔
symbol to denote a one-to-one map between conventional quantum mechanics
and the multivector equivalent. We will continue to refer to the multivector ψ

270

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.010
https:/www.cambridge.org/core


8.1 NON-RELATIVISTIC QUANTUM SPIN

as a spinor. On this scheme the spin-up and spin-down basis states | ↑〉 and | ↓〉
become

| ↑〉 ↔ 1 | ↓〉 ↔ −Iσ2. (8.21)

One can immediately see for these that the vectors of observables have compo-
nents (0, 0,±1), as required.

8.1.1 Pauli operators

Now that a suitable one-to-one map has been found, we need to find a represen-
tation for Pauli operators acting on the multivector version of a spinor. It turns
out that the action of the quantum σ̂k operators on a state |ψ〉 is equivalent to
the following operation on ψ:

σ̂k|ψ〉 ↔ σkψσ3 (k = 1, 2, 3). (8.22)

The σ3 on the right-hand side ensures that the multivector remains in the even
subalgebra. The choice of vector does not break rotational covariance, in the
same way that choosing the σ̂3 matrix to be diagonal does not alter the rota-
tional covariance of the Pauli theory. One can explicitly verify that the trans-
lation procedure of equation (8.20) and equation (8.22) is consistent by routine
computation; for example

σ̂1|ψ〉 =
(
−a2 + ia1

a0 + ia3

)
↔ −a2 + a1Iσ3 − a0Iσ2 + a3Iσ1 = σ1ψσ3. (8.23)

The remaining cases, for σ̂2 and σ̂3 can be checked equally easily.
Now that we have a translation for the action of the Pauli matrices, we can

find the equivalent of multiplying by the unit imaginary i. To find this we note
that

σ̂1σ̂2σ̂3 =
(

i 0
0 i

)
, (8.24)

so multiplication of both components of |ψ〉 by i can be achieved by multiply-
ing by the product of the three matrix operators. We therefore arrive at the
translation

i|ψ〉 ↔ σ1σ2σ3ψ(σ3)3 = ψIσ3. (8.25)

So, on this scheme, the unit imaginary of quantum theory is replaced by right
multiplication by the bivector Iσ3. This is certainly suggestive, though it should
be borne in mind that this conclusion is a feature of our chosen representa-
tion. The appearance of the bivector Iσ3 is to be expected, since the vector
of observables s = skσk was formed by rotating the σ3 vector. This vector is
unchanged by rotations in the Iσ3 plane, which provides a geometric picture of
phase invariance.
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8.1.2 Observables in the Pauli theory

We next need to establish the quantum inner product for our multivector form
of a spinor. We first note that the Hermitian adjoint operation has σ̂†

k = σ̂k, and
reverses the order of all products. This is precisely the same as the reversion
operation for multivectors in three dimensions, so the dagger symbol can be used
consistently for both operations. The quantum inner product is

〈ψ|φ〉 = (ψ∗
1 , ψ∗

2)
(

φ1

φ2

)
= ψ∗

1φ1 + ψ∗
2φ2, (8.26)

where we ignore spatial integrals. For a wide range of problems the spatial and
spin components of the wave function can be separated. If this is not the case
then the quantum inner product should also contain an integral over all space.
The result of the real part of the inner product is reproduced by

Re〈ψ|φ〉 ↔ 〈ψ†φ〉, (8.27)

so that, for example,

〈ψ|ψ〉 ↔ 〈ψ†ψ〉 = 〈(a0 − ajIσj)(a0 + akIσk)〉 =
3∑

α=0

aαaα. (8.28)

Since

〈ψ|φ〉 = Re〈ψ|φ〉 − iRe〈ψ|iφ〉, (8.29)

the full inner product can be written

〈ψ|φ〉 ↔ 〈ψ†φ〉 − 〈ψ†φIσ3〉Iσ3. (8.30)

The right-hand side projects out the 1 and Iσ3 components from the geometric
product ψ†φ. The result of this projection on a multivector A is written 〈A〉q.
For even-grade multivectors in three dimensions this projection has the simple
form

〈A〉q = 1
2 (A + σ3Aσ3). (8.31)

If the result of an inner product is used to multiply a second multivector, one
has to remember to keep the terms in Iσ3 to the right of the multivector. This
might appear a slightly clumsy procedure at first, but it is easy to establish con-
ventions so that manipulations are just as efficient as in the standard treatment.
Furthermore, the fact that all manipulations are now performed within the geo-
metric algebra framework offers a number of new ways to simplify the analysis
of a range of problems.
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8.1 NON-RELATIVISTIC QUANTUM SPIN

8.1.3 The spin vector

As a check on the consistency of our scheme, we return to the expectation value
of the spin in the k-direction, 〈ψ|ŝk|ψ〉. For this we require

〈ψ|σ̂k|ψ〉 ↔ 〈ψ†σkψσ3〉 − 〈ψ†σkψI〉Iσ3. (8.32)

Since ψ†Iσkψ reverses to give minus itself it has zero scalar part, so the final
term on the right-hand side vanishes. This is to be expected, as the σ̂k are
Hermitian operators. For the remaining term we note that in three dimensions
ψσ3ψ

† is both odd-grade and reverses to itself, so is a pure vector. We therefore
define the spin vector

s = 1
2
--hψσ3ψ

†. (8.33)

The quantum expectation now reduces to

〈ψ|ŝk|ψ〉 = 1
2
--h〈σkψσ3ψ

†〉 = σk ·s. (8.34)

This new expression has a rather different interpretation to that usually en-
countered in quantum theory. Rather than forming the expectation value of a
quantum operator, we are simply projecting out the kth component of the vec-
tor s. Working with the vector s may appear to raise questions about whether
we are free to talk about all three components of the spin vector. This is in fact
consistent with the results of spin measurements, if we view the spin measure-
ment apparatus as acting more as a spin polariser. This is discussed in Doran
et al. (1996b).

The rotor description introduced at the start of this section is recovered by
first defining the scalar

ρ = ψψ†. (8.35)

The spinor ψ then decomposes into

ψ = ρ1/2R, (8.36)

where R = ρ−1/2ψ. The multivector R satisfies RR† = 1, so is a rotor. In this
approach, Pauli spinors are nothing but unnormalised rotors. The spin vector s

can now be written as

s = 1
2
--hρRσ3R

†, (8.37)

which recovers the form of equation (8.18).
The double-sided construction of the expectation value of equation (8.32) con-

tains an instruction to rotate the fixed σ3 axis into the spin direction and dilate
it. It might appear here that we are singling out some preferred direction in
space. But in fact all we are doing is utilising an idea from rigid-body dynamics,
as discussed in section 3.4.3. The σ3 on the right of ψ represents a vector in a
‘reference’ frame. All physical vectors, like s, are obtained by rotating this frame
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σ1

σ2

σ3

e1

e2

s

ψ

Figure 8.2 The spin vector. The normalised spinor ψ transforms the ini-
tial reference frame onto the frame {ek}. The vector e3 is the spin vector.
A phase transformation of ψ generates a rotation in the e1e2 plane. Such
a transformation is unobservable, so the e1 and e2 vectors are also unob-
servable.

onto the physical values (see figure 8.2). There is nothing special about σ3 —
one can choose any (constant) reference frame and use the appropriate rotation
onto s, in the same way that there is nothing special about the orientation of
the reference configuration of a rigid body. In rigid-body mechanics this freedom
is usually employed to align the reference configuration with the initial state of
the body. In quantum theory the convention is to work with the z axis as the
reference vector.

8.1.4 Rotating spinors

Suppose that the vector s is to be rotated to a new vector R0sR†
0. To achieve

this the spinor ψ must transform according to

ψ 
→ R0ψ. (8.38)

Now suppose that for R0 we use the rotor Rθ,

Rθ = exp(−B̂θ/2), (8.39)

where B̂2 = −1 is a constant bivector. The resulting spinor is

ψ′ = Rθψ = e−B̂θ/2ψ. (8.40)

We now start to increase θ from 0 through to 2π, so that θ = 2π corresponds to
a 2π rotation, bringing all observables back to their original values. But under
this we see that ψ transforms to

ψ′ = e−B̂πψ =
(
cos(π) − B̂ sin(π)

)
ψ = −ψ. (8.41)

The spinor changes sign! If a spin vector is rotated through 2π, the wavefunction
does not come back to itself, but instead transforms to minus its original value.
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8.1 NON-RELATIVISTIC QUANTUM SPIN

This change of sign of a state vector under 2π rotations is the distinguish-
ing property of spin-1/2 fermions in quantum theory. Once one sees the rotor
derivation of this result, however, it is rather less mysterious. Indeed, there are
classical phenomena involving systems of linked rotations that show precisely
the same property. One example is the 4π symmetry observed when rotating an
arm holding a tray. For a more detailed discussion if this point, see chapter 41
of Gravitation by Misner, Thorne & Wheeler (1973). A linear space which is
acted on in a single-sided manner by rotors forms a carrier space for a spin rep-
resentation of the rotation group. Elements of such a space are generally called
spinors, which is why that name is adopted for our representation in terms of
even multivectors.

8.1.5 Quantum particles in a magnetic field

Particles with non-zero spin also have a magnetic moment which is proportional
to the spin. This is expressed as the operator relation

µ̂k = γŝk, (8.42)

where µ̂k is the magnetic moment operator, γ is the gyromagnetic ratio and ŝk

is the spin operator. The gyromagnetic ratio is usually written in the form

γ = g
q

2m
, (8.43)

where m is the particle mass, q is the charge and g is the reduced gyromagnetic
ratio. The reduced gyromagnetic ratios are determined experimentally to be

electron ge = 2 (actually 2(1 + α/2π + · · · )),
proton gp = 5.587,
neutron gn = −3.826 (using proton charge).

The value for the neutron is negative because its spin and magnetic moment
are antiparallel. All of the above are spin-1/2 particles for which we have ŝk =
(--h/2)σ̂k.

Now suppose that the particle is placed in a magnetic field, and that all of
the spatial dynamics has been separated out. We introduce the Hamiltonian
operator

Ĥ = − 1
2γ--hBkσ̂k = −µ̂kBk. (8.44)

The spin state at time t is then written as

|ψ(t)〉 = α(t)| ↑〉 + β(t)| ↓〉, (8.45)
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with α and β general complex coefficients. The dynamical equation for these
coefficients is given by the time-dependent Schrödinger equation

Ĥ|ψ〉 = i--h
d|ψ〉
dt

. (8.46)

This equation can be hard to analyse, conventionally, because it involves a pair
of coupled differential equations for α and β. Instead, let us see what the
Schrödinger equation looks like in the geometric algebra formulation. We first
write the equation in the form

d|ψ〉
dt

= 1
2γiBkσ̂k|ψ〉. (8.47)

Now replacing |ψ〉 by the multivector ψ we see that the left-hand side is simply
ψ̇, where the dot denotes the time derivative. The right-hand side involves
multiplication of the spinor |ψ〉 by iσ̂k, which we replace by

iσ̂k|ψ〉 ↔ σkψσ3(Iσ3) = Iσkψ. (8.48)

The Schrödinger equation (8.46) is therefore simply

ψ̇ = 1
2γBkIσkψ = 1

2γIBψ, (8.49)

where B = Bkσk. If we now decompose ψ into ρ1/2R we see that

ψ̇ψ† = 1
2 ρ̇ + ρṘR† = 1

2ργIB. (8.50)

The right-hand side is a bivector, so ρ must be constant. This is to be expected,
as the evolution should be unitary. The dynamics now reduces to

Ṙ = 1
2γIBR, (8.51)

so the quantum theory of a spin-1/2 particle in a magnetic field reduces to a
simple rotor equation. This is very natural, if one thinks about the behaviour of
particles in magnetic fields, and is an important justification for our approach.

Recovering a rotor equation explains the difficulty of the traditional analysis
based on a pair of coupled equations for the components of |ψ〉. This approach
fails to capture the fact that there is a rotor underlying the dynamics, and so
carries along a redundant degree of freedom in the normalisation. In addition, the
separation of a rotor into a pair of components is far from natural. For example,
suppose that B is a constant field. The rotor equation integrates immediately
to give

ψ(t) = eγIBt/2ψ0. (8.52)

The spin vector s therefore just precesses in the IB plane at a rate ω0 = γ|B|.
Even this simple result is rather more difficult to establish when working with
the components of |ψ〉.
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8.1.6 NMR and magnetic resonance imaging

A more interesting example of a particle in a magnetic field is provided by nuclear
magnetic resonance, or NMR. Suppose that the B field includes an oscillatory
field (B1 cos(ωt), B1 sin(ωt), 0) together with a constant field along the z axis.
This oscillatory field induces transitions (spin-flips) between the up and down
states, which differ in energy because of the constant component of the field.
This is a very interesting system of great practical importance. It is the basis of
magnetic resonance imaging and Rabi molecular beam spectroscopy.

To study this system we first write the B field as

B1

(
cos(ωt)σ1 + sin(ωt)σ2

)
+ B0σ3 = S(B1σ1 + B0σ3)S†, (8.53)

where

S = e−ωtIσ3/2. (8.54)

We now define

Bc = B1σ1 + B0σ3 (8.55)

so that we can write B = SBcS
†. The rotor equation now simplifies to

S†ψ̇ = 1
2γIBcS

†ψ, (8.56)

where we have pre-multiplied by S†, and we continue to use ψ for the normalised
rotor. Now noting that

Ṡ† = 1
2ωIσ3S

† (8.57)

we see that
d

dt
(S†ψ) = 1

2 (γIBc + ωIσ3)S†ψ. (8.58)

It is now S†ψ that satisfies a rotor equation with a constant field. The solution
is straightforward:

S†ψ(t) = exp
(

1
2γt IBc + 1

2ωt Iσ3

)
ψ0, (8.59)

and we arrive at

ψ(t) = exp
(
− 1

2ωt Iσ3

)
exp

(
1
2 (ω0 + ω)t Iσ3 + 1

2ω1t Iσ1

)
ψ0, (8.60)

where ω1 = γB1. There are three separate frequencies in this solution, which
contains a wealth of interesting physics.

To complete our analysis we must relate our solution to the results of ex-
periments. Suppose that at time t = 0 we switch on the oscillating field. The
particle is initially in a spin-up state, so ψ0 = 1, which also ensures that the state
is normalised. The probability that at time t the particle is in the spin-down
state is

P↓ = |〈↓ |ψ(t)〉|2. (8.61)

277

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.010
https:/www.cambridge.org/core


QUANTUM THEORY AND SPINORS

We therefore need to form the inner product

〈↓ |ψ(t)〉 ↔ 〈Iσ2ψ〉q = 〈Iσ2ψ〉 − Iσ3〈Iσ1ψ〉. (8.62)

To find this inner product we write

ψ(t) = e−ωtIσ3/2(cos(αt/2) + IB̂ sin(αt/2)
)
, (8.63)

where

B̂ =
(ω0 + ω)σ3 + ω1σ1

α
and α =

√
(ω + ω0)2 + ω2

1 . (8.64)

The only term giving a contribution in the Iσ1 and Iσ2 planes is that in ω1Iσ1/α.
We therefore have

〈Iσ2ψ〉q =
ω1 sin(αt/2)

α
e−ωtIσ3/2Iσ3 (8.65)

and the probability is immediately

P↓ =
(

ω1 sin(αt/2)
α

)2

. (8.66)

The maximum value is at αt = π, and the probability at this time is maximised
by choosing α as small as possible. This is achieved by setting ω = −ω0 = −γB0.
This is the spin resonance condition which is the basis of NMR spectroscopy.

8.2 Relativistic quantum states

The relativistic quantum dynamics of a spin-1/2 particle is described by the
Dirac theory. The Dirac matrix operators are

γ̂0 =
(

I 0
0 −I

)
, γ̂k =

(
0 −σ̂k

σ̂k 0

)
, γ̂5 =

(
0 I

I 0

)
, (8.67)

where γ̂5 = −iγ̂0γ̂1γ̂2γ̂3 and I is the 2 × 2 identity matrix. These matrices act
on Dirac spinors, which have four complex components (eight real degrees of
freedom). We follow an analogous procedure to the Pauli case and map these
spinors onto elements of the eight-dimensional even subalgebra of the spacetime
algebra. Dirac spinors can be visualised as decomposing into ‘upper’ and ‘lower’
components,

|ψ〉 =
(
|φ〉
|η〉

)
, (8.68)

where |φ〉 and |η〉 are a pair of two-component spinors. We already know how
to represent these as multivectors φ and η, which lie in the space of scalars +
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relative bivectors. Our map from the Dirac spinor onto an element of the full
eight-dimensional subalgebra is simply

|ψ〉 =
(
|φ〉
|η〉

)
↔ ψ = φ + ησ3. (8.69)

The action of the Dirac matrix operators now becomes,

γ̂µ|ψ〉 ↔ γµψγ0 (µ = 0, . . . , 3),

i|ψ〉 ↔ ψ Iσ3,

γ̂5|ψ〉 ↔ ψσ3.

(8.70)

Again, verifying the details of this map is a matter of routine computation. One
feature is that we now have two ‘reference’ vectors that can appear on the right-
hand side of ψ: γ0 and γ3. That is, the relative vector σ3 used in the Pauli
theory has been decomposed into a spacelike and a timelike direction. As in the
Pauli theory, these reference vectors multiplying ψ from the right do not break
Lorentz covariance, as all observables are formed by rotating these reference
vectors onto the frame of observables. Since Iσ3 and γ0 commute, our use of
right-multiplication by Iσ3 for the complex structure remains consistent.

The goal of our approach is to perform all calculations without ever having to
introduce an explicit matrix representation. The explicit map of equation (8.69)
is for column spinors written in the Dirac–Pauli representation, but it is a simple
matter to establish similar maps for other representations. All one needs to do
is find the unitary matrix which transforms the second representation into the
Dirac–Pauli one, and then apply the map of equation (8.69). All of the matrix
operators are then guaranteed to have the equivalence defined in equation (8.70).
Certain other operations, such as complex conjugation, depend on the particular
representation. But rather than think of these as the same operation in different
representations, it is simpler to view them as different operations which can be
applied to the multivector ψ.

In order to discuss the observables of the Dirac theory, we must first distinguish
between the Hermitian and Dirac adjoints. The Hermitian adjoint is written as
usual as 〈ψ|. The Dirac adjoint is written as 〈ψ̄| and is defined by

〈ψ̄| = (〈ψu|,−〈ψl|), (8.71)

where the subscripts u and l refer to the upper and lower components. It is
the Dirac adjoint which gives Lorentz-covariant observables. The Dirac inner
product decomposes into

〈ψ̄|φ〉 = 〈ψu|φu〉 − 〈ψl|φl〉. (8.72)

This has the equivalent form

〈ψ†
uφu〉q − 〈ψ†

l φl〉q = 〈(ψ†
u − σ3ψ

†
l )(φu + φlσ3)〉q = 〈ψ̃φ〉q. (8.73)
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So the Dirac adjoint is replaced by the manifestly covariant operation of space-
time reversion in the spacetime algebra formulation. The Hermitian adjoint now
becomes

〈ψ| ↔ ψ† = γ0ψ̃γ0, (8.74)

which defines the meaning of the dagger symbol in the full spacetime algebra.
Clearly, this operation requires singling out a preferred timelike vector, so is not
covariant. In the relative space defined by γ0, the Hermitian adjoint reduces to
the non-relativistic reverse operation, so our notation is consistent with the use
of the dagger for the reverse in three-dimensional space.

We can now look at the main observables formed from a Dirac spinor. The
first is the current

Jµ = 〈ψ̄|γ̂µ|ψ〉 ↔ 〈ψ̃γµψγ0〉 − 〈ψ̃γµψIγ3〉Iσ3. (8.75)

The final term contains 〈γµψIγ3ψ̃〉. This vanishes because ψIγ3ψ̃ is odd-grade
and reverses to minus itself, so is a pure trivector. Similarly, ψγ0ψ̃ is a pure
vector, and we are left with

Jµ = 〈ψ̄|γ̂µ|ψ〉 ↔ γµ ·(ψγ0ψ̃). (8.76)

As with the Pauli theory, the operation of taking the expectation value of a
matrix operator is replaced by that of picking out a component of a vector. We
can therefore reconstitute the full vector J and write

J = ψγ0ψ̃ (8.77)

for the first of our observables.
To gain some further insight into the form of J , and its formation from ψ, we

introduce the scalar + pseudoscalar quantity ψψ̃ as

ψψ̃ = ρeIβ . (8.78)

Factoring this out from ψ, we define the spacetime rotor R:

R = ψρ−1/2e−Iβ/2, RR̃ = 1. (8.79)

(If ρ = 0 a slightly different procedure can be used.) We have now decomposed
the spinor ψ into

ψ = ρ1/2eIβ/2R, (8.80)

which separates out a density ρ and the rotor R. The remaining factor of β

is curious. It turns out that plane-wave particle states have β = 0, whereas
antiparticle states have β = π. The picture for bound state wavefunctions is
more complicated, however, and β appears to act as a remnant of multiparticle
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Bilinear Standard STA Frame-free
covariant form equivalent form

Scalar 〈ψ̄|ψ〉 〈ψψ̃〉 ρ cos(β)

Vector 〈ψ̄|γ̂µ|ψ〉 γµ ·(ψγ0ψ̃) ψγ0ψ̃ = J

Bivector 〈ψ̄|iγ̂µν |ψ〉 (γµ∧γν)·(ψIσ3ψ̃) ψIσ3ψ̃ = S

Pseudovector 〈ψ̄|γ̂µγ̂5|ψ〉 γµ ·(ψγ3ψ̃) ψγ3ψ̃ = s

Pseudoscalar 〈ψ̄|iγ̂5|ψ〉 〈ψψ̃I〉 −ρ sin(β)

Table 8.1 Observables in the Dirac theory. The standard expressions for
the bilinear covariants are shown, together with their spacetime algebra
(STA) equivalents.

effects from the full quantum field theory. With this decomposition of ψ, the
current becomes

J = ψγ0ψ̃ = ρeIβ/2Rγ0R̃eIβ/2 = ρRγ0R̃. (8.81)

So the rotor is now an instruction to rotate γ0 onto the direction of the current.
This is precisely the picture we adopted in section 5.5 for studying the dynamics
of a relativistic point particle.

A similar picture emerges for the spin. In relativistic mechanics angular mo-
mentum is a bivector quantity. Accordingly, the spin observables form a rank-2
antisymmetric tensor, with components given by

〈ψ̄|i 1
2 (γ̂µγ̂ν − γ̂ν γ̂µ)|ψ〉 ↔ 〈ψ̃γµ∧γνψIσ3〉q = 〈γµ∧γνψIσ3ψ̃〉, (8.82)

where again there is no imaginary component. This time we are picking out the
components of the spin bivector S, given by

S = ψIσ3ψ̃. (8.83)

This is the natural spacetime generalisation of the Pauli result of equation (8.18).
(Factors of --h/2 can always be inserted when required.) There are five such
observables in all, which are summarised in Table 8.1. Of particular interest is
the spin vector s = ρRγ3R̃. This justifies the classical model of spin introduced
in section 5.5.6, where it was shown that the rotor form of the Lorentz force law
naturally gives rise to a reduced gyromagnetic ratio of g = 2.

8.3 The Dirac equation

While much of the preceding discussion is both suggestive about the role of
spinors in quantum theory, and algebraically very useful, one has to remem-
ber that quantum mechanics deals with wave equations. We therefore need to
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construct a relativistic wave equation for our Dirac spinor ψ, where ψ is an el-
ement of the eight-dimensional even subalgebra of the spacetime algebra. The
relativistic wave equation for a spin-1/2 particle is the Dirac equation. This is
a first-order wave equation, which is both Lorentz-invariant and has a future-
pointing conserved current.

Like Pauli spinors, ψ is also subject to a single-sided rotor transformation law,
ψ 
→ Rψ, where R is a Lorentz rotor. To write down a covariant equation, we
can therefore only place other covariant objects on the left of ψ. The available
objects are any scalar or pseudoscalar, the vector derivative ∇ and any gauge
fields describing interactions. On the right of ψ we can place combinations of
γ0, γ3 and Iσ3. The first equation we could write down is simply

∇ψ = 0. (8.84)

This is the spacetime generalisation of the Cauchy–Riemann equations, as de-
scribed in section 6.3. Remarkably, this equation does describe the behaviour of
fermions — it is the wave equation for a (massless) neutrino. Any solution to
this decomposes into two separate solutions by writing

ψ = ψ 1
2 (1 + σ3) + ψ 1

2 (1 − σ3) = ψ+ + ψ−. (8.85)

The separate solutions ψ+ and ψ− are the right-handed and left-handed helicity
eigenstates. For neutrinos, nature only appears to make use of the left-handed
solutions. A more complete treatment of this subject involves the electroweak
theory. (In fact, recent experiments point towards neutrinos carrying a small
mass, whose origin can be explained by an interaction with the Higgs field.)

The formal operator identification of i∂µ with pµ tells us that any wavefunction
for a free massive particle should satisfy the Klein–Gordon equation ∇2ψ =
−m2ψ. We therefore need to add to the right-hand side of equation (8.84) a term
that is linear in the particle mass m and that generates −m2ψ on squaring the
operator. The natural covariant vector to form on the left of ψ is the momentum
γµpµ. In terms of this operator we are led to an equation of the form

pψ = mψa0, (8.86)

where a0 is some multivector to be determined. It is immediately clear that a0

must have odd grade, and must square to +1. The obvious candidate is γ0, so
that ψ contains a rotor to transform γ0 to the velocity p/m. We therefore arrive
at the equation

∇ψIσ3 = mψγ0. (8.87)

This is the Dirac equation in its spacetime algebra form. This is easily seen to
be equivalent to the matrix form of the equation

γ̂uµ(∂µ − ieAµ)|ψ〉 = m|ψ〉, (8.88)
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where the electromagnetic vector potential has been included. The full Dirac
equation is now

∇ψIσ3 − eAψ = mψγ0. (8.89)

A remarkable feature of this formulation is that the equation and all of its ob-
servables have been captured in the real algebra of spacetime, with no need for
a unit imaginary. This suggests that interpretations of quantum mechanics that
place great significance in the need for complex numbers are wide off the mark.

8.3.1 Symmetries and currents

The subject of the symmetries of the Dirac equation, and their conjugate cur-
rents, is discussed more fully in chapter 12. Here we highlight the main results.
There are three important discrete symmetry operations: charge conjugation,
parity and time reversal, denoted C, P and T respectively. Following the con-
ventions of Bjorken & Drell (1964) we find that

P̂ |ψ〉 ↔ γ0ψ(x̄)γ0,

Ĉ|ψ〉 ↔ ψσ1,

T̂ |ψ〉 ↔ Iγ0ψ(−x̄)γ1,

(8.90)

where x̄ = γ0xγ0 is (minus) the reflection of x in the timelike γ0 axis. The
combined CPT symmetry corresponds to

ψ 
→ −Iψ(−x) (8.91)

so that CPT symmetry does not require singling out a preferred timelike vector.
Amongst the continuous symmetries of the Dirac equation, the most significant

is local electromagnetic gauge invariance. The equation is unchanged in physical
content if we make the simultaneous replacements

ψ 
→ ψeαIσ3 , eA 
→ eA −∇α. (8.92)

The conserved current conjugate to this symmetry is the Dirac current J = ψγ0ψ̃.
This satisfies

∇·J = 〈∇ψγ0ψ̃〉 + 〈ψγ0
˙̃
ψ∇̇〉

= −2〈(eAψγ0 + mψ)Iσ3ψ̃〉
= 0 (8.93)

and so is conserved even in the presence of a background field. This is important.
It means that single fermions cannot be created or destroyed. This feature was
initially viewed as a great strength of the Dirac equation, though ultimately it
is its biggest weakness. Fermion pairs, such as an electron and a positron, can
be created and destroyed — a process which cannot be explained by the Dirac
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equation alone. These are many-body problems and are described by quantum
field theory.

The timelike component of J in the γ0 frame, say, is

J0 = γ0 ·J = 〈γ0ψ̃γ0ψ〉 = 〈ψ†ψ〉 > 0, (8.94)

which is positive definite. This is interpreted as a probability density, and lo-
calised wave functions are usually normalised such that∫

d3x J0 = 1. (8.95)

Arriving at a relativistic theory with a consistent probabilistic interpretation was
Dirac’s original goal.

8.3.2 Plane-wave states

A positive energy plane-wave state is defined by

ψ = ψ0e−Iσ3p·x, (8.96)

where ψ0 is a constant spinor. The Dirac equation (8.87) tells us that ψ0 satisfies

pψ0 = mψ0γ0, (8.97)

and post-multiplying by ψ̃0 we see that

pψ0ψ̃0 = mJ. (8.98)

Recalling that we have ψψ̃ = ρeiβ , and noting that both p and J are vectors,
we see that we must have exp(iβ) = ±1. For positive energy states the time-
like component of p is positive, as is the timelike component of J , so we take
the positive solution β = 0. It follows that ψ0 is then simply a rotor with a
normalisation constant. The proper boost L taking mγ0 onto the momentum
has

p = mLγ0L̃ = mL2γ0, (8.99)

and from section 5.4.4 the solution is

L =
m + pγ0

[2m(m + p·γ0)]1/2
=

E + m + p

[2m(E + m)]1/2
, (8.100)

where pγ0 = E + p. The full spinor ψ0 is LU, where U is a spatial rotor in the
γ0 frame, so is a Pauli spinor.

Negative-energy solutions have a phase factor of exp(+Iσ3p ·x), with E =
γ0 ·p > 0. For these we have −pψψ̃ = mJ so it is clear that we now need β = π.
Positive and negative energy plane wave states can therefore be summarised by

positive energy: ψ(+)(x) = L(p)Ure−Iσ3p·x,

negative energy: ψ(−)(x) = L(p)UrIeIσ3p·x,
(8.101)
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with L(p) given by equation (8.100). The subscript r on the spatial rotors labels
the spin state, with U0 = 1, U1 = −Iσ2. These plane wave solutions are the
fundamental components of scattering theory.

8.3.3 Hamiltonian form and the Pauli equation

The problem of how to best formulate operator techniques within spacetime
algebra is little more than a question of finding a good notation. We could of
course borrow the traditional Dirac ‘bra-ket’ notation, but we have already seen
that the bilinear covariants are better handled without it. It is easier instead to
just juxtapose the operator and the wavefunction on which it acts. But we saw
in section 8.2 that the operators often act double-sidedly on the spinor ψ. This
is not a problem, as the only permitted right-sided operations are multiplication
by γ0 or Iσ3, and these operations commute. Our notation can therefore safely
suppress these right-sided multiplications and gather all operations on the left.
The overhat notation is useful to achieve this and we define

γ̂µψ = γµψγ0. (8.102)

It should be borne in mind that all operations are now defined in the space-
time algebra, so the γ̂µ are not to be read as matrix operators, as they were in
section 8.2. Of course, the action of the operators in either system is identical.

It is also useful to have a symbol for the operation of right-sided multiplication
by Iσ3. The symbol j carries the correct connotations of an operator that
commutes with all others and squares to −1, and we define

jψ = ψIσ3. (8.103)

The Dirac equation can now be written in the ‘operator’ form

j∇̂ψ − eÂψ = mψ, (8.104)

where

∇̂ψ = ∇ψγ0 and Âψ = Aψγ0. (8.105)

Writing the Dirac equation in the form (8.104) does not add anything new, but
does confirm that we have an efficient notation for handling operators. One
might ask why we have preferred the j symbol over the more obvious i. One
reason is historical. In much of the spacetime algebra literature it has been
common practice to denote the spacetime pseudoscalar with a small i. We now
feel that this is a misleading notation, but it is commonplace. In addition, there
are occasions when we may wish to formally complexify the spacetime algebra,
as was the case for electromagnetic scattering, covered in section 7.5. To avoid
confusion with either of these cases we have chosen to denote right-multiplication
of ψ by Iσ3 as jψ in both this and the following chapter.
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To express the Dirac equation in Hamiltonian form we simply multiply from
the left by γ0. The resulting equation, with the dimensional constants temporar-
ily put back in, is

j--h∂tψ = cp̂ψ + eV ψ − ceAψ + mc2ψ̄, (8.106)

where

p̂ψ = −j--h∇ψ,

ψ̄ = γ0ψγ0, (8.107)

γ0A = V − cA.

Choosing a Hamiltonian is a non-covariant operation, since it picks out a pre-
ferred timelike direction. The Hamiltonian relative to the γ0 direction is the
operator on the right-hand side of equation (8.106).

As an application of the Hamiltonian formulation, consider the non-relativistic
reduction of the Dirac equation. This can be achieved formally via the Foldy–
Wouthuysen transformation. For details we refer the reader to Itzykson & Zuber
(1980). While the theoretical motivation for this transformation is clear, it can be
hard to compute in all but the simplest cases. A simpler approach, dating back
to Feynman, is to separate out the fast-oscillating component of the waves and
then split into separate equations for the Pauli-even and Pauli-odd components
of ψ. We write (with --h = 1 and the factors of c kept in)

ψ = (φ + η)e−Iσ3mc2t, (8.108)

where φ̄ = φ (Pauli-even) and η̄ = −η (Pauli-odd). The Dirac equation (8.106)
now splits into the two equations

Eφ − cOη = 0,

(E + 2mc2)η − cOφ = 0,
(8.109)

where
Eφ = (j∂t − eV )φ,

Oφ = (p̂ − eA)φ.
(8.110)

The formal solution to the second of equations (8.109) is

η =
1

2mc

(
1 +

E
2mc2

)−1

Oφ, (8.111)

where the inverse on the right-hand side denotes a power series. Provided the
expectation value of E is smaller than 2mc2 (which it is in the non-relativistic
limit) the series should converge. The remaining equation for φ is

Eφ − O
2m

(
1 − E

2mc2
+ · · ·

)
Oφ = 0, (8.112)
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8.3 THE DIRAC EQUATION

which can be expanded out to the desired order of magnitude. There is little
point in going beyond the first relativistic correction, so we approximate equa-
tion (8.112) by

Eφ +
OEO
4m2c2

φ =
O2

2m
φ. (8.113)

We seek an equation of the form Eφ = Hφ, where H is the non-relativistic
Hamiltonian. We therefore need to replace the OEO term in equation (8.113)
by a term that does not involve E . To achieve this we write

2OEO = [O, [E ,O]] + EO2 + O2E (8.114)

so that equation (8.113) becomes

Eφ =
O2

2m
φ − EO2 + O2E

8m2c2
φ − 1

8m2c2
[O, [E ,O]]φ. (8.115)

We can now make the approximation

Eφ ≈ O2

2m
φ, (8.116)

so that equation (8.113) can be approximated by

Eφ =
O2

2m
φ − 1

8m2c2
[O, [E ,O]]φ − O4

8m3c2
φ, (8.117)

which is valid to order c−2.
To evaluate the commutators we first need

[E ,O] = −je(∂tA + ∇V ) = jeE. (8.118)

There are no time derivatives left in this commutator, so we do achieve a sensible
non-relativistic Hamiltonian. The full commutator required in equation (8.117)
is

[O, [E ,O]] = [−j∇ − eA, jeE]

= (e∇E) − 2eE∧∇ − 2je2A∧E. (8.119)

The various operators (8.110) and (8.119) can now be substituted into equa-
tion (8.117) to yield the Pauli equation

∂φ

∂t
Iσ3 =

1
2m

(p̂ − eA)2φ + eV φ − p̂4

8m3c2
φ

− 1
8m2c2

(
e(∇E − 2E∧∇)φ − 2e2A∧EφIσ3

)
, (8.120)

which is written entirely in the geometric algebra of three-dimensional space.
In the standard approach, the geometric product in the ∇E term of equa-
tion (8.120) is split into a ‘spin-orbit’ term ∇∧E and the ‘Darwin’ term ∇ ·E.
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QUANTUM THEORY AND SPINORS

The spacetime algebra approach reveals that these terms arise from a single
source.

A similar approximation scheme can be adopted for the observables of the
Dirac theory. For example the current, ψγ0ψ̃, has a three-vector part:

J = (ψγ0ψ̃)∧γ0 = φη† + ηφ†. (8.121)

This is approximated to leading order by

J ≈ − 1
m

(〈∇φIσ3φ
†〉1 − Aφφ†), (8.122)

where the 〈 〉1 projects onto the grade-1 components of the Pauli algebra. Not
all applications of the Pauli theory correctly identify (8.122) as the conserved
current in the Pauli theory — an inconsistency first pointed out by Hestenes &
Gurtler (1971).

8.4 Central potentials

Suppose now that we restrict our discussion to problems described by a central
potential V = V (r), A = 0, where r = |x|. The full Hamiltonian, denoted H,
reduces to

j--h∂tψ = Hψ = −j∇ψ + eV (r)ψ + mψ̄. (8.123)

Quantum states are classified in terms of eigenstates of operators that commute
with the Hamiltonian H, because the accompanying quantum numbers are con-
served in time. Of particular importance are the angular-momentum operators
L̂i, defined by

L̂i = −iεijkxj∂k. (8.124)

These are the components of the bivector operator ix∧∇. We therefore define
the operators

LB = jB ·(x∧∇), (8.125)

where B is a relative bivector. Throughout this section interior and exterior
products refer to the (Pauli) algebra of space. Writing B = Iσi recovers the
component form. The LB operators satisfy the commutation relations

[LB1 , LB2 ] = −jLB1×B2 , (8.126)

where B1×B2 denotes the commutator product. The angular-momentum com-
mutation relations directly encode the bivector commutation relations, which are
those of the Lie algebra of the rotation group (see chapter 11). One naturally
expects this group to arise as it represents a symmetry of the potential.

If we now form the commutator of LB with the Hamiltonian H we obtain a
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8.4 CENTRAL POTENTIALS

result that is, initially, disconcerting. The scalar operator LB commutes with
the bar operator ψ 
→ ψ̄, but for the momentum term we find that

[B ·(x∧∇),∇] = −∇̇B ·(ẋ∧∇) = B×∇. (8.127)

The commutator does not vanish, so orbital angular momentum does not yield a
conserved quantum number in relativistic physics. But, since B×∇ = 1

2 (B∇ −
∇B), we can write equation (8.127) as

[B ·(x∧∇) − 1
2B,H] = 0. (8.128)

We therefore recover a conserved angular momentum operator by defining

JB = LB − 1
2jB. (8.129)

In conventional notation this is

Ĵi = L̂i + 1
2 Σ̂i, (8.130)

where Σ̂i = (i/2)εijkγ̂j γ̂k. The extra term of B/2 accounts for the spin-1/2
nature of Dirac particles. If we look for eigenstates of the J3 operator, we see
that the spin contribution to this is

− 1
2jIσ3ψ = 1

2σ3ψσ3. (8.131)

In the non-relativistic Pauli theory the eigenstates of this operator are simply 1
and −Iσ2, with eigenvalues ±1/2. In the relativistic theory the separate spin
and orbital operators are not conserved, and it is only the combined JB operators
that commute with the Hamiltonian.

The geometric algebra derivation employed here highlights some interesting
features. Stripping away all of the extraneous terms, the result rests solely on
the commutation properties of the B·(x∧∇) and ∇ operators. The factor of 1/2
would therefore be present in any dimension, and so has no special relation to the
three-dimensional rotation group. Furthermore, in writing JB = LB − 1

2jB we
are forming an explicit sum of a scalar and a bivector. The standard notation of
equation (8.130) encourages us to view these as the sum of two vector operators!

8.4.1 Spherical monogenics

The spherical monogenics play a key role in the solution of the Dirac equation
for problems with radial symmetry. These are Pauli spinors (even elements of
the Pauli algebra) that satisfy the eigenvalue equation

−x∧∇ψ = lψ. (8.132)

These functions arise naturally as solutions of the three-dimensional generalisa-
tion of the Cauchy–Riemann equations

∇Ψ = 0. (8.133)
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QUANTUM THEORY AND SPINORS

Solutions of this equation are known in the Clifford analysis literature as mono-
genics. Looking for solutions which separate into Ψ = rlψ(θ, φ) yields equa-
tion (8.132), where (r, θ, φ) is a standard set of polar coordinates. The solutions
of equation (8.132) are called spherical monogenics, or spin-weighted spherical
harmonics (with weight 1/2).

To analyse the properties of equation (8.132) we first note that

[JB ,x∧∇] = 0, (8.134)

which is proved in the same manner as equation (8.128). It follows that ψ

can simultaneously be an eigenstate of the x ∧ ∇ operator and one of the JB

operators. To simplify the notation we now define

Jkψ = JIσk
ψ =

(
(Iσk)·(x∧∇) − 1

2Iσk

)
ψIσ3. (8.135)

We choose ψ to be an eigenstate of J3. We label this state as ψ(l, µ), so

−x∧∇ψ(l, µ) = lψ(l, µ), J3ψ(l, µ) = µψ(l, µ). (8.136)

The Ji operators satisfy

JiJiψ(l, µ) = 3/4ψ − 2x∧∇ψ + x∧∇(x∧∇ψ)

= (l + 1/2)(l + 3/2)ψ(l, µ), (8.137)

so the ψ(l, µ) are also eigenstates of JiJi.
We next introduce the ladder operators J+ and J−, defined by

J+ = J1 + jJ2,

J− = J1 − jJ2.
(8.138)

It is a simple matter to prove the following results:

[J+, J−] = 2J3, JiJi = J−J+ + J3 + J3
2,

[J±, J3] = ∓J±, JiJi = J+J− − J3 + J3
2.

(8.139)

The raising operator J+ increases the eigenvalue of J3 by an integer. But, for
fixed l, µ must ultimately attain some maximum value. Denoting this value as
µ+, we must reach a state for which

J+ψ(l, µ+) = 0. (8.140)

Acting on this state with JiJi and using one of the results in equation (8.139)
we find that

(l + 1/2)(l + 3/2) = µ+(µ+ + 1). (8.141)

Since l is positive and µ+ represents an upper bound, it follows that

µ+ = l + 1/2. (8.142)
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8.4 CENTRAL POTENTIALS

There must similarly be a lowest eigenvalue of J3 and a corresponding state
with

J−ψ(l, µ−) = 0. (8.143)

In this case we find that

(l + 1/2)(l + 3/2) = µ−(µ− − 1), (8.144)

hence µ− = −(l +1/2). The spectrum of eigenvalues of J3 therefore ranges from
(l + 1/2) to −(l + 1/2), a total of 2(l + 1) states. Since the J3 eigenvalues are
always of the form (integer +1/2), it is simpler to label the spherical monogenics
with a pair of integers. We therefore write the spherical monogenics as ψm

l ,
where

−x∧∇ψm
l = lψm

l l ≥ 0 (8.145)

and

J3ψ
m
l = (m + 1

2 )ψm
l − 1 − l ≤ m ≤ l. (8.146)

To find an explicit form for the ψm
l we first construct the highest m case. This

satisfies

J+ψl
l = 0 (8.147)

and it is not hard to see that this equation is solved by

ψl
l ∝ sinl(θ) e−lφIσ3 . (8.148)

This is the angular part of the monogenic function (x + yIσ3)l. Introducing a
convenient factor, we write

ψl
l = (2l + 1)P l

l (cos(θ)) elφIσ3 . (8.149)

Our convention for the associated Legendre polynomials follows Gradshteyn &
Ryzhik (1994), so we have

Pm
l (x) =

(−1)m

2ll!
(1 − x2)m/2 dl+m

dxl+m
(x2 − 1)l. (8.150)

(Some useful recursion relations for the associated Legendre polynomials are
discussed in the exercises.) The lowering operator J− has the following effect
on ψ:

J−ψ =
(
−∂θψ + cot(θ) ∂φψIσ3

)
e−φIσ3 − Iσ2

1
2 (ψ + σ3ψσ3). (8.151)

The final term just projects out the {1, Iσ3} terms and multiplies them by −Iσ2.
This is the analog of the lowering matrix in the standard formalism. The deriv-
atives acting on ψl

l form(
−∂θψ

l
l + cot(θ) ∂φψl

lIσ3

)
e−φIσ3 = (2l + 1)2lP l−1

l (cos(θ))e(l − 1)φIσ3 , (8.152)
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and, if we use the result that

σφ = σ2eφIσ3 , (8.153)

we find that

ψl−1
l ∝

(
2lP l−1

l (cos(θ)) − P l
l (cos(θ))Iσφ

)
e(l − 1)φIσ3 . (8.154)

Proceeding in this manner, we are led to the following formula for the spherical
monogenics:

ψm
l =

(
(l + m + 1)Pm

l (cos(θ)) − Pm+1
l (cos(θ))Iσφ

)
emφIσ3 , (8.155)

in which l is a positive integer or zero, m ranges from −(l + 1) to l and the Pm
l

are taken to be zero if |m| > l. The positive- and negative-m states are related
by

P−m
l (x) = (−1)m (l − m)!

(l + m)!
Pm

l (x), (8.156)

from which it can be shown that

ψm
l (−Iσ2) = (−1)m (l + m + 1)!

(l − m)!
ψ
−(m+1)
l . (8.157)

The spherical monogenics presented here are unnormalised. Normalisation fac-
tors are not hard to compute, and we find that∫ π

0

dθ

∫ 2π

0

dφ sin(θ)ψm
l ψm

l
† = 4π

(l + m + 1)!
(l − m)!

. (8.158)

If σr denotes the unit radial vector, σr = x/r we find that

x∧∇σr = 2σr. (8.159)

It follows that

−x∧∇(σrψσ3) = −(l + 2)σrψσ3, (8.160)

which provides an equation for the negative-l eigenstates. The possible eigenval-
ues and degeneracies are summarised in Table 8.2. One curious feature of this
table is that we appear to be missing a line for the eigenvalue l = −1. In fact
solutions for this case do exist, but they contain singularities which render them
unnormalisable. For example, the functions

Iσφ

sin(θ)
, and

e−Iσ3φ

sin(θ)
(8.161)

have l = −1 and J3 eigenvalues +1/2 and −1/2 respectively. Both solutions are
singular along the z axis, however, which limits their physical relevance.
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l Eigenvalues of J3 Degeneracy

...
...

...
2 5/2, . . . ,−5/2 6
1 3/2, . . . ,−3/2 4
0 1/2, . . . ,−1/2 2

(−1) ? ?
−2 1/2, . . . ,−1/2 2
...

...
...

Table 8.2 Eigenvalues and degeneracies for the ψm
l monogenics.

8.4.2 The radial equations

We can use the angular monogenics to construct eigenfunctions of the Dirac
Hamiltonian of equation (8.123). Since the JB operators commute with H, ψ

can be placed in an eigenstate of J3. The operator JiJi must also commute with
H, so (l+1/2)(l+3/2) is a good quantum number. The operator x∧∇ does not
commute with H, however, so both the ψm

l and σrψ
m
l σ3 monogenics are needed

in the solution. While x∧∇ does not commute with H, the operator

K̂ = γ̂0(1 − x∧∇) (8.162)

does, as follows from

[γ̂0(1 − x∧∇),∇] = 2γ̂0∇ − γ̂0∇̇ẋ∧∇ = 0. (8.163)

We should therefore work with eigenstates of the K̂ operator. This implies that
ψ(x) can be written for positive l as either

ψ(x, l + 1) = ψm
l u(r) + σrψ

m
l v(r)Iσ3 (8.164)

or

ψ(x,−(l + 1)) = σrψ
m
l σ3u(r) + ψm

l Iv(r). (8.165)

In both cases the second label in ψ(x, l + 1) specifies the eigenvalue of K̂. It is
useful to denote this by κ, so we have

K̂ψ = κψ, κ = . . . ,−2,−1, 1, 2, . . . (8.166)

and κ is a non-zero positive or negative integer.
In equations (8.164) and (8.165) the radial functions u(r) and v(r) are ‘com-

plex’ combinations of 1 and Iσ3. In the case of the Hamiltonian of (8.123), with
V (r) real, it turns out that the real and imaginary equations decouple, and it is
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sufficient to treat u(r) and v(r) as real, scalar quantities. On substituting our
trial functions into the Hamiltonian, we find that the radial equations reduce to(

u′

v′

)
=
(

(κ − 1)/r −(E − eV (r) + m)
E − eV (r) − m (−κ − 1)/r

)(
u

v

)
. (8.167)

The same equation holds for all values of κ. This successfully separates the Dirac
equation in any radially-symmetric potential. As one might expect, we arrive
at a pair of coupled first-order equations, as opposed to the single second-order
equation familiar from Schrödinger theory.

8.4.3 The hydrogen atom

The radial equations describing the relativistic quantum theory of the hydrogen
atom are obtained simply by setting eV = −Zα/r, where α = e2/4π is the fine
structure constant and Z is the atomic charge. The solution of the radial equa-
tions is described in most textbooks on relativistic quantum mechanics. The
conclusion is that the radial dependence is governed by a pair of hypergeomet-
ric functions, which generalise the Laguerre polynomials of the non-relativistic
theory. Rather than reproduce the analysis here, we instead present a more
direct method of solving the equations, first given by Eddington (1936) in his
unconventional Relativity Theory of Protons and Electrons.

We start with the equation

−j∇ψ − Zα

r
ψ + mγ̂0ψ = Eψ. (8.168)

We assume that ψ is in an eigenstate of K̂, so we can write

x∧∇ψ = ψ − κγ̂0ψ. (8.169)

We now pre-multiply the Dirac equation by jx and rearrange to find

r∂rψ + ψ − κγ̂0ψ = jx

(
E +

Zα

r

)
ψ − jmxγ̂0ψ. (8.170)

On introducing the reduced function Ψ = rψ the equation simplifies to

∂rΨ = jσr(E − mγ̂0)Ψ +
1
r
(jZασr + κγ̂0)Ψ. (8.171)

We accordingly define the two operators

F̂ = −jσr(E − mγ̂0), Ĝ = −(jZασr + κγ̂0), (8.172)

so that the Dirac equation reduces to

∂rΨ +

(
F̂ +

Ĝ

r

)
Ψ = 0. (8.173)
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The F̂ and Ĝ operators satisfy

F̂ 2 = m2 − E2 = f2,

Ĝ2 = κ2 − (Zα)2 = ν2,
(8.174)

which define f and ν. The operators also satisfy the anticommutation relation

F̂ Ĝ + ĜF̂ = −2ZαE. (8.175)

The next step is to transform to the dimensionless variable x = fr and remove
the large-x behaviour by setting

Ψ = Φe−x. (8.176)

The function Φ now satisfies

∂xΦ +
Ĝ

x
Φ +

( F̂

f
− 1
)
Φ = 0. (8.177)

We are now in a position to consider a power series solution, so we set

Φ = xs
∑
n=0

Cnxn, (8.178)

where the Cn are all multivectors. (In Eddington’s original notation these are
his ‘e-numbers’.) The recursion relation is first-order and is given simply by

(n + s + Ĝ)Cn = −
(

F̂

f
− 1

)
Cn−1. (8.179)

Setting n = 0 we see that (
s + Ĝ

)
C0 = 0. (8.180)

Acting on this equation with the operator
(
s − Ĝ

)
we see that we must have

s2 = Ĝ2 = ν2. We set s = ν in order that the wavefunction is well behaved at
the origin.

With the small and large x behaviour now separated out, all that remains
is the power series. One can show that, in order for ψ to fall to zero at large
distances, the series must terminate. We therefore set Cn+1 = 0, and it follows
that (

F̂

f
− 1

)
Cn = 0, or F̂Cn = fCn. (8.181)

But we also have(
F̂

f
+ 1

)
(n + ν + Ĝ)Cn = −

(
F̂

f
+ 1

)(
F̂

f
− 1

)
Cn−1 = 0, (8.182)
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so (
2(n + ν) + Ĝ +

F̂

f
Ĝ

)
Cn = 0. (8.183)

If we write this as (
2(n + ν) +

1
f

(ĜF̂ + F̂ Ĝ)
)

Cn = 0, (8.184)

we find that we must have

n + ν − ZαE

f
= 0. (8.185)

This is precisely our energy quantisation condition. The equation is equivalent
to

E

(m2 − E2)1/2
=

n + ν

Zα
, (8.186)

which rearranges to the standard formula

E2 = m2

(
1 − (Zα)2

n2 + 2nν + κ2

)
, (8.187)

where n is a non-negative integer.
The non-relativistic formula for the energy levels is recovered by first recalling

that α ≈ 1/137 is small. We can therefore approximate to

ν ≈ |κ| = l + 1, (8.188)

where l ≥ 0 and

E ≈ m

(
1 − (Zα)2

2
1

n2 + 2n(l + 1) + (l + 1)2

)
. (8.189)

Subtracting off the rest mass energy we are left with the non-relativistic expres-
sion

ENR = −m
(Zα)2

2
1

(n + l + 1)2
= − mZ2e4

32π2ε20
--h2

1
n′2 , (8.190)

where n′ = n + l + 1 and the dimensional constants have been reinserted. We
have recovered the familiar Bohr formula for the energy levels. This derivation
shows that the relativistic quantum number n differs from the Bohr quantum
number n′.

Expanding to next order we find that

ENR = −m
(Zα)2

2n′2 − m
(Zα)4

2n′4

(
n′

l + 1
− 3

4

)
. (8.191)

The first relativistic correction shows that the binding energy is increased slightly
from the non-relativistic value, and also introduces some dependence on the
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Energy

1S1/2

2S1/2
2P1/2

2P3/2

3S1/2 3P1/2

3P3/2 3D3/2

3D5/2

Hyperfine structure

Fine structure

Lamb shift

Figure 8.3 Hydrogen atom energy levels. The diagram illustrates how
various degeneracies are broken by relativistic and spin effects. The Dirac
equation accounts for the fine structure. The hyperfine structure is due to
interaction with the magnetic moment of the nucleus. The Lamb shift is
explained by quantum field theory. It lifts the degeneracy between the S1/2

and P1/2 states.

angular quantum number l. This lifts some degeneracies present in the non-
relativistic solution. The various corrections contributing to the energy levels
are shown in figure 8.3. A more complete analysis also requires replacing the
electron mass m by the reduced mass of the two-body system. This introduces
corrections of the same order of the relativistic corrections, but only affects the
overall scale.

8.5 Scattering theory

Many of the experimental tests of Dirac theory, and quantum electrodynamics
in general, are based on the results of scattering. Here we see how our new
formulation can help to simplify these calculations through its handling of spin.
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To aid this analysis it is useful to introduce the energy projection operators

Λ±ψ =
1

2m
(mψ ± pψγ0), (8.192)

which project onto particle and antiparticle states.
A key role in relativistic quantum theory is played by Feynman propagators,

which provide a means of imposing causal boundary conditions. We start by
replacing the Dirac equation with the integral equation

ψ(x) = ψi(x) + e

∫
d4x′ SF (x − x′)A(x′)ψ(x′)γ0, (8.193)

where ψi(x) is the asymptotic in-state and solves the free-particle equation, and
SF (x − x′) is the propagator. Substituting (8.193) into the Dirac equation, we
find that SF (x − x′) must satisfy

j∇xSF (x − x′)ψ(x′)γ0 − mSF (x − x′)ψ(x′) = δ4(x − x′)ψ(x′). (8.194)

The solution to this equation is

SF (x − x′)ψ(x′) =
∫

d4p

(2π)4
pψ(x′)γ0 + mψ(x′)

p2 − m2 + jε
e−jp·(x − x′). (8.195)

The factor of jε is a mnemonic device to tell us how to negotiate the poles in the
complex energy integral, which is performed first. The factor ensures positive-
frequency waves propagate into the future (t > t′) and negative-frequency waves
propagate into the past (t′ > t). The result of performing the energy integration
is summarised in the expression

SF (x) = −2mj

∫
d3p

(2π)3
1

2E

(
θ(t)Λ+e−jp·x + θ(−t)Λ−ejp·x

)
, (8.196)

where E = +
√

p2 + m2.
There are other choices of relativistic propagator, which may be appropriate

in other settings. For classical electromagnetism, for example, it is necessary to
work with retarded propagators. If one constructs a closed spacetime surface
integral, with boundary conditions consistent with the field equations, then the
choice of propagator is irrelevant, since they all differ by a spacetime monogenic
function. In most applications, however, we do not work like this. Instead we
work with initial data, which we seek to propagate to a later time in such a way
that the final result is consistent with imposing causal boundary conditions. In
this case one has to use the Feynman propagator for quantum fields.
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8.5 SCATTERING THEORY

8.5.1 Electron scattering

In scattering calculations we write the wavefunction as the sum of an incoming
plane wave and a scattered beam,

ψ(x) = ψi(x) + ψdiff (x). (8.197)

At asymptotically large times ψdiff is given by

ψdiff (x) = −2mje

∫
d4x′

∫
d3p

(2π)3
1

2E
Λ+

(
A(x′)ψ(x′)γ0

)
e−jp·(x − x′). (8.198)

This can be written as a sum over final states

ψdiff (x) =
∫

d3pf

(2π)3
1

2Ef
ψfe−jpf ·x, (8.199)

where the final states are plane waves with

ψf = −je

∫
d4x′(pfA(x′)ψ(x′) + mA(x′)ψ(x′)γ0

)
ejpf ·x′

. (8.200)

The number of scattered particles is given by (recalling that J = ψγ0ψ̃)

∫
d3x γ0 ·Jdiff =

∫
d3pf

(2π)3
1

2Ef

(
γ0 ·Jf

2Ef

)
=
∫

d3pf

(2π)3
1

2Ef
Nf , (8.201)

where Nf is the number density per Lorentz-invariant phase space interval:

Nf =
γ0 ·Jf

2Ef
=

γ0 ·(ψfγ0ψ̃f )
2Ef

=
ρf

2m
. (8.202)

The integral equation (8.193) is the basis for a perturbative approach to solving
the Dirac equation in an external field. We seek the full propagator SA which
satisfies(

j∇2 − eA(x2)
)
SA(x2, x1)γ0 − mSA(x2, x1) = δ4(x2 − x1). (8.203)

The iterative solution to this is provided by

SA(xf , xi) = SF (xf − xi) +
∫

d4x1 SF (xf − x1)eÂ(x1)SF (x1 − xi)

+
∫∫

d4x1 d4x2 SF (xf − x1)eÂ(x1)SF (x1 − x2)eÂ(x2)SF (x2 − xi) + · · · ,

(8.204)

which is the basis for a diagrammatic representation of a scattering calculation.
In the Born approximation we work to first order and truncate the series for SA
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QUANTUM THEORY AND SPINORS

after the first interaction term. Assuming incident plane waves of momentum
pi, so that ψi(x) = ψi exp(−jpi ·x), we find that the final states become

ψf = −je

∫
d4x′ (pfA(x′) + A(x′)pi

)
ψiejq ·x′

= −je
(
pfA(q) + A(q)pi

)
ψi, (8.205)

where q = pf −pi is the change in momentum, and A(q) is the Fourier transform
of the electromagnetic potential. The form of the result here is quite typical,
and in general we can write

ψf = Sfiψi, (8.206)

where Sfi is the scattering operator. This is a multivector that takes initial states
into final states. Since both ψi and ψf are plane-wave particle states, we must
have

SfiS̃fi = ρfi, (8.207)

where ρfi is a scalar quantity (which determines the cross section). We can
therefore decompose Sfi as

Sfi = ρ
1/2
fi Rfi, (8.208)

where Rfi is a rotor. This rotor takes the initial momentum to the final momen-
tum,

RfipiR̃fi = pf . (8.209)

8.5.2 Spin effects in scattering

The multivector Sfi depends on the initial and final momenta and, in some cases,
the initial spin. The final spin is determined from the initial spin by the rotation
encoded in Sfi. If si and sf denote the initial and final (unit) spin vectors, we
have

sf = RfisiR̃fi. (8.210)

Sometimes it is of greater interest to separate out the boost terms in Rfi to
isolate a pure rotation in the γ0 frame. This tells us directly what happens to
the spin vector in the electron’s rest frame. With Li and Lf the appropriate
pure boosts, we define the rest spin scattering operator

Ufi = L̃fRfiLi. (8.211)

This satisfies

Ufiγ0Ũfi =
1
m

L̃fRfipiR̃fiLf = γ0, (8.212)

so is a pure rotation in the γ0 frame.
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8.5 SCATTERING THEORY

The fact that pfSfi = Sfipi ensures that Sfi is always of the form

Sfi = −j(pfM + Mpi), (8.213)

where M is an odd-grade multivector. In the Born approximation of equa-
tion (8.205), for example, we have M = eA(q). In general, M can contain both
real and imaginary terms, so we must write

Sfiψi = −j
(
pf (Mr + jMj) + (Mr + jMj)pi

)
ψi, (8.214)

where Mj and Mr are independent of j. We can now use

jψi = ψiIσ3 = Ŝiψi, (8.215)

where Ŝi is the initial unit spin bivector. Since Ŝi and pi commute, Sfi can still
be written in the form of equation (8.213), with

M = Mr + MjŜi. (8.216)

So M remains a real multivector, which now depends on the initial spin. This
scheme is helpful if we are interested in any spin-dependent features of the scat-
tering process.

8.5.3 Positron scattering and pair annihilation

Adapting the preceding results to positron scattering is straightforward. In this
case a negative-energy plane wave arrives from the future and scatters into the
past, so we set

ψi(x) = ψ2ejpi ·x, ψf (x) = ψfejpf ·x. (8.217)

In this case repeating the analysis gives

Sfiψi = −j(−pfMψi + Mψiγ0), (8.218)

which we can write as

Sfi = j(pfM + Mpi). (8.219)

This amounts to simply swapping the sign of Sfi. In the Born approximation,
q is replaced by −q in the Fourier transform of A(x), which will alter the factor
M if A(x) is complex.

The other case to consider is when the incoming electron is scattered into the
past, corresponding to pair annihilation. In this case we have

Sfi = −j(−p2M + Mp1), (8.220)

where p1 and p2 are the incoming momenta of the electron and positron respec-
tively. We decompose Sfi as

Sfi = ρ
1/2
fi IRfi, (8.221)
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QUANTUM THEORY AND SPINORS

since Sfi must now contain a factor of I to map electrons into positrons. This
form for Sfi implies that

SfiS̃fi = −ρfi. (8.222)

The minus sign reflects the fact that the transformation between initial and final
momenta is not proper orthochronous.

8.5.4 Cross sections

We must now relate our results to the cross sections measured in experiments.
The scattering rate into the final states, per unit volume, per unit time, is given
by

Wfi =
1

V T
Nf =

1
V T

γ0 ·Jf

2Ef
=

ρf

2mV T
, (8.223)

where V and T denote the total volume and time respectively. The density ρf

is given by

ρf = |SfiS̃fi|ρi = ρfiρi. (8.224)

Here SfiS̃fi = ±ρfi, where the plus sign corresponds to electron to electron
and positron to positron scattering, and the minus sign to electron–positron
annihilation.

The differential cross section is defined as

dσ =
Wfi

target density × incident flux
. (8.225)

When Sfi is of the form

Sfi = −j(2π)4δ4(Pf − Pi)Tfi, (8.226)

where the δ-function ensures conservation of total momentum, we have

|Sfi|2 = V T (2π)4δ4(Pf − Pi)|Tfi|2. (8.227)

Working in the Ji frame the target density is just ρi so, writing the incident flux
as χ, we have

dσ =
1

2mχ
(2π)4δ4(Pf − Pi)|Tfi|2. (8.228)

Alternatively we may be interested in an elastic scattering with just energy
conservation (Ef = Ei) and

Sfi = −j2πδ(Ef − Ei)Tfi. (8.229)

In this case

|Sfi|2 = 2πTδ(Ef − Ei)|Tfi|2. (8.230)

302

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.010
https:/www.cambridge.org/core


8.5 SCATTERING THEORY

A target density of 1/V and an incident flux of |J i| = ρi|pi|/m then gives

dσ =
π

|pi|
δ(Ef − Ei)|Tfi|2. (8.231)

The total cross section is obtained by integrating over the available phase space.
For the case of a single particle scattering elastically we find that

σ =
∫

d3pf

(2π)3
1

2Ef

π

|pi|
δ(Ef − Ei)|Tfi|2 =

∫
dΩ

|Tfi|2
16π2

. (8.232)

This is usually expressed in terms of the differential cross section per solid angle:

dσ

dΩf
=

|Tfi|2
16π2

. (8.233)

8.5.5 Coulomb scattering

As an application of our formalism consider Coulomb scattering from a nucleus,
with the external field defined by

A(x) =
−Ze

4π|x|γ0. (8.234)

Working with the first Born approximation, M is given by M = eA(q), where
A(q) is the Fourier transform of A(x) given by

A(q) = −2πZe

q2
δ(Ef − Ei)γ0 (8.235)

and q ·γ0 = Ef − Ei. Writing

Sfi = −j2πδ(Ef − Ei)Tfi (8.236)

and using energy conservation we find that

Tfi = −Ze2

q2
(2E + q). (8.237)

The cross section is therefore given by the Mott scattering formula:

dσ

dΩf
=

Z2α2

q4
(4E2 − q2) =

Z2α2

4p2β2 sin4(θ/2)

(
1 − β2 sin2(θ/2)

)
, (8.238)

where

q2 = (pf − pi)
2 = 2p2

(
1 − cos(θ)

)
and β = |p|/E. (8.239)

The angle θ measures the deviation between the incoming and scattered beams.
In the low velocity limit the Mott result reduces to the Rutherford formula.
The result is independent of the sign of the nuclear charge and, to this order, is
obtained for both electron and positron scattering.
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QUANTUM THEORY AND SPINORS

A significant feature of this derivation is that no spin sums are required. In-
stead, all the spin dependence is contained in the directional information in Tfi.
As well as being computationally more efficient, this method for organising cross
section calculations offers deeper insights into the structure of the theory. For
Coulomb scattering the spin information is contained in the rotor

Rfi =
pfγ0 + γ0pi

4E2 − q2
∝ L2

f + L̃2
i , (8.240)

where Lf and Li are the pure boosts from γ0 to pf and pi respectively. The
behaviour of the rest spin is governed by the unnormalised rotor

Ufi = L̃f (L2
f + L̃2

i )Li = LfLi + L̃f L̃i,= 2
(
(E + m)2 + pfpi

)
. (8.241)

It follows that the rest-spin vector precesses in the pf∧pi plane through an angle
δ, where

tan(δ/2) =
sin(θ)

(E + m)/(E − m) + cos(θ)
. (8.242)

This method of calculating the spin precession for Coulomb scattering was first
described by Hestenes (1982a).

8.5.6 Compton scattering

Compton scattering is the process in which an electron scatters off a photon. To
lowest order there are two Feynman diagrams to consider, shown in figure 8.4.
The preceding analysis follows through with little modification, and gives rise
two terms of the form

M1 = e2

∫∫
d4x1 d4x2

d4p

(2π)4
A1(x1)

pA2(x2) + A2(x2)pi

p2 − m2 + jε

× ejx1 ·(pf − p)ejx2 ·(p − pi), (8.243)

where

A(x) = εe∓jk·x (8.244)

is the (complex) vector potential. The vector ε denotes the polarisation state,
so k ·ε = 0 and ε2 = −1. In relativistic quantum theory there appears to be no
alternative but to work with a fully complex vector potential.

Performing the integrations and summing the two contributions we arrive at

M = e2(2π)4δ4(P )
(

εf
(pi + ki)εi + εipi

2ki ·pi
− εi

(pi − kf )εf + εfpi

2pi ·kf

)
, (8.245)

where P = pf + kf − pi − ki, so that the δ-function enforces momentum conser-
vation. Gauge invariance means that we can set pi·εi = pi·εf = 0, in which case
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pipi pfpf

kiki kfkf

Figure 8.4 Compton scattering. Two diagrams contribute to the ampli-
tude, to lowest order.

M simplifies to

M = e2(2π)4δ4(pf + kf − pi − ki)
(

εfkiεi

2ki ·pi
+

εikf εf

2pi ·kf

)
. (8.246)

We now set

Sfi = −j(2π)4δ4(pf + kf − pi − ki)Tfi, (8.247)

so that the cross section is given by equation (8.228). After a little work, and
making use of momentum conservation, we find that

|Tfi|2 = e4

(
4(εi ·εf )2 − 2 +

pi ·kf

pi ·ki
+

pi ·ki

pi ·kf

)
. (8.248)

This is all that is required to calculate the cross section in any desired frame.
Again, this derivation applies regardless of the initial electron spin.

The same scheme can be applied to a wide range of relativistic scattering
problems. In all cases the spacetime algebra formulation provides a simpler and
clearer method for handling the spin, as it does not force us to work with a
preferred basis set. In section 14.4.1 the same formalism is applied to scattering
from a black hole. At some point, however, it is necessary to face questions of
second quantisation and the construction of a relativistic multiparticle quantum
theory. This is discussed in the following chapter.

8.6 Notes

A significant amount of new notation was introduced in this chapter, relating
to how spinors are handled in spacetime algebra. Much of this is important in
later chapters, and the most useful results of this approach are summarised in
table 8.3.

Quantum mechanics has probably been the most widely researched applica-
tion of geometric algebra to date. Many authors have carried out investigations
into whether the spacetime algebra formulation of Dirac theory offers any deeper
insights into the nature of quantum theory. Among the most interesting of these
are Hestenes’ work on zitterbewegung (1990), and his comments on the nature
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Pauli spinors |ψ〉 =

(
a0 + ia3

−a2 + ia1

)
↔ ψ = a0 + akIσk

Pauli operators
σ̂k|ψ〉 ↔ σkψσ3

i|ψ〉 ↔ ψIσ3 = jψ

〈ψ|ψ′〉 ↔ 〈ψ†ψ′〉q = 1
2
(ψ†ψ′ + σ3ψ

†ψ′σ3)

Pauli observables
ρ = ψψ†

s = 1
2
ψσ3ψ

†

Dirac spinors

(
|φ〉
|η〉

)
↔ ψ = φ + ησ3

Dirac operators

γ̂µ|ψ〉 ↔ γµψγ0

j|ψ〉 ↔ ψiσ3

γ̂5|ψ〉 ↔ ψσ3

〈ψ̄|ψ′〉 ↔ 〈ψ̃ψ′〉q

Dirac equation ∇ψIσ3 − eAψ = mψγ0

Dirac observables
ρeiβ = ψψ̃ J = ψγ0ψ̃

S = ψiσ3ψ̃ s = ψγ3ψ̃

Plane-wave states

ψ(+)(x) = L(p)Φe−iσ3p·x

ψ(−)(x) = L(p)Φσ3e
iσ3p·x

L(p) = (pγ0 + m)/
√

2m(E + m)

Table 8.3 Quantum states and operators. This table summarises the main
features of the spacetime algebra representation of Pauli and Dirac spinors
and operators.

of the electroweak group (1982b). Many authors have advocated spacetime al-
gebra as a better computational tool for Dirac theory than the explicit matrix
formulation (augmented with various spin sum rules). A summary of these ideas
is contained in the paper ‘Electron scattering without spin sums’ by Lewis et
al. (2001). Elsewhere, a similar approach has been applied to modelling a spin
measurement (Challinor et al. 1996) and to the results of tunnelling experiments
(Gull et al. 1993b). Much of this work is summarised in the review ‘Spacetime
algebra and electron physics’ by Doran et al. (1996b).

There is no shortage of good textbooks describing standard formulations of
Dirac theory and quantum electrodynamics. We particularly made use of the
classic texts by Itzykson & Zuber (1980), and Bjorken & Drell (1964). For a
detailed exposition of the solution of the Dirac equation in various backgrounds
one can do little better than Greiner’s Relativistic Quantum Mechanics (1990).
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8.7 EXERCISES

Also recommended is Grandy’s Relativistic Quantum Mechanics of Leptons and
Fields (1991) which, unusually, does not shy away from the more problematic
areas of the conceptual foundations of quantum field theory.

8.7 Exercises

8.1 The spin matrix operators ŝk are defined as a set of 2 × 2 Hermitian
matrices satisfying the commutation relations [ŝi, ŝj ] = i--hεijkŝk. Given
that ŝ3 is defined by

ŝ3 = λ

(
1 0
0 −1

)
,

show that the remaining matrices are unique, up to an overall choice
of phase. Find λ and show that we can choose the phase such that
ŝk = --h/2 σ̂k.

8.2 Verify that the equivalence between Pauli spinors and even multivectors
defined in equation (8.20) is consistent with the operator equivalences

σ̂k|ψ〉 ↔ σkψσ3 (k = 1, 2, 3).

8.3 Suppose that two spin-1/2 states are represented by the even multivec-
tors φ and ψ, and the accompanying spin vectors are

s1 = φσ3φ̃ and s2 = ψσ3ψ̃.

Prove that the quantum mechanical formula for the probability of mea-
suring state φ in state ψ satisfies

P =
|〈φ|ψ〉|2

〈φ|φ〉〈ψ|ψ〉 = 1
2

(
1 + cos(θ)

)
where θ is the angle between s1 and s2.

8.4 Verify that the Pauli inner product is invariant under both spatial rota-
tions and gauge transformations (i.e. rotations in the Iσ3 plane applied
to the right of the spinor ψ). Repeat the analysis for Dirac spinors.

8.5 Prove that the angular momentum operators LB = jB ·(x∧∇) satisfy

[LB1 , LB2 ] = −jLB1×B2 .

8.6 Prove that, in any dimension,

[B ·(x∧∇) − 1
2B,∇] = 0,

where B is a bivector.
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8.7 The Majorana representation is defined in terms of a set of real matrices.
Prove that the complex conjugation operation in this representation has
the spacetime algebra equivalent

|ψ〉∗Maj ↔ ψσ2.

Confirm that this anticommutes with the operation of multiplying by
the imaginary.

8.8 Prove that the associated Legendre polynomials satisfy the following
recursion relations:

(1 − x2)
dPm

l (x)
dx

+ mxPm
l (x) = −(1 − x2)1/2Pm+1

l (x),

(1 − x2)
dPm

l (x)
dx

− mxPm
l (x) = (1 − x2)1/2(l + m)(l − m + 1)Pm−1

l (x).

8.9 Prove that the spherical monogenics satisfy∫
dΩ 〈ψm

l
†ψm′

l′ 〉q = δmm′
δll′4π

(l + m + 1)!
(l − m)!

.

8.10 From the result of equation (8.248), show that the cross section for
scattering of a photon of a free electron (initially at rest) is determined
by the Klein–Nishina formula

dσ

dΩ
=

α2

4m2

(
ωf

ωi

)2(
ωf

ωi
+

ωi

ωf
+ 4(εf ·εi)2 − 2

)
.
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9

Multiparticle states and
quantum entanglement

The previous chapter dealt with the quantum theory of single particles in a
background field. In this chapter we turn to the study of multiparticle quantum
theory. In many ways, this subject is even more strange than the single-particle
theory, as it forces us to face up to the phenomenon of quantum entanglement.
The basic idea is simple enough to state. The joint state of a two-particle system
is described by a tensor product state of the form |ψ〉 ⊗ |φ〉. This is usually
abbreviated to |ψ〉|φ〉. Quantum theory allows for linear complex superpositions
of multiparticle states, which allows us to consider states which have no classical
counterpart. An example is the spin singlet state

|ε〉 =
1√
2

(
|0〉|1〉 − |1〉|0〉

)
. (9.1)

States such as these are referred to as being entangled. The name reflects the
fact that observables for the two particles remain correlated, even if measure-
ments are performed in such a way that communication between the particles
is impossible. The rapidly evolving subject of quantum information processing
is largely concerned with the properties of entangled states, and the prospects
they offer for quantum computation.

Quantum entanglement is all around us, though rarely in a form we can exploit.
Typically, a state may entangle with its environment to form a new pure state.
(A pure state is one that can be described by a single wavefunction, which may
or may not be entangled.) The problem is that our knowledge of the state of
the environment is highly limited. All we can measure are the observables of our
initial state. In this case the wavefunction formulation is of little practical value,
and instead we have to consider equations for the evolution of the observables
themselves. This is usually handled by employing a representation in terms of
density matrices. These lead naturally to concepts of quantum statistical physics
and quantum definitions of entropy.
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MULTIPARTICLE STATES AND QUANTUM ENTANGLEMENT

In this chapter we explore how these concepts can be formulated in the lan-
guage of geometric algebra. One of the essential mysteries of quantum theory
is the origin of this tensor product construction. The tensor product is used in
constructing both multiparticle states and many of the operators acting on these
states. So the first challenge is to find a representation of the tensor product
in terms of the geometric product. This is surprisingly simple to do, though
only once we have introduced the idea of a relativistic configuration space. The
geometric algebra of such a space is called the multiparticle spacetime algebra
and it provides the ideal algebraic structure for studying multiparticle states
and operators. This has applications in a wealth of subjects, from NMR spec-
troscopy to quantum information processing, some of which are discussed below.
Most of these applications concern non-relativistic multiparticle quantum me-
chanics. Later in this chapter we turn to a discussion of the insights that this
new approach can bring to relativistic multiparticle quantum theory. There we
find a simple, geometric encoding of the Pauli principle, which opens up a route
through to the full quantum field theory.

9.1 Many-body quantum theory

In order to set the context for this chapter, we start with a review of the basics
of multiparticle quantum theory. We concentrate in particular on two-particle
systems, which illustrate many of the necessary properties. The key concept
is that the quantum theory of n-particles is not described by a set of n single
wavefunctions. Instead, it is described by one wavefunction that encodes the
entire state of the system of n particles. Unsurprisingly, the equations governing
the evolution of such a wavefunction can be extraordinarily complex.

For a wide range of problems one can separate position degrees of freedom
from internal (spin) degrees of freedom. This is typically the case in non-
relativistic physics, particularly if the electromagnetic field can be treated as
constant. In this case the position degrees of freedom are handled by the many-
body Schrödinger equation. The spin degrees of freedom in many ways represent
a cleaner system to study, as they describe the quantum theory of n two-state
systems. This illustrates the two most important features of multiparticle quan-
tum theory: the exponential increase in the size of state space, and the existence
of entangled states.

9.1.1 The two-body Schrödinger equation

Two-particle states are described by a single wavefunction ψ(r1, r2). The joint
vectors (r1, r2) define an abstract six-dimensional configuration space over which
ψ defines a complex-valued function. This sort of configuration space is a useful
tool in classical mechanics, and in quantum theory it is indispensable. The
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9.1 MANY-BODY QUANTUM THEORY

kinetic energy operator is given by the sum of the individual operators:

K̂ = −
--h2∇2

1

2m1
−

--h2∇2
2

2m2
. (9.2)

The subscripts refer to the individual particles, and mi is the mass of particle i.
The two-particle Schrödinger equation is now

i--h
∂ψ

∂t
= −

--h2∇2
1

2m1
ψ −

--h2∇2
2

2m2
ψ + V (r1, r2)ψ. (9.3)

As a simple example, consider the bound state Coulomb problem

−
--h2∇2

1

2m1
ψ −

--h2∇2
2

2m2
ψ − q1q2

4πε0r
ψ = Eψ, (9.4)

where r is the Euclidean distance between the points r1 and r2. This problem is
separated in a similar manner to the classical Kepler problem (see section 3.2).
We introduce the vectors

r = r1 − r2,
R

µ
=

r1

m1
+

r2

m2
, (9.5)

where µ is the reduced mass. In terms of these new variables the Schrödinger
equation becomes

−
--h2∇2

r

2µ
ψ −

--h2∇2
R

2M
ψ − q1q2

4πε0r
ψ = Eψ. (9.6)

We can now find separable solutions to this equation by setting

ψ(r1, r2) = φ(r)Ψ(R). (9.7)

The wavefunction Ψ satisfies a free-particle equation, which corresponds classi-
cally to the motion of the centre of mass. The remaining term, φ(r), satisfies
the equivalent single-particle equation, with the mass given by the reduced mass
of the two particles.

This basic example illustrates how quantum mechanics accounts for multipar-
ticle interactions. There is a single wavefunction, which simultaneously accounts
for the properties of all of the particles. In many cases this wavefunction de-
composes into the product of a number of simpler wavefunctions, but this is not
always the case. One can construct states that cannot be decomposed into a
single direct product state. An important example of this arises when the two
particles in question are identical. In this case one can see immediately that if
ψ(r1, r2) is an eigenstate of a two-particle Hamiltonian, then so to is ψ(r2, r1).
The operator that switches particle labels like this is called the particle inter-
change operator P̂ , and it commutes with all physically-acceptable Hamiltonians.
Since it commutes with the Hamiltonian, and squares to the identity operation,
there are two possible eigenstates of P̂ . These are

ψ± = ψ(r1, r2) ± ψ(r2, r1). (9.8)
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MULTIPARTICLE STATES AND QUANTUM ENTANGLEMENT

These two possibilities are the only ones that arise physically, and give rise to the
distinction between fermions (minus sign) and bosons (plus sign). Here we see
the first indications of some new physical possibilities entering in multiparticle
interactions. Quantum theory remains linear, so one can form complex super-
positions of the n-particle wavefunctions. These superpositions can have new
properties not present in the single-particle theory.

9.1.2 Spin states

Ignoring the spatial dependence and concentrating instead on the internal spin
degrees of freedom, a spin-1/2 state can be written as a complex superposition of
‘up’ and ‘down’ states, which we will denote as |0〉 and |1〉. Now suppose that a
second particle is introduced, so that system 1 is in the state |ψ〉 and system 2 is
in the state |φ〉. The joint state of the system is described by the tensor product
state

|Ψ〉 = |ψ〉 ⊗ |φ〉, (9.9)

which is abbreviated to |ψ〉|φ〉. The total set of possible states is described by
the basis

|00〉 = |0〉|0〉, |01〉 = |0〉|1〉,
|10〉 = |1〉|0〉, |11〉 = |1〉|1〉.

(9.10)

This illustrates an important phenomenon of multiparticle quantum theory. The
number of available states grows as 2n, so large systems have an enormously
larger state space than their classical counterparts. Superpositions of these basis
states will, in general, produce states which cannot be written as a single tensor
product of the form |ψ〉|φ〉. Such states are entangled. A standard example is
the singlet state of equation (9.1). One feature of these entangled states is that
they provide ‘short-cuts’ through Hilbert space between classical states. The
speed-up this can offer is often at the core of algorithms designed to exploit the
possibilities offered by quantum computation.

A challenge faced by theorists looking for ways to exploit these ideas is how
best to classify multiparticle entanglement. The problem is to describe concisely
the properties of a state that are unchanged under local unitary operations. Local
operations consist of unitary transformations applied entirely to one particle.
They correspond to operations applied to a single particle in the laboratory.
Features of the state that are unchanged by these operations relate to joint
properties of the particles, in particular how entangled they are.

To date, only two-particle (or ‘bipartite’) systems have been fully understood.
A general state of two particles can be written

Ψ =
∑
i,j

αij |i〉 ⊗ |j〉, (9.11)
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9.1 MANY-BODY QUANTUM THEORY

where the |i〉 denote some orthonormal basis. The Schmidt decomposition (which
is little more than a singular-value decomposition of αij) tells us that one can
always construct a basis such that

Ψ =
∑

i

βi|i′〉 ⊗ |i′〉. (9.12)

The βi are all real parameters that tell us directly how much entanglement is
present. These parameters are unchanged under local transformations of the
state Ψ. An important example of the Schmidt decomposition, which we shall
revisit frequently, is for systems of two entangled spinors. For these we find that
a general state can be written explicitly as

|ψ〉 =ρ1/2eiχ

(
cos(α/2)eiτ/2

(
cos(θ1/2)e−iφ1/2

sin(θ1/2)eiφ1/2

)
⊗
(

cos(θ2/2)e−iφ2/2

sin(θ2/2)eiφ2/2

)

+ sin(α/2)e−iτ/2

(
sin(θ1/2)e−iφ1/2

− cos(θ1/2)eiφ1/2

)
⊗
(

sin(θ2/2)e−iφ2/2

− cos(θ2/2)eiφ2/2

))
. (9.13)

In this decomposition we arrange that 0 ≤ α ≤ π/4, so that the decomposition
is unique (save for certain special cases).

9.1.3 Pure and mixed states

So far the discussion has focused entirely on pure states, which can be described
in terms of a single wavefunction. For many applications, however, such a de-
scription is inappropriate. Suppose, for example, that we are studying spin
states in an NMR experiment. The spin states are only partially coherent, and
one works in terms of ensemble averages. For example, the average spin vector
(or polarisation) is given by

p =
1
n

n∑
i=1

ŝi. (9.14)

Unless all of the spin vectors are precisely aligned (a coherent state), the polar-
isation vector will not have unit length and so cannot be generated by a single
wavefunction. Instead, we turn to a formulation in terms of density matrices.
The density matrix for a normalised pure state is

ρ̂ = |ψ〉〈ψ|, (9.15)

which is necessarily a Hermitian matrix. All of the observables associated with
the state |ψ〉 can be obtained from the density matrix by writing

〈ψ|Q̂|ψ〉 = tr(ρ̂Q̂). (9.16)
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For an incoherent mixture (a mixed state) the density matrix is the weighted
sum of the matrices for the pure states:

ρ̂ =
n∑

i=1

pi|ψi〉〈ψi|. (9.17)

The real coefficients satisfy
n∑

i=1

pi = 1, (9.18)

which ensures that the density matrix has unit trace. The definition of ρ̂ ensures
that all observables are constructed from the appropriate averages of the pure
states. In principle, the state of any system is described by a Hermitian density
matrix, which is constrained to be positive-semidefinite and to have unit trace.
All observables are then formed according to equation (9.16).

The need for a density matrix can be seen in a second way, as a consequence of
entanglement. Suppose that we are interested in the state of particle 1, but that
this particle has been allowed to entangle with a second particle 2, forming the
pure state |ψ〉. The density matrix for the two-particle system is again described
by equation (9.15). But we can only perform measurements of particle 1. The
effective density matrix for particle 1 is obtained by performing a partial trace
of ρ̂ to trace out the degrees of freedom associated with particle 2. We therefore
define

ρ̂1 = tr2ρ̂, (9.19)

where the sum runs over the space of particle 2. One can easily check that, in
the case where the particles are entangled, ρ̂1 is no longer the density matrix
for a pure state. The most extreme example of this is the singlet state (9.1)
mentioned in the introduction. In the obvious basis, the singlet state can be
written as

|ε〉 =
1√
2
(0, 1, −1, 0)†. (9.20)

The density matrix for this state is

ρ̂ = |ε〉〈ε| =
1
2




0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0


 . (9.21)

This is appropriate for a pure state, as the matrix satisfies ρ̂2 = ρ̂. But if we
now form the partial trace over the second particle we are left with

ρ̂1 =
1
2

(
1 0
0 1

)
. (9.22)
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9.2 MULTIPARTICLE SPACETIME ALGEBRA

This is the density matrix for a totally unpolarised state, which is to be expected,
since there can be no directional information in the singlet state. Clearly, ρ̂1

cannot be generated by a single-particle pure state.

9.2 Multiparticle spacetime algebra

The key to constructing a suitable geometric framework for multiparticle quan-
tum theory involves the full, relativistic spacetime algebra. This is because it is
only the relativistic treatment which exposes the nature of the σi as spacetime
bivectors. This is crucial for determining their algebraic properties as further
particles are added. The n-particle spacetime algebra is the geometric algebra
of 4n-dimensional relativistic configuration space. We call this the multiparticle
spacetime algebra. A basis is for this is constructed by taking n sets of basis
vectors {γa

µ}, where the superscript labels the particle space. These satisfy the
orthogonality conditions

γa
µγb

ν + γb
νγa

µ =

{
0 a 	= b

2ηµν a = b
, (9.23)

which are summarised in the single formula

γa
µ ·γb

ν = δabηµν . (9.24)

There is nothing uniquely quantum-mechanical in this construction. A system
of three classical particles could be described by a set of three trajectories in a
single space, or by one path in a nine-dimensional space. The extra dimensions
label the properties of each individual particle, and are not to be thought of as
existing in anything other than a mathematical sense. One unusual feature con-
cerning relativistic configuration space is that it requires a separate copy of the
time dimension for each particle, as well as the three spatial dimensions. This
is required in order that the algebra is fully Lorentz-covariant. The presence
of multiple time coordinates can complicate the evolution equations in the rel-
ativistic theory. Fortunately, the non-relativistic reduction does not suffer from
this problem as all of the individual time coordinates are identified with a single
absolute time.

As in the single-particle case, the even subalgebra of each copy of the spacetime
algebra defines an algebra for relative space. We perform all spacetime splits with
the vector γ0, using a separate copy of this vector in each particle’s space. A
basis set of relative vectors is then defined by

σa
i = γa

i γa
0 . (9.25)

Again, superscripts label the particle space in which the object appears, and
subscripts are retained for the coordinate frame. We do not enforce the sum-
mation convention for superscripted indices in this chapter. If we now consider
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bivectors from spaces 1 and 2, we find that the basis elements satisfy

σ1
i σ

2
j = γ1

i γ1
0γ2

j γ2
0 = γ1

i γ2
j γ2

0γ1
0 = γ2

j γ2
0γ1

i γ1
0 = σ2

jσ
1
i . (9.26)

The basis elements commute, rather than anticommute. This solves the problem
of how to represent the tensor product in geometric algebra. The geometric
product σa

i σb
j is the tensor product. Since single particle states are constructed

out of geometric algebra elements, this gives a natural origin for tensor product
states in the multiparticle case. This property only holds because the relative
vectors σa

i are constructed as spacetime bivectors.
The pseudoscalar for each particle space is defined in the obvious way, so that

Ia = γa
0γa

1γa
2γa

3 . (9.27)

Relative bivectors in each space take the form Iaσa
k. Wherever possible we

abbreviate these by dropping the first particle label, so that

Iσa
k = Iaσa

k. (9.28)

The reverse operation in the multiparticle spacetime algebra is denoted with a
tilde, and reverses the order of products of all relativistic vectors. Wherever
possible we use this operation when forming observables. The Hermitian adjoint
in each space can be constructed by inserting appropriate factors of γa

0 .

9.2.1 Non-relativistic states and the correlator

In the single-particle theory, non-relativistic states are constructed from the even
subalgebra of the Pauli algebra. A basis for these is provided by the set {1, Iσk}.
When forming multiparticle states we take tensor products of the individual
particle states. Since the tensor product and geometric product are equivalent
in the multiparticle spacetime algebra, a complete basis is provided by the set

{1, Iσ1
k, Iσ2

k, Iσ1
j Iσ2

k}. (9.29)

But these basis elements span a 16-dimensional real space, whereas the state
space for two spin-1/2 particles is a four-dimensional complex space — only
eight real degrees of freedom. What has gone wrong? The answer lies in our
treatment of the complex structure. Quantum theory works with a single unit
imaginary i, but in our two-particle algebra we now have two bivectors playing
the role of i: Iσ1

3 and Iσ2
3. Right-multiplication of a state by either of these

has to result in the same state in order for the geometric algebra treatment to
faithfully mirror standard quantum mechanics. That is, we must have

ψIσ1
3 = ψIσ2

3. (9.30)

Rearranging this, we find that

ψ = −ψIσ1
3 Iσ2

3 = ψ 1
2 (1 − Iσ1

3 Iσ2
3). (9.31)
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This tells us what we must do. If we define

E = 1
2 (1 − Iσ1

3 Iσ2
3), (9.32)

we find that

E2 = E. (9.33)

So right-multiplication by E is a projection operation. If we include this factor
on the right of all states we halve the number of (real) degrees of freedom from
16 to the expected 8.

The spacetime algebra representation of a direct-product two-particle Pauli
spinor is now given by ψ1φ2E, where ψ1 and φ2 are spinors (even multivectors)
in their own spaces. A complete basis for two-particle spin states is provided by

|0〉|0〉 ↔ E,

|0〉|1〉 ↔ −Iσ2
2 E,

|1〉|0〉 ↔ −Iσ1
2 E,

|1〉|1〉 ↔ Iσ1
2 Iσ2

2 E.

(9.34)

We further define

J = EIσ1
3 = EIσ2

3 = 1
2 (Iσ1

3 + Iσ2
3), (9.35)

so that

J2 = −E. (9.36)

Right-sided multiplication by J takes on the role of multiplication by the quan-
tum imaginary i for multiparticle states.

This procedure extends simply to higher multiplicities. All that is required is
to find the ‘quantum correlator’ En satisfying

EnIσa
3 = EnIσb

3 = Jn for all a, b. (9.37)

En can be constructed by picking out the a = 1 space, say, and correlating all
the other spaces to this, so that

En =
n∏

b=2

1
2 (1 − Iσ1

3 Iσb
3). (9.38)

The value of En is independent of which of the n spaces is singled out and
correlated to. The complex structure is defined by

Jn = EnIσa
3 , (9.39)

where Iσa
3 can be chosen from any of the n spaces. To illustrate this consider
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the case of n = 3, where

E3 = 1
4 (1 − Iσ1

3 Iσ2
3)(1 − Iσ1

3 Iσ3
3)

= 1
4 (1 − Iσ1

3 Iσ2
3 − Iσ1

3 Iσ3
3 − Iσ2

3 Iσ3
3) (9.40)

and

J3 = 1
4 (Iσ1

3 + Iσ2
3 + Iσ3

3 − Iσ1
3 Iσ2

3 Iσ3
3). (9.41)

Both E3 and J3 are symmetric under permutations of their indices.

9.2.2 Operators and observables

All of the operators defined for the single-particle spacetime algebra extend nat-
urally to the multiparticle algebra. In the two-particle case, for example, we
have

iσ̂k ⊗ Î|ψ〉 ↔ Iσ1
kψ, (9.42)

Î ⊗ iσ̂k|ψ〉 ↔ Iσ2
kψ, (9.43)

where Î is the 2× 2 identity matrix and a factor of E is implicit in the spinor ψ.
For the Hermitian operators we form, for example,

σ̂k ⊗ Î|ψ〉 ↔ −Iσ1
kψJ = σ1

kψσ1
3. (9.44)

This generalises in the obvious way, so that

Î ⊗ · · · ⊗ σ̂a
k ⊗ · · · ⊗ Î|ψ〉 ↔ σa

kψσa
3 . (9.45)

We continue to adopt the j symbol as a convenient shorthand notation for the
complex structure, so

i|ψ〉 ↔ jψ = ψJ = ψIσa
3 . (9.46)

The quantum inner product is now

〈ψ|φ〉 ↔ 2n−1
(
〈φEψ̃〉 − 〈φJψ̃〉j

)
. (9.47)

The factor of E in the real part is not strictly necessary as it is always present in
the spinors, but including it does provide a neat symmetry between the real and
imaginary parts. The factor of 2n−1 guarantees complete consistency with the
standard quantum inner product, as it ensures that the state E has unit norm.

Suppose that we now form the observables in the two-particle case. We find
that

〈ψ| σ̂k ⊗ Î |ψ〉 ↔ −2Iσ1
k ·(ψJψ̃) (9.48)

and

〈ψ| σ̂j ⊗ σ̂k |ψ〉 ↔ −2(Iσ1
j Iσ2

k)·(ψEψ̃). (9.49)
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All of the observables one can construct are therefore contained in the multivec-
tors ψEψ̃ and ψJψ̃. This generalises to arbitrary particle numbers. To see why,
we use the fact that any density matrix can be expanded in terms of products
of Hermitian operators, as in the two-particle expansion

ρ̂ = |ψ〉〈ψ| =
1
4
(̂
I ⊗ Î + ak σ̂k ⊗ Î + bk Î ⊗ σ̂k + cjk σ̂j ⊗ σ̂k

)
. (9.50)

The various coefficients are found by taking inner products with the appropriate
combinations of operators. Each of these corresponds to picking out a term in
ψEψ̃ or ψJψ̃. If an even number of Pauli matrices is involved we pick out a
term in ψEψ̃, and an odd number picks out a term in ψJψ̃. In general, ψEψ̃

contains terms of grades 0, 4, . . . , and ψJψ̃ contains terms of grade 2, 6, . . . .
These account for all the coefficients in the density matrix, and hence for all the
observables that can be formed from ψ.

An advantage of working directly with the observables ψEψ̃ and ψJψ̃ is that
the partial trace operation has a simple interpretation. If we want to form the
partial trace over the ath particle, we simply remove all terms from the observ-
ables with a contribution in the ath particle space. No actual trace operation is
required. Furthermore, this operation of discarding information is precisely the
correct physical picture for the partial trace operation — we are discarding the
(often unknown) information associated with a particle in one or more spaces.
A minor complication in this approach is that ψJψ̃ gives rise to anti-Hermitian
terms, whereas the density matrix is Hermitian. One way round this is to cor-
relate all of the pseudoscalars together and then dualise all bivectors back to
vectors. This is the approach favoured by Havel and coworkers in their work on
NMR spectroscopy. Alternatively, one can simply ignore this feature and work
directly with the observables ψEψ̃ and ψJψ̃. When presented with a general
density matrix one often needs to pull it apart into sums of terms like this any-
way (the product operator expansion), so it makes sense to work directly with
the multivector observables when they are available.

9.3 Systems of two particles

Many of the preceding ideas are most simply illustrated for the case of a system of
two particles. For these, the Schmidt decomposition of equation (9.13) provides
a useful formulation for a general state. The geometric algebra version of this is
rather more compact, however, as we now establish. First, we define the spinor

ψ(θ, φ) = e−φIσ3/2 e−θIσ2/2. (9.51)

We also need a representation of the state orthogonal to this, which is(
sin(θ/2)e−iφ/2

− cos(θ/2)eiφ/2

)
↔ ψ(θ, φ)Iσ2. (9.52)
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Now we are in a position to construct the multiparticle spacetime algebra version
of the Schmidt decomposition. We replace equation (9.13) with

ψ =ρ1/2
(
cos(α/2)ψ1(θ1, φ1)ψ2(θ2, φ2)eJτ/2

+ sin(α/2)ψ1(θ1, φ1)ψ2(θ2, φ2)Iσ1
2 Iσ2

2e
−Jτ/2

)
eJχE

=ρ1/2ψ1(θ1, φ1)ψ2(θ2, φ2)eJτ/2 (cos(α/2) + sin(α/2)Iσ1
2 Iσ2

2

)
eJχE. (9.53)

We now define the individual rotors

R = ψ(θ1, φ1)eIσ3τ/4, S = ψ(θ2, φ2)eIσ3τ/4, (9.54)

so that the wavefunction ψ simplifies to

ψ = ρ1/2R1S2
(
cos(α/2) + sin(α/2)Iσ1

2Iσ
2
2

)
eJχE. (9.55)

This gives a compact, general form for an arbitrary two-particle state. The de-
grees of freedom are held in an overall magnitude and phase, two separate rotors
in the individual particle spaces, and a single entanglement angle α. In total this
gives nine degrees of freedom, so one must be redundant. This redundancy lies
in the single-particle rotors. If we take

R 
→ ReIσ3β , S 
→ Se−Iσ3β (9.56)

then the overall wavefunction ψ is unchanged. In practice this redundancy is not
a problem, and the form of equation (9.55) turns out to be extremely useful.

9.3.1 Observables for two-particle states

The individual rotors R1 and S2 generate rotations in their own spaces. These
are equivalent to local unitary transformations. The novel features associated
with the observables for a two-particle system arise from the entanglement angle
α. To study this we first form the bivector observable ψJψ̃:

ψJψ̃ =R1S2
(
cos(α/2) + sin(α/2)Iσ1

2 Iσ2
2

)
J
(
cos(α/2) + sin(α/2)Iσ1

2 Iσ2
2

)
R̃1S̃2

= 1
2R1S2

(
cos2(α/2) − sin2(α/2)

)
(Iσ1

3 + Iσ2
3)R̃

1S̃2

= 1
2 cos(α)

(
(RIσ3R̃)1 + (SIσ3S̃)2

)
, (9.57)

where we have assumed that ρ = 1. This result extends the definition of the spin
bivector to multiparticle systems. One can immediately see that the lengths of
the bivectors are no longer fixed, but instead depend on the entanglement. Only
in the case of zero entanglement are the spin bivectors unit length.

The remaining observables are contained in

ψEψ̃ = 1
2R1S2

(
1 − Iσ1

3Iσ
2
3 + sin(α)(Iσ1

2Iσ
2
2 − Iσ1

1Iσ
2
1)
)
R̃1S̃2. (9.58)
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To make this result clearer we introduce the notation

Ak = RIσkR̃, Bk = SIσkS̃, (9.59)

so that

2ψEψ̃ = 1 − A1
3B

2
3 + sin(α)(A1

2B
2
2 − A1

1B
2
1). (9.60)

The scalar part confirms that the state is normalised correctly. The 4-vector
part contains an interesting new term, which goes as A1

2B
2
2 −A1

1B
2
1 . None of the

individual A1, A2, B1, or B2 bivectors is accessible to measurement in the single-
particle case as they are not phase-invariant. But in the two-particle case these
terms do start to influence the observables. This is one of essential differences
between classical and quantum models of spin.

9.3.2 Density matrices and probabilities

Now that we have all of the observables, we have also found all of the terms in
the density matrix. Of particular interest are the results of partial traces, where
we discard the information associated with one of the particles. If we throw out
all of the information about the second particle, for example, what remains is
the single-particle density matrix

ρ̂ = 1
2 (1 + p), (9.61)

where the polarisation vector is given by

p = cos(α)Rσ3R̃. (9.62)

This vector no longer has unit length, so the density matrix is that of a mixed
state. Entanglement with a second particle has led to a loss of coherence of
the first particle. This process, by which entanglement produces decoherence, is
central to attempts to explain the emergence of classical physics from quantum
theory.

For two particles we see that there is a symmetry between the degree of en-
tanglement. If we perform a partial trace over particle 1, the polarisation vector
for the second particle also has its length reduced by a factor of cos(α). More
generally the picture is less simple, and much work remains in understanding
entanglement beyond the bipartite case.

A further application of the preceding is to calculate the overlap probability
for the inner product of two states. Given two normalised states we have

P (ψ, φ) = |〈ψ|φ〉|2 = tr(ρ̂ψρ̂φ). (9.63)

The degrees of freedom in the density matrices are contained in ψEψ̃ and ψJψ̃,
with equivalent expressions for φ. When forming the inner product between two
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density matrices, the only terms that can arise are inner products between these
observables. A little work confirms that we can write, in the n-particle case,

P (ψ, φ) = 2n−2〈(ψEψ̃)(φEφ̃)〉 − 2n−2〈(ψJψ̃)(φJφ̃)〉. (9.64)

Expressions like this are unique to the geometric algebra approach. The ex-
pression confirms that once one has found the two multivector observables for a
state, one has all of the available information to hand.

As an example, suppose that we are presented with two separable states, ψ

and φ. For separable states we know that the observables take the forms

2ψJψ̃ = A1 + B2, 2ψEψ̃ = 1 − A1B2 (9.65)

and

2φJφ̃ = C1 + D2, 2φEφ̃ = 1 − C1D2, (9.66)

where each of the A1, B2, C1 and D2 are unit bivectors. We can now write

P (ψ, φ) = 1
4 〈(1 − A1B2)(1 − C1D2) − (A1 + B2)(C1 + D2)〉

= 1
4 (1 + A·C B ·D − A·C − B ·D)

= 1
2 (1 − A·C) 1

2 (1 − B ·D). (9.67)

This confirms the probability is the product of the separate single-particle prob-
abilities. If one of the states is entangled this result no longer holds, as we see
in the following section.

9.3.3 The singlet state

As a further example of entanglement we now study some of the properties of
the non-relativistic spin singlet state. This is

|ε〉 =
1√
2

(
|0〉|1〉 − |1〉|0〉

)
. (9.68)

This is represented in the two-particle spacetime algebra by the multivector

ε =
1√
2

(
Iσ1

2 − Iσ2
2

)
E. (9.69)

The properties of ε are more easily seen by writing

ε = 1
2 (1 + Iσ1

2 Iσ2
2)

1
2 (1 + Iσ1

3 Iσ2
3)
√

2 Iσ1
2, (9.70)

which shows how ε contains the commuting idempotents (1 + Iσ1
2 Iσ2

2)/2 and
(1 + Iσ1

3 Iσ2
3)/2. Identifying these idempotents tells us immediately that

Iσ1
2ε = 1

2 (Iσ1
2 − Iσ2

2)
1
2 (1 + Iσ1

3 Iσ2
3)
√

2Iσ1
2 = −Iσ2

2ε (9.71)

and

Iσ1
3ε = −Iσ2

3ε. (9.72)
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If follows that

Iσ1
1ε = Iσ1

3 Iσ1
2ε = −Iσ2

2 Iσ1
3ε = Iσ2

2 Iσ2
3ε = −Iσ2

1ε. (9.73)

Combining these results, if M1 is an arbitrary even element in the Pauli algebra
(M1 = M0 + MkIσ1

k), ε satisfies

M1ε = M̃2ε. (9.74)

Here M1 and M2 denote the same multivector, but expressed in space 1 or
space 2.

Equation (9.74) provides a novel demonstration of the rotational invariance of
ε. Under a joint rotation in two-particle space, a spinor ψ transforms to R1R2ψ,
where R1 and R2 are copies of the same rotor but acting in the two different
spaces. From equation (9.74) it follows that, under such a rotation, ε transforms
as

ε 
→ R1R2ε = R1R̃1ε = ε, (9.75)

so that ε is a genuine two-particle rotational scalar.
If we now form the observables from ε we find that

2εEε̃ = 1 +
3∑

k=1

Iσ1
k Iσ2

k (9.76)

and

εJε̃ = 0. (9.77)

The latter has to hold, as there are no rotationally-invariant bivector observables.
Equation (9.76) identifies a new two-particle invariant, which we can write as

3∑
k=1

Iσ1
k Iσ2

k = 2εε̃ − 1. (9.78)

This is invariant under joint rotations in the two particles spaces. This multi-
vector equation contains the essence of the matrix result

3∑
k=1

σ̂a
k a′ σ̂b

k b′ = 2δa
b′ δb

a′ − δa
a′ δb

b′ , (9.79)

where a, b, a′, b′ label the matrix components. In standard quantum mechanics
this invariant would be thought of as arising from the ‘inner product’ of the spin
vectors σ̂1

i and σ̂2
i . Here, we have seen that the invariant arises in a completely

different way, as a component of the multivector εε̃.
The fact that εJε̃ = 0 confirms that the reduced density matrix for either

particle space is simply one-half of the identity matrix, as established in equa-
tion (9.22). It follows that all directions are equally likely. If we align our
measuring apparatus along some given axis and measure the state of particle 1,
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then both up and down have equal probabilities of 1/2. Suppose now that we
construct a joint measurement on the singlet state. We can model this as the
overlap probability between ψ and the separable state

φ = R1S2E. (9.80)

Denoting the spin directions by

RIσ3R̃ = P, SIσ3S̃ = Q, (9.81)

we find that, from equation (9.64),

P (ψ, φ) = 〈1
2 (1 − P 1Q2) 1

2 (1 + Iσ1
k Iσ2

k)〉
= 1

4 (1 − P ·(Iσk)Q·(Iσk))

= 1
4

(
1 − cos(θ)

)
(9.82)

where θ is the angle between the spin bivectors P and Q. So, for example, the
probability that both measurements result in the particles having the same spin
(θ = 0) is zero, as expected. Similarly, if the measuring devices are aligned,
the probability that particle 1 is up and particle 2 is down is 1/2, whereas if
there was no entanglement present the probability would be the product of the
separate single-particle measurements (resulting in 1/4).

Some consequences of equation (9.82) run counter to our intuitions about
locality and causality. In particular, it is impossible to reproduce the statistics
of equation (9.82) if we assume that the individual particles both know which
spin state they are in prior to measurement. These contradictions are embodied
in the famous Bell inequalities. The behaviour of entangled states has now been
tested experimentally, and the results confirm all of the predictions of quantum
mechanics. The results are unchanged even if the measurements are performed
in such a way that the particles cannot be in causal contact. This does not
provide any conflict with special relativity, as entangled states cannot be used
to exchange classical information at faster than the speed of light. The reason
is that the presence of entanglement can only be inferred when the separate
measurements on the two subsystems are compared. Without knowing which
measurements observer 1 is performing, observer 2 cannot extract any useful
classical information from an entangled state.

For many years the properties of entangled states were explored largely as
a theoretical investigation into the nature of quantum theory. Now, however,
physicists are starting to view quantum entanglement as a resource that can be
controlled in the laboratory. To date our control of entangled states is limited,
but it is improving rapidly, and many predict that before long we will see the
first viable quantum computers able to exploit this new resource.
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9.4 Relativistic states and operators

The ideas developed for the multiparticle Pauli algebra extend immediately to
the relativistic domain. A single-particle relativistic state is described by an
arbitrary even element of the full spacetime algebra. Accordingly, a two-particle
state is constructed from the tensor product of two such states. This results is a
space of of 8×8 = 64 real dimensions. Post-multiplying the direct-product space
by the quantum correlator E reduces to 32 real dimensions, which are equiva-
lent to the 16 complex dimensions employed in standard two-particle relativistic
quantum theory. All the single-particle operators and observables discussed in
section 8.2 extend in fairly obvious ways.

To begin, the individual matrix operators have the equivalent action

γ̂µ ⊗ Î|ψ〉 ↔ γ1
µψγ1

0 ,

Î ⊗ γ̂µ|ψ〉 ↔ γ2
µψγ2

0 ,
(9.83)

where Î denotes the 4 × 4 identity matrix. The multiparticle spacetime algebra
operators commute, as they must in order to represent the tensor product. The
result of the action of γ1

µψγ1
0 , for example, does not take us outside the two-

particle state space, since the factor of γ1
0 on the right-hand side commutes with

the correlator E. The remaining matrix operators are easily constructed now,
for example

γ̂µγ̂ν ⊗ Î|ψ〉 ↔ γ1
µγ1

νψ. (9.84)

The role of multiplication by the unit imaginary i is still played by right-multi-
plication by J , and the individual helicity projection operators become

γ̂5 ⊗ Î|ψ〉 ↔ −I1ψJ = ψσ1
3. (9.85)

Relativistic observables are also constructed in a similar manner to the single-
particle case. We form geometric products ψΣψ̃, where Σ is any combination
of γ0 and γ3 from either space. The result is then guaranteed to be Lorentz-
covariant and phase-invariant. The first observable to consider is the multivector

ψψ̃ = ψEψ̃ = 〈ψEψ̃〉0,8 + 〈ψEψ̃〉4. (9.86)

The grade-0 and grade-8 terms are the two-particle generalisation of the scalar +
pseudoscalar combination ψψ̃ = ρ exp(iβ) found at the single-particle level. The
4-vector part generalises the entanglement terms found in the non-relativistic
case. This allows for a relativistic definition of entanglement, which is important
for a detailed study of the relationship between locality and entanglement.

Next, we form two-particle current and spin vectors:

J = 〈ψ(γ1
0 + γ2

0)ψ̃〉1, (9.87)

s = 〈ψ(γ1
3 + γ2

3)ψ̃〉1. (9.88)
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(The calligraphic symbol J is used to avoid confusion with the correlated bivec-
tor J .) The full observables will contain grade-1 and grade-5 terms. For direct-
product states the latter are seen to arise from the presence of a β factor in
either of the single-particle states. Finally, we can also define the spin bivector
S by

S = 〈ψJψ̃〉2. (9.89)

These expressions show how easy it is to generalise the single-particle formulae
to the multiparticle case.

9.4.1 The relativistic singlet state

In the non-relativistic theory the spin singlet state has a special significance,
both in being maximally entangled, and in its invariance under joint rotations
in the two-particle space. An interesting question is whether we can construct
a relativistic analogue that plays the role of a Lorentz singlet. Recalling the
definition of ε (9.69), the property that ensured ε was a singlet state was that

Iσ1
kε = −Iσ2

kε, k = 1, . . . , 3. (9.90)

In addition to (9.90) a relativistic singlet state, which we will denote as η, must
satisfy

σ1
kη = −σ2

kη, k = 1, . . . , 3. (9.91)

It follows that η satisfies

I1η = σ1
1σ

1
2σ

1
3η = −σ2

3σ
2
2σ

2
1η = I2η. (9.92)

For this to hold, η must contain a factor of (1−I1I2). We can therefore construct
a Lorentz single state by multiplying ε by (1 − I1I2), and we define

η = (Iσ1
2 − Iσ2

2)
1
2 (1 − Iσ1

3 Iσ2
3)

1
2 (1 − I1I2). (9.93)

This is normalised so that 2〈ηEη̃〉 = 1. The properties of η can be summarised
as

M1η = M̃2η, (9.94)

where M is an even multivector in either the particle-1 or particle-2 spacetime
algebra. The proof that η is a relativistic invariant now reduces to the simple
identity

R1R2η = R1R̃1η = η, (9.95)

where R is a single-particle relativistic rotor.
Equation (9.94) can be seen as originating from a more primitive relation
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between vectors in the separate spaces. Using the result that γ1
0γ2

0 commutes
with η, we can derive

γ1
µηγ1

0 = γ1
µγ1

0γ2
0ηγ2

0γ1
0γ1

0

= γ2
0(γµγ0)1ηγ2

0

= γ2
µηγ2

0 . (9.96)

For an arbitrary vector a we can now write

a1ηγ1
0 = a2ηγ2

0 . (9.97)

Equation (9.94) follows immediately from equation (9.97) by writing

a1b1η = a1b2ηγ2
0γ1

0

= b2a2ηγ2
0γ2

0

= b2a2η. (9.98)

Equation (9.97) can therefore be viewed as the fundamental property of the
relativistic invariant η.

The invariant η can be used to construct a series of observables that are also
invariant under coupled rotations in the two spaces. The first is

2ηEη̃ = (1 − I1I2) − (σ1
k σ2

k − Iσ1
k Iσ2

k). (9.99)

The scalar and pseudoscalar (grade-8) terms are clearly invariants, and the 4-
vector term, (σ1

k σ2
k −Iσ1

k Iσ2
k), is a Lorentz invariant because it is a contraction

over a complete bivector basis in the two spaces. Next we consider the multivec-
tor

2ηγ1
0γ2

0 η̃ = γ1
0γ2

0 − I1I2γ1
kγ2

k − I1I2γ1
0γ2

0 − γ1
kγ2

k)

= (γ1
0γ2

0 − γ1
kγ2

k)(1 − I1I2). (9.100)

The essential invariant here is the bivector

K = γ1
µ∧γµ2, (9.101)

and the invariants from (9.100) are simply K and KI1I2. The bivector K takes
the form of a ‘doubling’ bivector, which will be encountered again in section 11.4.

From the definition of K in equation (9.101), we find that

K∧K = −2γ1
0γ2

0γ1
kγ2

k + (γ1
kγ2

k)∧(γ1
j γ2

j )

= 2(σ1
k σ2

k − Iσ1
k Iσ2

k), (9.102)

which recovers the grade-4 invariant found in equation (9.99). The full set of
two-particle invariants constructed from K are summarised in table 9.1. These
invariants are regularly employed in constructing interaction terms in multipar-
ticle wave equations.
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Type of
Invariant interaction Grade

1 Scalar 0
K Vector 2

K∧K Bivector 4
I1I2K Pseudovector 6
I1I2 Pseudoscalar 8

Table 9.1 Relativistic invariants in the two-particle algebra.

9.4.2 Multiparticle wave equations

The question of how to construct a valid, relativistic, multiparticle wave equation
has troubled physicists almost from the moment Dirac proposed his equation.
The question is far from settled, and the current preferred option is to ignore the
question where possible and instead work within the framework of perturbative
quantum field theory. This approach runs into difficulties when analysing bound
states, however, and for these problems the need for a suitable wave equation
is particularly acute. The main candidate for a relativistic two-particle system
is the Bethe–Salpeter equation. Written in the multiparticle spacetime algebra,
this equation is

(j∇̂1
r − m1)(j∇̂2

s − m2)ψ(r, s) = I(r, s)ψ(r, s) (9.103)

where I(r, s) is an integral operator representing the interparticle interaction,
and ∇1

r and ∇2
s denote vector derivatives with respect to r1 and s2 respectively.

The combined vector

x = r1 + s2 = rµγ1
µ + sµγ2

µ (9.104)

is the full position vector in eight-dimensional configuration space.
One slightly unsatisfactory feature of equation (9.103) is that it is not first-

order. This has led researchers to propose a number of alternative equations,
typically with the aim of providing a more detailed analysis of two-body bound
state systems such as the hydrogen atom, or positronium. One such equation is(

∇1
rψγ1

0 + ∇2
sψγ2

0)J = (m1 + m2)ψ. (9.105)

As well as being first order, this equation also has the required property that it
is satisfied by direct products of single-particle solutions. But a problem is that
any distinction between the particle masses has been lost, since only the total
mass enters. A second candidate equation, which does keep the masses distinct,
is (

∇1
r

m1
+

∇2
s

m2

)
ψ(x)J = ψ(x)(γ1

0 + γ2
0). (9.106)
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This equation has a number of attractive features, not least of which is that the
mass enters in a manner that is highly suggestive of gravitational interactions.
A potential weakness of this equation is that the state space can no longer be
restricted to sums of direct products of individual states. Instead we have to
widen the state space to include the entire (correlated) even subalgebra of the
two-particle spacetime algebra. This doubles the number of degrees of freedom,
and it is not clear that this doubling can be physical.

Practically all candidate two-particle wave equations have difficulties in per-
forming a separation into centre-of-mass and relative coordinates. This is symp-
tomatic of the fact that the centre of mass cannot be defined sensibly even in
classical relativistic dynamics. Usually some approximation scheme has to be
employed to avoid this problem, even when looking for bound state solutions.
While the question of finding a suitable wave equation remains an interesting
challenge, one should be wary of the fact that the mass term in the Dirac equa-
tion is essentially a remainder from a more complicated interaction with the
Higgs boson. The electroweak theory immediately forces us to consider particle
doublets, and it could be that one has to consider multiparticle extensions of
these in order to arrive at a satisfactory theory.

9.4.3 The Pauli principle

In quantum theory, indistinguishable particles must obey either Fermi–Dirac
or Bose–Einstein statistics. For fermions this requirement results in the Pauli
exclusion principle that no two particles can occupy a state in which their prop-
erties are identical. The Pauli principle is usually enforced in one of two ways
in relativistic quantum theory. At the level of multiparticle wave mechanics,
antisymmetrisation is enforced by using a Slater determinant representation of
a state. At the level of quantum field theory, however, antisymmetrisation is a
consequence of the anticommutation of the creation and annihilation operators
for fermions. Here we are interested in the former approach, and look to achieve
the antisymmetrisation in a simple geometrical manner.

We start by introducing the grade-4 multivector

IP = Γ0Γ1Γ2Γ3, (9.107)

where

Γµ =
1√
2

(
γ1

µ + γ2
µ

)
. (9.108)

It is a simple matter to verify that IP has the properties

I2
P = −1 (9.109)

and

IP γ1
µIP = γ2

µ, IP γ2
µIP = γ1

µ. (9.110)
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It follows that IP functions as a geometrical version of the particle exchange
operator. In particular, acting on the eight-dimensional position vector x =
r1 + s2 we find that

IP xIP = r2 + s1 (9.111)

where

r2 = γ2
µrµ, s1 = γ1

µsµ. (9.112)

So IP can be used to interchange the coordinates of particles 1 and 2. Next we
must confirm that IP is independent of the choice of initial frame. Suppose that
instead we had started with the rotated frame {RγµR̃}, with

Γ′
µ =

1√
2

(
R1γ1

µR̃1 + R2γ2
µR̃2

)
= R1R2ΓµR̃2R̃1. (9.113)

The new Γ′
µ vectors give rise to the rotated 4-vector

I ′P = R1R2IP R̃2R̃1. (9.114)

But, acting on a bivector in particle space 1, we find that

IP a1∧b1IP = −(IP a1IP )∧(IP b1IP ) = −a2∧b2, (9.115)

and the same is true of an arbitrary even element in either space. More generally,
the operation M 
→ IP MIP applied to an even element in one of the particle
spaces flips it to the other particle space and changes sign, while applied to an
odd element it just flips the particle space. It follows that

IP R̃2R̃1 = R̃1IP R̃1 = R̃1R̃2IP , (9.116)

and substituting this into (9.114) we find that I ′P = IP . It follows that IP is
independent of the chosen orthonormal frame, as required.

We can now use the 4-vector IP to encode the Pauli exchange principle geo-
metrically. Let ψ(x) be a wavefunction for two electrons. The state

ψ(x)′ = −IP ψ(IP xIP )IP , (9.117)

then swaps the position dependence, and interchanges the space of the multivec-
tor components of ψ. The antisymmetrised state is therefore

ψ−(x) = ψ(x) + IP ψ(IP xIP )IP . (9.118)

For n-particle systems the extension is straightforward, as we require that the
wavefunction is invariant under the interchange enforced by the IP s constructed
from each pair of particles.

For a single Dirac particle the probability current J = ψγ0ψ̃ has zero diver-
gence, and can therefore be used to define streamlines. These are valuable for
understanding a range of phenomena, such as wavepacket tunnelling and spin
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measurement. We now illustrate how these ideas extend to the multiparticle
domain. The two-particle current is

J = 〈ψ(γ1
0 + γ2

0)ψ̃〉1, (9.119)

as defined in equation (9.87). The vector J has components in both particle-1
and particle-2 spaces, which we write as

J = J 1
1 + J 2

2 . (9.120)

For sums of separable solutions to the single-particle equations, the individual
currents are both conserved:

∇1 ·J 1
1 = ∇2 ·J 2

2 = 0. (9.121)

It follows that the full current J is conserved in 8-dimensional space, so its
streamlines never cross there. The streamlines of the individual particles, how-
ever, are obtained by integrating J1 and J2 in a single spacetime, and these can
cross if plotted in the same space. For example, suppose that the wavefunction
is just

ψ = φ1(r1)χ2(s2)E, (9.122)

where φ and χ are Gaussian wavepackets moving in opposite directions. Since
the distinguishable case is assumed, no Pauli antisymmetrisation is used. One
can easily confirm that for this case the streamlines and the wavepackets simply
pass straight through each other.

But suppose now that we assume indistinguishability, and apply the Pauli
symmetrisation procedure to the wavefunction of equation (9.122). We arrive at
the state

ψ =
(
φ1(r1)χ2(s2) − χ1(r2)φ2(s1)

)
E, (9.123)

from which we form J1 and J2, as before. Figure 9.1 shows the streamlines
that result from these currents. In the left-hand plot both particles are in the
same spin state. The corrugated appearance of the lines near the origin is the
result of the streamlines having to pass through a region of highly oscillatory
destructive interference, since the probability of both particles occupying the
same position (the origin) with the same spin state is zero. The right-hand
plot is for two particles in different spin states. Again, the streamlines are seen
to repel. The reason for this can be found in the symmetry properties of the
two-particle current. Given that the wavefunction ψ has been antisymmetrised
according to equation (9.118), the current must satisfy

IPJ (IP xIP )IP = J (x). (9.124)

It follows that at the same spacetime position, encoded by IP xIP = x in the two-
particle algebra, the two currents J1 and J2 are equal. Hence, if two streamlines
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Figure 9.1 Streamlines for an antisymmetrised two-particle wavefunction.
The wavefunction is ψ =

(
φ1(r1)χ2(s2) − χ1(r2)φ2(s1)

)
E. The individual

wavepackets pass through each other, but the streamlines from separate
particles do not cross. The left-hand figure has both particles with spins
aligned in the +z direction. The right-hand figure shows particles with
opposite spins, with φ in the +z direction, and χ in the −z direction.

ever met, they could never separate again. For the simulations presented here,
the symmetry of the set-up implies that the spatial currents at the origin are
both zero. As the particles approach the origin, they are forced to slow up. The
delay means that they are then swept back in the direction they have just come
from by the wavepacket travelling through from the other side. This repulsion
has its origin in indistinguishability, and the spin of the states exerts only a
marginal effect.

9.5 Two-spinor calculus

The ideas introduced in this chapter can be employed to construct a geometric al-
gebra version of the two-spinor calculus developed by Penrose & Rindler (1984).
The building blocks of their approach are two-component complex spinors, de-
noted κA and ω̄A′

. Indices are raised and lowered with the antisymmetric tensor
εAB . In the spacetime algebra version both κA and κA have the same multivector
equivalent, which we write as

κA ↔ κ 1
2 (1 + σ3). (9.125)

The presence of the idempotent (1+σ3)/2 allows us to restrict κ to the Pauli-even
algebra, as any Pauli-odd terms can be multiplied on the right by σ3 to convert
them back to the even subspace. This ensures that κ has four real degrees of
freedom, as required. Under a Lorentz transformation the full spinor transforms
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to

Rκ 1
2 (1 + σ3) = κ′ 1

2 (1 + σ3), (9.126)

where R is a Lorentz rotor. If we decompose the rotor R into Pauli-even and
Pauli-odd terms, R = R+ + R−, then κ′ is given by

κ′ = R+κ + R−κσ3. (9.127)

The decomposition into Pauli-even and Pauli-odd terms is frame-dependent, as
it depends on the choice of the γ0 direction. But by augmenting κ with the
(1+σ3)/2 idempotent we ensure that the full object is a proper Lorentz-covariant
spinor.

The opposite idempotent, (1−σ3)/2, also generates a valid two-spinor which
belongs to a second linear space (or module). This is the ω̄A′

spinor in the
notation of Penrose & Rindler, which we translate to

ω̄A′ ↔= −ωIσ2
1
2 (1 − σ3). (9.128)

The factor of −Iσ2 is a matter of convention, and is inserted to simplify some of
the later expressions. Under a Lorentz transformation we see that the Pauli-even
element ω transforms as

ω 
→ ω′ = R+ω − R−ωσ3. (9.129)

So κ and ω have different transformation laws: they belong to distinct carrier
spaces of representations of the Lorentz group.

The power of the two-spinor calculus is the ease with which vector and tensor
objects are generated from the basic two-spinors. As emphasised by Penrose &
Rindler, this makes the calculus equally useful for both classical and quantum
applications. It is instructive to see how this looks from the geometric algebra
point of view. Unsurprisingly, what we discover is that the two-spinor calculus is
a highly abstract and sophisticated means of introducing the geometric product
to tensor manipulations. Once this is understood, much of the apparatus of the
two-spinor calculus can be stripped away, and one is left with the now familiar
spacetime algebra approach to relativistic physics.

9.5.1 Two-spinor observables

In two-spinor calculus one forms tensor objects from pairs of two-spinors, for
example κAκ̄A′

. To formulate this in the multiparticle spacetime algebra we
simply multiply together the appropriate spinors, putting each spinor in its own
copy of the spacetime algebra. In this way we replicate the tensor product
implicit in writing κAκ̄A′

. The result is that we form the object

κAκ̄A′ ↔ −κ1 1
2 (1 + σ1

3)κ
2Iσ2

2
1
2 (1 − σ2

3)
1
2 (1 − Iσ1

3 Iσ2
3). (9.130)
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1
2 (1 + σ1

3)
1
2 (1 − σ2

3)E = − 1
2 (γ1

0 + γ1
3)Iσ1

2ε̄γ
1
0

1
2 (1 − σ1

3)
1
2 (1 + σ2

3)E = − 1
2 (γ1

0 − γ1
3)Iσ1

2εγ
1
0

1
2 (1 + σ1

3)
1
2 (1 + σ2

3)E = − 1
2 (σ1

1 + Iσ1
2)ε

1
2 (1 − σ1

3)
1
2 (1 − σ2

3)E = − 1
2 (−σ1

1 + Iσ1
2)ε̄

Table 9.2 Two-spinor identities. The identities listed here can be used to
convert any expression involving a pair of two-spinors into an equivalent
multivector.

As it stands this looks rather clumsy, but the various idempotents hide what is
really going on. The key is to expose the Lorentz singlet structure hidden in the
combination of idempotents. To achieve this we define two new Lorentz singlet
states

ε = η 1
2 (1 + σ1

3), ε̄ = η 1
2 (1 − σ2

3), (9.131)

where η is the Lorentz singlet defined in equation (9.93). These new states both
satisfy the essential equation

M1ε = M̃2ε, M1ε̄ = M̃2ε̄, (9.132)

where M is an even-grade multivector. The reason is that any idempotents
applied on the right of η cannot affect the result of equation (9.94). Expanding
out in full, and rearranging the idempotents, we find that

ε = (Iσ1
2 − Iσ2

2)
1
2 (1 + σ1

3)
1
2 (1 + σ2

3)E,

ε̄ = (Iσ1
2 − Iσ2

2)
1
2 (1 − σ1

3)
1
2 (1 − σ2

3)E.
(9.133)

These relations can manipulated to give, for example,

Iσ1
2ε = −(1 + Iσ1

2 Iσ2
2)

1
2 (1 + σ1

3)
1
2 (1 + σ2

3)E,

σ1
1ε = −(1 − Iσ1

2 Iσ2
2)

1
2 (1 + σ1

3)
1
2 (1 + σ2

3)E.
(9.134)

It follows that
1
2 (1 + σ1

3)
1
2 (1 + σ2

3)E = − 1
2 (σ1

1 + Iσ2
2)ε. (9.135)

There are four such identities in total, which are listed in table 9.2.
The results given in table 9.2 enable us to immediately convert any two-spinor

expression into an equivalent multivector in the spacetime algebra. For example,
returning to equation (9.130), we form

−κ1κ2Iσ2
2

1
2 (1 + σ1

3)
1
2 (1 − σ2

3)E = κ1κ2 1
2 (γ1

0 + γ1
3)ε̄γ1

0

= 1
2

(
κ(γ0 + γ3)κ̃

)1
ε̄γ1

0 . (9.136)
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The key term in this expression is the null vector κ(γ0 + γ3)κ̃, which is con-
structed in the familiar manner for relativistic observables. A feature of the
two-spinor calculus is that it lends itself to formulating most quantities in terms
of null vectors. The origin of these can be traced back to the original (1±σ3)/2
idempotents, which contain the null vector γ0±γ3. These are rotated and dilated
onto spacetime null vectors through the application of a spinor.

9.5.2 The two-spinor inner product

A Lorentz-invariant inner product for a pair of two-spinors is constructed from
the antisymmetric combination

κAωA = −κ0ω1 + κ1ω0, (9.137)

where the subscripts here denote complex components of a two-spinor. The result
of the inner product is a Lorentz-invariant complex scalar. The antisymmetry
of the inner product tells us that we should form the equivalent expression

(κ1ω2 − κ2ω1) 1
2 (1 + σ1

3)
1
2 (1 + σ2

3)E = − 1
2

(
κ(σ1 + Iσ2)ω̃ − ω(σ1 + Iσ2)κ̃

)1
ε

= −〈κ(σ1 + Iσ2)ω̃〉10,4ε. (9.138)

The antisymmetric product picks out the scalar and pseudoscalar parts of the
quantity κ(σ1 + Iσ2)ω̃. This is sensible, as these are the two terms that are
invariant under Lorentz transformations.

The fact that we form a scalar + pseudoscalar combination reveals a second
important feature of the two-spinor calculus, which is that the unit imaginary is
a representation of the spacetime pseudoscalar. The complex structure therefore
has a concrete, geometric significance, which is one reason why two-spinor tech-
niques have proved popular in general relativity, for example. Further insight
into the form of the two-spinor inner product is gained by assembling the full
even multivector

ψ = κ1
2 (1 + σ3) + ωIσ2

1
2 (1 − σ3). (9.139)

The essential term in the two-spinor inner product is now reproduced by

ψψ̃ = −κ1
2 (1 + σ3)Iσ2ω̃ + ωIσ2

1
2 (1 − σ3)κ̃

= −〈κ(σ1 + Iσ2)ω̃〉0,4, (9.140)

so the inner products pick up both the scalar and pseudoscalar parts of a full
Dirac spinor product ψψ̃. This form makes the Lorentz invariance of the product
quite transparent. Interchanging κ and ω in ψ of equation (9.139) is achieved
by right-multiplication by σ1, which immediately reverses the sign of ψψ̃.
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9.5.3 Spin-frames and the null tetrad

An important concept in the two-spinor calculus is that of a spin-frame. This
consists of a pair of two-spinors, κA and ωA say, normalised such that κAωA =
1. In terms of the spinor ψ of equation (9.139), this normalisation condition
amounts to saying that ψ satisfies ψψ̃ = 1. A normalised spin-frame is therefore
the two-spinor encoding of a spacetime rotor. This realisation also sheds light
on the associated concept of a null tetrad. In terms of the spin frame {κA, ωA},
the associated null tetrad is defined as follows:

la = κAκ̄A′ ↔
(
κ(γ0 + γ3)κ̃

)1
ε̄γ1

0 ,

na = ωAω̄A′ ↔
(
ω(γ0 + γ3)ω̃

)1
ε̄γ1

0 ,

ma = κAω̄A′ ↔
(
κ(γ0 + γ3)ω̃

)1
ε̄γ1

0 ,

m̄a = ωAκ̄A′ ↔
(
ω(γ0 + γ3)κ̃

)1
ε̄γ1

0 .

(9.141)

In each case we have projected into a single copy of the spacetime algebra to
form a geometric multivector. To simplify these expressions we introduce the
rotor R defined by

R = κ 1
2 (1 + σ3) + ωIσ2

1
2 (1 − σ3). (9.142)

It follows that

R(γ1 + Iγ2)R̃ = −κγ1(1 + σ3)Iσ2ω̃

= κ(γ0 + γ3)ω̃. (9.143)

The null tetrad induced by a normalised spin-frame can now be written in the
spacetime algebra as

l = R(γ0 + γ3)R̃, m = R(γ1 + Iγ2)R̃,

n = R(γ0 − γ3)R̃, m̄ = R(γ1 − Iγ2)R̃.
(9.144)

(One can chose alternative normalisations, if required). The complex vectors ma

and m̄a of the two-spinor calculus have now been replaced by vector + trivector
combinations. This agrees with the earlier observation that the imaginary scalar
in the two-spinor calculus plays the role of the spacetime pseudoscalar. The
multivectors in a null tetrad satisfy the anticommutation relations

{l, n} = 4, {m, m̄} = 4, all others = 0. (9.145)

These relations provide a framework for the formulation of supersymmetric quan-
tum theory within the multiparticle spacetime algebra.
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9.6 NOTES

9.6 Notes

The multiparticle spacetime algebra was introduced in the paper ‘States and
operators in the spacetime algebra’ by Doran, Lasenby & Gull (1993a). Since its
introduction the multiparticle spacetime algebra has been developed by a range
of researchers. For introductions see the papers by Parker & Doran (2002) and
Havel & Doran (2000a,2002b). Of particular interest are the papers by Somaroo
et al. (1998,1999) and Havel et al. (2001), which show how the multiparticle
spacetime algebra can be applied to great effect in the theory of quantum infor-
mation processing. These researchers were primarily motivated by the desire to
create quantum gates in an NMR environment, though their observations can
be applied to quantum computation in general. For a good introduction into the
subject of quantum information, we recommend the course notes made available
by Preskill (1998).

The subject of relativistic multiparticle quantum theory has been tackled by
many authors. The most authoritative discussions are contained in the papers
by Salpeter & Bethe (1951), Salpeter (1952), Breit (1929) and Feynman (1961).
A more modern perspective is contained in the discussions in Itzykson & Zu-
ber (1980) and Grandy (1991). For more recent attempts at constructing a
two-particle version of the Dirac equation, see the papers by Galeao & Ferreira
(1992), Cook (1988) and Koide (1982). A summary of the multiparticle space-
time algebra approach to this problem is contained in Doran et al.(1996b).

The two-spinor calculus is described in the pair of books ‘Spinors and Space-
time’ volumes I and II by Penrose & Rindler (1984,1986). The spacetime algebra
version of two-spinor calculus is described in more detail in ‘Geometric algebra
and its application to mathematical physics’ by Doran (1994), with additional
material contained in the paper ‘2-spinors, twistors and supersymmetry in the
spacetime algebra’ by Lasenby et al. (1993b). The conventions adopted in this
book differ slightly from those adopted in many of the earlier papers.

9.7 Exercises

9.1 Explain how the two-particle Schrödinger equation for the Coulomb
problem is reduced to the effective single-particle equation

−
--h2∇2

2µ
ψ − q1q2

4πε0r
ψ = Eψ,

where µ is the reduced mass.
9.2 Given that ψ(θ, φ) = exp(−φIσ3/2) exp(−θIσ2/2), prove that(

sin(θ/2)e−iφ/2

− cos(θ/2)eiφ/2

)
↔ ψ(θ, φ)Iσ2.

Confirm that this state is orthogonal to ψ(θ, φ).
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9.3 The interaction energy of two dipoles is given classically by

E =
µ0

4π

(µ1 ·µ2

r3
− 3

µ1 ·r µ2 ·r
r5

)
,

where µi denotes the magnetic moment of particle i. For a quantum
system of spin 1/2 particles we replace the magnetic moment vectors
with the operators µ̂k = (γ--h/2)σ̂k. Given that n = r/r, show that the
Hamiltonian operator takes the form of the 4-vector

H = −d

4

(
3∑

k−1

Iσ1
k Iσ2

k − 3 In1 In2

)

and find an expression for d. Can you solve the two-particle Schrödinger
equation with this Hamiltonian?

9.4 ψ and φ are a pair of non-relativistic multiparticle states. Prove that
the overlap probability between the two states can be written

P (ψ, φ) =
〈(ψEψ̃)(φEφ̃)〉 − 〈(ψJψ̃)(φJφ̃)〉

2〈ψEψ̃〉〈φEφ̃〉
.

9.5 Investigate the properties of the l = 1, m = 0 state

|ψ〉 = |0〉|1〉 + |1〉|0〉.

Is this state maximally entangled?
9.6 The βµ operators that act on states in the two-particle relativistic alge-

bra are defined by:

βµ(ψ) = 1
2

(
γ1

µψγ1
0 + γ2

µψγ2
0

)
.

Verify that these operators generate the Duffin–Kemmer ring

βµβνβρ + βρβνβµ = ηνρβµ + ηνµβρ.

9.7 The multiparticle wavefunction ψ is constructed from superpositions
of states of the form φ1(r1)χ2(s2), where φ and χ satisfy the single-
particle Dirac equation. Prove that the individual currents J 1

1 and J 2
2

are conserved, where

J 1
1 + J 2

2 = 〈ψ(γ1
0 + γ2

0)ψ̃〉1.

9.8 In the two-spinor calculus the two-component complex vector κA is acted
on by a 2×2 complex matrix R . Prove that R is a representation of the
Lorentz rotor group if det R = 1. (This defines the Lie group Sl(2,C).)
Hence establish that the antisymmetric combination κ0ω1 − κ1ω0 is a
Lorentz scalar.
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9.7 EXERCISES

9.9 The two-spinor calculus version of the Dirac equation is

∇A′AκA = µω̄A′
,

∇AA′
ω̄A′ = µκA,

where µ = m/
√

2. Prove that these equations are equivalent to the
single equation ∇ψIσ3 = mψγ0 and give an expression for ψ in terms
of κA and ω̄A′ .

9.10 A null tetrad is defined by the set

l = R(γ0 + γ3)R̃, m = R(γ1 + Iγ2)R̃,

n = R(γ0 − γ3)R̃, m̄ = R(γ1 − Iγ2)R̃.

Prove that these satisfy the anticommutation relations

{l, n} = 4, {m, m̄} = 4, all others = 0.
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10

Geometry

In the preceding chapters of this book we have dealt entirely with a single geomet-
ric interpretation of the elements of a geometric algebra. But the relationship
between algebra and geometry is seldom unique. Geometric problems can be
studied using a variety of algebraic techniques, and the same algebraic result
can typically be pictured in a variety of different ways. In this chapter, we
explore a range of alternative geometric systems, and discover how geometric
algebra can be applied to each of them. We will find that there is no unique
interpretation forced on the multivectors of a given grade. For example, to date
we have viewed bivectors solely as directed plane segments. But in projective
geometry a bivector represents a line, and in conformal geometry a bivector can
represent a pair of points.

Ideas from geometry have always been a prime motivating factor in the de-
velopment of mathematics. By the nineteenth century mathematicians were
familiar with affine, Euclidean, spherical, hyperbolic, projective and inversive
geometries. The unifying framework for studying these geometries was provided
by the Kleinian viewpoint. Under this view a geometry consists of a space of
points, together with a group of transformations mapping the points onto them-
selves. Any property of a particular geometry must be invariant under the action
of the associated symmetry group. Klein was thus able to unite various geome-
tries by describing how some symmetry groups are subgroups of larger groups.
For example, Euclidean geometry is a subgeometry of affine geometry, because
the group of Euclidean transformations is a subgroup of the group of affine trans-
formations.

In this chapter we will see how the various classical geometries, and their
associated groups, are handled in geometric algebra. But we will also go further
by addressing the question of how to represent various geometric primitives in
the most compact and efficient way. The Kleinian viewpoint achieves a united
approach to classical geometry, but it does not help much when it comes to
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10.1 PROJECTIVE GEOMETRY

addressing problems of how to perform calculations efficiently. For example,
circles are as much geometric primitives in Euclidean geometry as points, lines
a planes. But how should circles be represented as algebraic entities? Storing
a point and a radius is unsatisfactory, as this representation involves objects of
different grades. In this chapter we answer this question by showing that both
lines and circles are represented as trivectors in the conformal model of Euclidean
geometry.

We begin with the study of projective geometry. The addition of an extra
dimension allows us to create an algebra of incidence relations between points,
lines and planes in space. We then return to Euclidean geometry, but rather
than viewing this as a subgeometry of projective geometry (the Kleinian view-
point), we will instead increase the dimension once more to establish a conformal
representation of Euclidean geometry. The beauty of this construction is that
the group of Euclidean transformations can now be formulated as a rotor group.
Euclidean invariants are then constructed as inner products between multivec-
tors. This framework allows us to extend the projective treatment of incidence
relations to include circles and spheres.

A further attractive feature of the conformal model is that Euclidean, spherical
and hyperbolic geometries are all handled in the same framework. This allows
the Poincaré disc model of non-Euclidean geometry in the plane to be extended
seamlessly to higher dimensions. Of particular importance is the clarification
of the role of complex coordinates in planar non-Euclidean geometry. Much
of their utility rests on features of the conformal group of the plane that do
not extend naturally. Instead, we work within the framework of real geometric
algebra to obtain results which are independent of dimension. Finally in this
chapter we turn to spacetime geometry. The conformal model for spacetime is of
considerable importance in formulations of supersymmetric theories of gravity,
and also lies at the heart of the twistor program. We display some surprising
links between these ideas and the multiparticle spacetime algebra described in
chapter 9. Throughout this chapter we denote the vector space with signature
p, q by V(p, q), and the geometric algebra of this space by G(p, q).

10.1 Projective geometry

There was a time when projective geometry formed a large part of undergraduate
mathematics courses. For various reasons the subject fell out of fashion in the
twentieth century, making way for the more relevant subject of differential geom-
etry. But in recent years projective geometry has enjoyed a resurgence due to its
importance in the computer graphics industry. For example, the routines at the
core of the OpenGL graphics language are built on a projective representation
of three-dimensional space.

The key idea in projective geometry is that points in space are represented as
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A

B

a

b

Π

0

Figure 10.1 Projective geometry. Points in the projective plane are repre-
sented by vectors in a space one dimension higher. The plane Π does not
intersect the origin 0.

vectors in a space of one dimension higher. For example, points in the projective
plane are represented as vectors in three-dimensional space (see figure 10.1). The
magnitude of the vector is unimportant, as both a and λa represent the same
point. This representation of points is said to be homogeneous. The two key
operations in projective geometry are the join and meet. The join of two points,
for example, is the line between them. Forming the join raises the grade, and
the join can usually be encoded algebraically via the exterior product (this was
Grassmann’s original motivation for introducing his exterior algebra). The meet
is used for forming intersections, such as two lines in a plane meeting at a point.
The meet is traditionally encoded via the notion of duality, and in geometric
algebra the role of the meet is played by the inner product. Operations such
as the meet and join do not depend on the metric, so in projective geometry
we have a non-metric interpretation of the inner product. This is an important
point. Some authors have argued that, because geometric algebra is built on a
quadratic form, it is intimately tied to metric geometry. This view is incorrect,
as we demonstrate below.

10.1.1 The projective line

The simplest place to start is with a one-dimensional line. The ‘Euclidean’
model of the line consists of labelling each point with a real number. But there
are drawbacks with this representation of a line. Geometrically, all points on the
line are equal. But algebraically there are two exceptional points on the line.
The first is the origin, which is represented by the algebraically special number
zero. The second is the point at infinity, which becomes important when we start
to consider projective transformations. The resolution of both of these problems
is to represent points in the line as vectors in two-dimensional space. In this way
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10.1 PROJECTIVE GEOMETRY

the point x is replaced by a pair of homogeneous coordinates (x1, x2), with

x =
x1

x2
. (10.1)

One can immediately see that the origin is represented by the non-zero vector
(0, 1), and that the point at infinity is (1, 0).

If the vectors {e1, e2} denote an orthonormal frame for two-dimensional space,
we can set

x = x1e1 + x2e2. (10.2)

The set of all non-zero vectors x constitute the projective line, RP 1. The fact
that the origin is excluded implies that in projective spaces one loses linear-
ity. This is obvious from the fact that x and λx represent the same point, so
linear combinations do not make geometric sense. Indeed, no geometric signifi-
cance can be attached to the addition of two points in projective geometry. One
cannot form midpoints, for example, as distances and angles are not projective
invariants.

The projective group consists of the group of general linear transformations
applied to vectors in projective space. For the case of the projective line this
group is defined by transformations of the form(

x1

x2

)

→
(

a b

c d

)(
x1

x2

)
=
(

ax1 + bx2

cx1 + dx2

)
, ab − bc 	= 0. (10.3)

In terms of points on the line, this transformation corresponds to

x 
→ x′ =
ax + b

cx + d
. (10.4)

The group action includes dilations, inversions and translations. The last are
obtained for the case c = 0, a/d = 1. The fact that translations become lin-
ear transformations in projective geometry is of considerable importance. In
three-dimensional geometry, for example, both rotations and translations can be
encoded as 4 × 4 matrices. While this may appear to be an overly-complicated
representation, it makes stringing together a series of translations and rotations
a straightforward exercise. This is important in computer graphics, and is the
representation employed in all OpenGL routines.

In geometric algebra notation we write a general linear transformation as the
map x 
→ f(x), where det (f) 	= 0. Valid geometric statements in projective
geometry must be invariant under such transformations, which is a strong re-
striction. Inner products between projective vectors (points) are clearly not
invariant under projective transformations. The outer product does transform
sensibly, however, due to the properties of the outermorphism. For example,
suppose that the points α and β are represented projectively by

a = αe1 + e2, b = βe1 + e2. (10.5)
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a
b c d

A
B

C
D

A′
B′

C′
D′

L

L′

O

Figure 10.2 The cross ratio. Points on the lines L and L′ represent two
different projective views of the same vectors in space. The cross ratio of
the four points is the same on both lines.

The outer product of these is

a∧b = (α − β)e1∧e2, (10.6)

which is controlled by the distance between the points on the line. Under a
projective transformation in two dimensions

e1∧e2 
→ f(e1∧e2) = det (f) e1∧e2, (10.7)

which is just an overall scaling.
The fact that distances between points are scaled under a projective transfor-

mation provides us with an important projective invariant for four points on a
line. This is formed from ratios of lengths along a line. We must further ensure
that the ratio is invariant under individual rescaling of individual vectors to be
a true projective invariant. We therefore define the cross ratio of four points, A,
B, C, D, by

(ABCD) =
AC

BC

BD

AD
=

a∧c

b∧c

b∧d

a∧d
, (10.8)

where AB denotes the distance between A and B. Given any four points on
a line, their cross ratio is a projective invariant (see figure 10.2). The figure
illustrates one possible geometric interpretation of a projective transformation,
which is that the line onto which points are projected is transformed to a new line.
Invariants such as the cross ratio are important in computer vision where, for
example, we seek to extract three-dimensional information from a series of two-
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10.1 PROJECTIVE GEOMETRY

dimensional scenes. Knowledge of invariants can help establish point matches
between the scenes.

10.1.2 The projective plane

Rather more interesting than the case of a line is that of the projective plane.
Points in the plane are now represented by vectors in the three-dimensional
algebra G(3, 0). Figure 10.1 shows that the line between the points a and b is
the result of projecting the plane defined by a and b onto the projective plane.
We therefore define the join of the points a and b by

join(a, b) = a∧b. (10.9)

Bivectors thus define lines in projective geometry. The line itself is recovered
by solving the equation

a∧b∧x = 0. (10.10)

This equation is solved by

x = λa + µb, (10.11)

which defines the set of projective points on the line joining A and B.
By taking exterior products of vectors we define (projectively) higher dimen-

sional objects. For example, the join of a point a and a line b∧c is the plane
defined by the trivector a∧b∧c. Three points on a line cannot define a projected
area, so for these we must have

a∧b∧c = 0 ⇒ a, b, c collinear. (10.12)

This was the condition used to recover the points x on the line a∧b. The join
itself can be slightly more problematic. Given three points one cannot just write
that their join is a∧b∧c, as the result may be zero. Instead the join is defined as
the smallest subspace containing a, b and c. If they are collinear, then the join
is the common line. This is well defined mathematically, but is hard to encode
computationally. The problem is that the finite precision used on computers
means that testing for zero is unreliable. Wherever possible it is safer to avoid
defining the join and instead work with the exterior product.

Projective geometry deals with relationships that are invariant under projec-
tive transformations. The join is one such concept — as two points are trans-
formed the line joining them transforms in the obvious way:

a∧b 
→ f(a)∧f(b) = f(a∧b). (10.13)

So, for example, the statement that three points lie on a line (a∧b∧c = 0) is
unchanged by a projective transformation. Similarly, the statement that three
lines intersect at a point must also be a projective invariant. We therefore seek
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an algebraic encoding of the intersection of two lines. This is the called the meet,
usually denoted with the ∨ symbol. Before we can encode this, however, we need
to define the dual. In the projective plane, points and lines are represented as
vectors and bivectors in G(3, 0). We know that these can be interchanged via
a duality transformation, which amounts to multiplying by the pseudoscalar I.
In this way every point has a dual line, and vice versa. The geometric picture
associated with duality depends on the embedding plane.

If we denote the dual of A by A∗, the meet A∨B is defined by the ‘de Morgan’
rule

(A ∨ B)∗ = A∗∧B∗. (10.14)

For a pair of lines in a plane, this amounts to

A ∨ B = −I(IA)∧(IB) = I A×B = A·(IB) = (IA)·B. (10.15)

These formulae show how the inner product can be used to encode the meet,
without imposing a metric on projective space. The expression

A ∨ B = I A×B (10.16)

shows how the construction works. In three dimensions, A×B is the plane per-
pendicular to A and B, and I A×B is the line perpendicular to this plane, through
the origin. This is therefore the line common to both planes, so projectively gives
the point of intersection of two lines.

The meet of two distinct lines in a plane always results in a non-zero point.
If the lines are parallel then their meet returns the point at infinity. Parallelism
is not a projective invariant, however, so under a projective transformation two
parallel lines can transform to lines intersecting at a finite point. This illustrates
the fact that the point at infinity does not necessarily stay at infinity under
projective transformations. It is instructive to see how the meet itself transforms
under a projective transformation. Using the results of section 4.4, we find that

A ∨ B 
→ f(A) ∨ f(B) = I
(
If(A)

)
∧
(
If(B)

)
= det (f)2 I f̄−1(IA)∧ f̄−1(IB)

= det (f)2 I f̄−1
(
(IA)∧(IB)

)
= det (f) f

(
I (IA)∧(IB)

)
. (10.17)

We can summarise this result as

f(A) ∨ f(B) = det (f) f(A ∨ B). (10.18)

But in projective geometry, a and λa represent the same point, so the factor of
det (f) does not affect the resulting point. This confirms that under a projective
transformation the meet transforms as required.
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a

b

c

P

Q

R

a′

b′

c′

pqr

Figure 10.3 Desargues’ theorem. The lines P, Q, R meet at a point if and
only if the points p, q, r lie on a line. The two triangles are then projectively
related.

The condition that three lines meet at a common point requires that the meet
of two lines lies on a third line, which goes as

(A ∨ B)∧C = (I A×B)∧C = 0. (10.19)

Dualising this result we obtain the condition

〈(A×B)C〉 = 〈ABC〉 = 0, ⇒ A, B, C coincident. (10.20)

This is an extremely simple algebraic encoding of the statement that three lines
(represented by bivectors) all meet at a common point. Equations like this
demonstrate how powerful geometric algebra can be when applied in a projective
setting.

As an application consider Desargues’ theorem, which is illustrated in fig-
ure 10.3. The points a, b, c and a′, b′, c′ define two triangles. The associated
lines are defined by

A = b∧c, B = c∧a, C = a∧b, (10.21)

with the same definitions holding for A′, B′, C ′ in terms of a′, b′, c′. The two sets
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of vertices determine the lines

P = a∧a′, Q = b∧b′, R = c∧c′, (10.22)

and the two sets of lines determine the points

p = A×A′ I, q = B×B′ I, r = C×C ′ I. (10.23)

Desargues’ theorem states that, if p, q, r lie on a common line, then P , Q and
R all meet at a common point. The latter condition requires

〈PQR〉 = 〈a∧a′ b∧b′ c∧c′〉 = 0. (10.24)

Similarly, for p, q, r to fall on a line we form

p∧q∧r = 〈A×A′ I B×B′ I C×C ′ I〉3
= −I〈A×A′ B×B′ C×C ′〉. (10.25)

Desargues’ theorem is then proved by the algebraic identity

〈a∧b∧c a′∧b′∧c′〉〈a∧a′ b∧b′ c∧c′〉 = 〈A×A′ B×B′ C×C ′〉, (10.26)

the proof of which is left as an exercise. The left-hand side vanishes if and only
if the lines P , Q, R meet at a point. The right-hand side vanishes if and only if
the points p, q, r lie on a line. This proves the theorem. The complex geometry
illustrated in figure 10.3 has therefore been reduced to a straightforward algebraic
identity.

We can find a simple generalisation of the cross ratio for the case of the projec-
tive plane. From the derivation of the cross ratio, it is clear that any analogous
object for the plane must involve ratios of trivectors. These represent areas in
the projective plane. For example, suppose we have six points in space with
position vectors a1, . . . , a6. These produce the six projected points A1, . . . , A6.
An invariant is formed by

a5∧a4∧a3

a5∧a1∧a3

a6∧a2∧a1

a6∧a2∧a4
=

A543

A513

A621

A624
, (10.27)

where Aijk is the projected area of the triangle with vertices Ai, Aj , Ak. Again,
elementary algebraic reasoning quickly yields a geometrically significant result.

10.1.3 Homogeneous coordinates and projective splits

In typical applications of projective geometry we are interested in the relationship
between coordinates in an image plane (for example in terms of pixels relative to
some origin) and the three-dimensional position vector. Suppose that the origin
in the image plane is defined by the vector n, which is perpendicular to the plane.
The line on the image plane from the origin to the image point is represented by
the bivector a∧n (see figure 10.4) . The vector OA belongs to a two-dimensional
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a

n

Image plane

o

O

A

Figure 10.4 The image plane. Vectors in the image plane, OA, are de-
scribed by bivectors in G(3, 0). The point A can be expressed in terms of
homogeneous coordinates in the image plane.

geometric algebra. We can relate this directly to the three-dimensional algebra
by first writing

n + OA = λa. (10.28)

Contracting with n, we find that λ = n2(a·n)−1. It follows that

OA =
an2 − a·nn

a·n =
a∧n

a·n n. (10.29)

If we now drop the final factor of n, we obtain a bivector that is homogeneous
in both a and n. In this way we can directly represent the line OA in two
dimensions with the bivector

A =
a∧n

a·n . (10.30)

This is the projective split, first introduced in chapter 5 as a means of relating
physics as seen by observers with different velocities.

The map of equation (10.30) relates bivectors in a higher dimensional space
to vectors in a space of dimension one lower. If we introduce a coordinate frame
{ei}, with e3 in the n direction, we see that the coordinates of the image of
a = aiei are

A =
a1

a3
e1e3 +

a2

a3
e2e3 = A1E1 + A2E2. (10.31)

This equation defines the homogeneous coordinates Ai:

Ai =
ai

a3
. (10.32)
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Homogeneous coordinates are independent of scale and it is these that are usu-
ally measured in a camera projection of a scene. The bivectors (E1,E2) act as
generators for a two-dimensional geometric algebra. If the vectors in the pro-
jective space are all Euclidean, the Ei bivectors will have negative square. If
necessary, this can be avoided by letting e3 be an anti-Euclidean vector. The
projective split is an elegant scheme for relating results in projective space to
Euclidean space one dimension lower. Algebraically, the projective split rests on
the isomorphism

G+(p + 1, q) � G(q, p). (10.33)

This states that the even subalgebra of the geometric algebra with signature
(p + 1, q) is isomorphic to the algebra with signature (q, p). The projective split
is not always the best way to map from projective space back to Euclidean space,
however, as constructing a set of bivectors can be an unnecessary complication.
Often it is simpler to choose an orthonormal frame, with n one of the frame
vectors, and then scale all vectors x such that n · x = 1.

10.1.4 Projective geometry in three dimensions

To handle complicated three-dimensional problems in a projective framework
we require a four-dimensional geometric algebra. The basic elements of four-
dimensional geometric algebra will be familiar from relativity and the spacetime
algebra, though now the elements are given a projective interpretation. The
algebra of a four-dimensional space contains six bivectors, which represent lines
in three dimensions. As in the planar case, the important feature of the projective
framework is that we are free from the restriction that all lines pass through the
origin. The line through the points a and b is again represented by the bivector
a∧b. This is a blade, as must be the case for any bivector representing a line.
Any bivector blade B = a∧b must satisfy the algebraic condition

B∧B = a∧b∧a∧b = 0, (10.34)

which removes one degree of freedom from the six components needed to specify
an arbitrary bivector. This is known at the Plücker condition. If the vector e4

defines the projection into Euclidean space, the line a∧b has coordinates

a∧b = (a + e4)∧(b + e4) = a∧b + (a − b)∧e4, (10.35)

where a and b denote vectors in the three-dimensional space. The bivector B

therefore encodes a line as a combination of a tangent (b − a) and a moment
a∧b. These are the Plücker coordinates for a line.

Given two lines as bivectors B and B′, the test that they intersect in three
dimensions is that their join does not span all of projective space, which implies
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that

B∧B′ = 0. (10.36)

This provides a projective interpretation for commuting bivectors in four dimen-
sions. Commuting (orthogonal) bivectors have BB′ equalling a multiple of the
pseudoscalar. Projectively, these can be interpreted as two lines in three dimen-
sions that do not share a common point. As mentioned earlier, the problem with
a test such as equation (10.36) is that one can never guarantee to obtain zero
when working to finite numerical precision. In practice, then, one tends to avoid
trying to find the intersection of two lines in the three dimensions, unless there
is good reason to believe that they intersect at a point.

The exterior product of three vectors in projective space results in the trivector
encoding the plane containing the three points. One of the most frequently
encountered problems is finding the point of intersection of a line L and a plane
P . This is given by

x = P ·(IL), (10.37)

where I is the four-dimensional pseudoscalar. This will always return a point,
provided the line does not lie entirely in the plane. Similarly, the intersection of
two planes in three dimensions must result in a line. Algebraically, this line is
encoded by the bivector

L = (IP1)·P2 = I P1×P2, (10.38)

where P1 and P2 are the two planes. Such projective formulae are important in
computer vision and graphics applications.

10.2 Conformal geometry

Projective geometry does provide an efficient framework for handling Euclidean
geometry. Euclidean geometry is a subgeometry of projective geometry, so any
valid result in the latter must hold in the former. But there are some limitations
to the projective viewpoint. Euclidean concepts, like lengths and angles, are
not straightforwardly encoded, and the related concepts of circles and spheres
are equally awkward. Conformal geometry provides an elegant solution to this
problem. The key is to introduce a further dimension of opposite signature,
so that points in a space of signature (p, q) are modelled as null vectors in a
space of signature (p + 1, q + 1). That is, points in V(p, q) are represented by
null vectors in V(p + 1, q + 1). Projective geometry is retained as a subset of
conformal geometry, but the range of geometric primitives is extended to include
circles and spheres.

We denote a point in V(p, q) by x, and its conformal representation by X. We
continue to employ the spacetime notation of using the tilde symbol to denote
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x1 x2

r̂1

r̂2

Figure 10.5 A stereographic projection. The line is mapped into the unit
circle, so the points on the line x1 and x2 are mapped to the unit vectors
r̂1 and r̂2. The origin and infinity are mapped to opposite points on the
circle.

the reverse operation for a general multivector in any geometric algebra. A basis
set of vectors for G(p, q) is denoted by {ei}, and the two additional vectors {e, ē}
complete this to an orthonormal basis for G(p + 1, q + 1).

10.2.1 Stereographic projection of a line

We illustrate the general construction by starting with the simple case of a line.
In projective geometry points on a line are modeled as two-dimensional vectors.
The conformal model is established from a slightly different starting point, using
the stereographic projection. Under a stereographic projection, points on a line
are mapped to the unit circle in a plane (see figure 10.5). Points on the unit
circle in two dimensions are represented by

r̂ = cos(θ) e1 + sin(θ) e2. (10.39)

The corresponding point on the line is given by

x =
cos(θ)

1 + sin(θ)
. (10.40)

This relation inverts simply to give

cos(θ) =
2x

1 + x2
, sin(θ) =

1 − x2

1 + x2
. (10.41)

So far we have achieved a representation of the line in terms of a circle in two
dimensions. But the constraint that the vector has unit magnitude means that
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we have lost homogeneity. To get round this we introduce a third vector, ē,
which has negative signature,

ē2 = −1, (10.42)

and we assume that ē is orthogonal to e1 and e2. We can now replace the unit
vector r̂ with the null vector X, where

X = cos(θ) e1 + sin(θ) e2 + ē =
2x

1 + x2
e1 +

1 − x2

1 + x2
e2 + ē. (10.43)

The vector X satisfies X2 = 0, so is null.
The equation X2 = 0 is homogeneous. If it is satisfied for X, it is satisfied

for λX. We can therefore move to a homogeneous representation and let both
X and λX represent the same point. Multiplying by (1 + x2) we establish the
conformal representation

X = 2xe1 + (1 − x2)e2 + (1 + x2)ē. (10.44)

This is the basic representation we use throughout. To establish a more general
notation we first replace the vector e2 by −e. We therefore have

e2 = 1, ē2 = −1, e·ē = 0. (10.45)

The vectors e and ē are then the two extra vectors that extend the space V(p, q)
to V(p + 1, q + 1). Frequently, it is more convenient to work with a null basis for
the extra dimensions. We define

n = e + ē, n̄ = e − ē. (10.46)

These vectors satisfy

n2 = n̄2 = 0, n·n̄ = 2. (10.47)

The vector X is now

X = 2xe1 + x2n − n̄. (10.48)

It is straightforward to confirm that this is a null vector. The set of all null
vectors in this space form a cone, and the real number line is modelled by the
intersection of this cone and a plane. The construction is illustrated in figure 10.6.

10.2.2 Conformal model of Euclidean space

The form of equation (10.48) generalises easily. If x is an element of V(p, q), we
set

F (x) = X = x2n + 2x − n̄, (10.49)
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e1

ē

n

e
n̄

Figure 10.6 The conformal model of a line. Points on the line are repre-
sented by null vectors in three dimensions. These lie on a cone, and the
intersection of the cone with a plane recovers the point.

which is a null vector in V(p + 1, q + 1). This vector can be obtained simply via
the map,

F (x) = −(x − e)n(x − e), (10.50)

which is a reflection of the null vector n in the plane perpendicular to (x − e).
The result must therefore be a new null vector. The presence of the vector e

removes any ambiguity in handling the origin x = 0. The map F (x) is non-linear
so, as with projective geometry, we move to a non-linear representation of points
in conformal geometry.

More generally, any null vector in V(p + 1, q + 1) can be written as

X = λ(x2n + 2x − n̄), (10.51)

with λ a scalar. This provides a projective map between V(p + 1, q + 1) and
V(p, q). The family of null vectors, λ(x2n+2x− n̄), in V(p+1, q +1) correspond
to the single point x ∈ V(p, q). Given an arbitrary null vector X, it is frequently
useful to convert it to the standard form of equation (10.49). This is achieved
by setting

X 
→ −2
X

X ·n. (10.52)

This map is similar to that employed in constructing a standard embedding in
projective geometry. The status of the vector n is clear here — it represents the
point at infinity.
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Given two null vectors X and Y , in standard form, their inner product is

X ·Y =
(
x2n + 2x − n̄

)
·
(
y2n + 2y − n̄

)
= −2x2 − 2y2 + 4x·y
= −2(x − y)2. (10.53)

This result is of fundamental importance to the conformal model of Euclidean
geometry. The inner product in conformal space encodes the distance between
points in Euclidean space. It follows that any transformation of null vectors
in V(p + 1, q + 1) which leaves inner products invariant can correspond to a
transformation in V(p, q) which leaves angles and distances invariant. In the
next section we discuss these transformations in detail.

10.3 Conformal transformations

The study of the main geometric primitives in conformal geometry is simpli-
fied by first understanding the nature of the conformal group. For points x, y in
V(p, q) the definition of a conformal transformation is that it leaves angles invari-
ant. So, if f is a map from V(p, q) to itself, then f is a conformal transformation
if

f(a)·f(b) = λa·b, ∀a, b ∈ V(p, q), (10.54)

where

f(a) = a·∇f(x). (10.55)

While f(a) is a linear map at each point x, the conformal transformation f(x)
is not restricted to being linear. Conformal transformations form a group, the
conformal group, the main elements of which are translations, rotations, dilations
and inversions. We now study each of these in turn.

10.3.1 Translations

To begin, consider the fundamental operation of translation in the space V(p, q).
This is not a linear operation in V(p, q), but does become linear in the pro-
jective framework. In the conformal model we achieve a further refinement, as
translations can now be handled by rotors. Consider the rotor

R = Ta = ena/2, (10.56)

where a ∈ V(p, q), so that a·n = 0. The generator for the rotor is a null bivector,
so the Taylor series for Ta terminates after two terms:

Ta = 1 +
na

2
. (10.57)
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The rotor Ta transforms the null vectors n and n̄ into

TanT̃a = n + 1
2nan + 1

2nan + 1
4nanan = n (10.58)

and

Tan̄T̃a = n̄ − 2a − a2n. (10.59)

Acting on a vector x ∈ V(p, q) we similarly obtain

TaxT̃a = x + n(a·x). (10.60)

Combining these we find that

TaF (x)T̃a = x2n + 2(x + a·x n) − (n̄ − 2a − a2n)

= (x + a)2n + 2(x + a) − n̄

= F (x + a), (10.61)

which performs the conformal version of the translation x 
→ x+a. Translations
are handled as rotations in conformal space, and the rotor group provides a
double-cover representation of a translation. The identity

T̃a = T−a (10.62)

ensures that the inverse transformation in conformal space corresponds to a
translation in the opposite direction, as required.

10.3.2 Rotations

Next, suppose that we rotate the vector x about the origin in V(p, q). This is
achieved with the rotor R ∈ G(p, q) via the familiar transformation x 
→ x′ =
RxR̃. The image of the transformed point is

F (x′) = x′2n + 2RxR̃ − n̄

= R(x2n + 2x − n̄)R̃ = RF (x)R̃. (10.63)

This holds because R is an even element in G(p, q), so must commute with both
n and n̄. Rotations about the origin therefore take the same form in either space.

Suppose instead that we wish to rotate about the point a ∈ V(p, q). This can
be achieved by translating a to the origin, rotating and then translating forward
again. In terms of X = F (x) the result is

X 
→ TaRT−aXT̃−aR̃T̃a = R′XR̃. (10.64)

The rotation is now controlled by the rotor

R′ = TaRT̃a =
(
1 +

na

2

)
R
(
1 +

an

2

)
. (10.65)

So, as expected, the conformal model has freed us from treating the origin as a
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special point. Rotations about any point are handled in the same manner, and
are still generated by a bivector blade. Similar observations hold for reflections,
but we delay a full treatment of these until we have described how lines and
surfaces are handled in the conformal model. The preceding formulae for trans-
lations and rotations form the basis of the subject of screw theory, which has its
origins in the nineteenth century.

10.3.3 Inversions

Rotations and translations are elements of the Euclidean group, as they leave
distances between points invariant. This is a subgroup of the larger conformal
group, which only leaves angles invariant. The conformal group essentially con-
tains two further transformations: inversions and dilations. An inversion in the
origin consists of the map

x 
→ x

x2
. (10.66)

The conformal vector corresponding to the inverted point is

F (x−1) = x−2n + 2x−1 − n̄ =
1
x2

(n + 2x − x2n̄). (10.67)

But in conformal space points are represented homogeneously, so the pre-factor
of x−2 can be ignored. In conformal space an inversion in the origin consists
solely of the map

n 
→ −n̄, n̄ 
→ −n. (10.68)

This is generated by a reflection in e, since

−ene = −een̄ = −n̄. (10.69)

We can therefore write

−eF (x)e = x2F (x−1), (10.70)

which shows that inversions in V(p, q) are represented as reflections in the confor-
mal space V(p + 1, q + 1). As both X and −X are homogeneous representations
of the same point, it is irrelevant whether we take −e(. . .)e or e(. . .)e as the
reflection. In the following we will use e(...)e for convenience.

A reflection in e corresponds to an inversion in the origin in Euclidean space.
To find the generator of an inversion in an arbitrary point a, we translate to the
origin, invert and translate forward again. The resulting generator is then

TaeT−a =
(
1 +

na

2

)
e
(
1 +

an

2

)
= e − a − a2

2
n. (10.71)

Now, recalling that e = (n + n̄)/2, the generating vector can also be written as

TaeT−a = 1
2

(
n − F (a)

)
= 1

2 (n − A). (10.72)
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A reflection in (n − F (a)) therefore achieves an inversion about the point a in
Euclidean space. As with translations, a nonlinear transformation in Euclidean
space has been linearised by moving to a conformal representation of points. The
generator of an inversion is a vector with positive square. In section 10.5.1 we
see how these vectors are related to circles and spheres.

10.3.4 Dilations

A dilation in the origin is given by

x 
→ x′ = e−αx, (10.73)

where α is a scalar. Clearly, this transformation does not alter angles, so is
a conformal transformation. The null vector corresponding to the transformed
point is

F (x′) = e−α(x2e−αn + 2x + eαn̄). (10.74)

Clearly the map we need to achieve is

n 
→ e−αn, n̄ 
→ eαn̄. (10.75)

This transformation does not alter the inner product of n and n̄, so can be
represented with a rotor. As the vector x is unchanged, the rotor can only be
generated by the timelike bivector eē. If we set

N = eē = 1
2 n̄∧n (10.76)

then N satisfies

Nn = −n = −nN, Nn̄ = n̄ = −n̄N, N2 = 1. (10.77)

We now introduce the rotor

Dα = eαN/2 = cosh(α/2) + sinh(α/2)N. (10.78)

This rotor satisfies
DαnD̃α = e−αn,

Dαn̄D̃α = eαn̄
(10.79)

and so carries out the required transformation. We can therefore write

F (e−αx) = e−αDαF (x)D̃α, (10.80)

which confirms that a dilation in the origin is represented by a simple rotor in
conformal space. To achieve a dilation about an arbitrary point a we form

D′
α = TaDαT̃a = eαN ′/2, (10.81)
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10.3 CONFORMAL TRANSFORMATIONS

where the generator is now

N ′ = TaNT̃a = 1
2Tan̄∧nT̃a = − 1

2A∧n, (10.82)

with A = F (a). A dilation about a is therefore generated by

D′
α = exp(−αA∧n/4) = exp

(
α

2
A∧n

A·n

)
. (10.83)

The generator is governed by two null vectors, one for the point about which the
dilation is performed and one for the point at infinity.

10.3.5 Special conformal transformations

A special conformal transformation consists of an inversion in the origin, a trans-
lation and a further inversion in the origin. We can therefore handle these in
terms of the representations we have already established. In Euclidean space the
effect of a conformal transformation can be written as

x 
→ x + ax2

1 + 2a·x + a2x2
= x

1
1 + ax

=
1

1 + xa
x. (10.84)

The final expressions confirm that a special conformal transformation corre-
sponds to a position-dependent rotation and dilation in Euclidean space, so does
leave angles unchanged. To construct the equivalent rotor in G(p + 1, q + 1) we
form

Ka = eTae = 1 − n̄a

2
, (10.85)

which ensures that KaF (x)K̃a is a special conformal transformation. Explicitly,
we have

F

(
x

1
1 + ax

)
= (1 + 2a·x + a2x2)−1KaF (x)K̃a (10.86)

and again we can ignore the pre-factor and use KaF (x)K̃a as the homogeneous
representation of the result of a special conformal transformation.

10.3.6 Euclidean transformations

The group of Euclidean transformations is a subgroup of the full conformal
group. The additional restriction is that lengths as well as angles are invariant.
Equation (10.53) showed that the inner product of two null vectors is related
to the Euclidean distance between the corresponding points. To establish a
homogeneous formula, we must write

|a − b|2 = −2
A·B

A·nB ·n, (10.87)
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which is homogeneous on A and B. The Euclidean group can now be seen to be
the subgroup of the conformal group which leaves n invariant. This is sensible,
as the point at infinity should stay there under a Euclidean transformation.
The Euclidean group is thus the stability group of a null vector in conformal
space. The group of generators of reflections and rotations in conformal space
which leave n invariant then provide a double cover of the Euclidean group.
Equation (10.87) returns the Euclidean distance between points. If the vector
n is replaced by e or ē we can transform to distance measures in hyperbolic or
spherical geometry. This makes it a simple exercise to attach different geometric
pictures to algebraic results in conformal space.

10.4 Geometric primitives in conformal space

Now that we have seen how points are encoded in conformal space, we can
begin to build up more complex geometric objects. As in projective geometry,
we expect that a multivector blade L will encode a geometric object via the
equation

L∧X = 0, X2 = 0. (10.88)

The question, then, is what type of object does each grade of multivector return.
One important result we can exploit is that X2 = 0 is unchanged if X 
→ RXR̃.
So, if a geometric object is specified by L via equation (10.88), it follows that

R(L∧X)R̃ = (RLR̃)∧(RXR̃) = 0. (10.89)

We can therefore transform the object L with a general element of the conformal
group to obtain a new object. Similar considerations hold for incidence relations.
Since conformal transformations only preserve angles, and do not necessarily map
straight lines to straight lines, the range of objects we can describe by simple
blades is clearly going to be larger than in projective geometry.

10.4.1 Bivectors and points

A pair of points in Euclidean space are represented by two null vectors in a space
of two dimensions higher. We know that the inner product in this space returns
information about distances. The next question to ask is what is the significance
of the outer product of two vectors. If A and B are null vectors, we form the
bivector

G = A∧B. (10.90)

The bivector G has magnitude

G2 = (AB − A·B)(−BA + A·B) = (A·B)2, (10.91)
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which shows that G is timelike, borrowing the terminology of special relativity.
It follows that G contains a pair of null vectors. If we look for solutions to the
equation

G∧X = 0, X2 = 0, (10.92)

the only solutions are the two null vectors contained in G. These are precisely
A and B, so the bivector encodes the two points directly. In the conformal
model, no information is lost in forming the exterior product of two null vectors.
Spacelike bivectors, with B2 < 0, do not contain any null vectors, so in this case
there are no solutions to B∧X = 0 with X2 = 0. The critical case of B2 = 0
implies that B contains a single null vector.

Given a timelike bivector, B2 > 0, we require an efficient means of finding the
two null vectors in the plane. This can be achieved without solving any quadratic
equations as follows. Pick an arbitrary vector a, with a partial projection in the
plane, a·B 	= 0. If the underlying space is Euclidean, one can use the vector ē,
since all timelike bivectors contain a factor of this. Now remove the component
of a outside the plane by defining

a′ = a − a∧B̂ B̂, (10.93)

where B̂ = B/|B| is normalised so that B̂2 = 1. If a′ is already null then it
defines one of the required vectors. If not, then one can form two null vectors in
the B plane by writing

A± = a′ ± a′B̂. (10.94)

One can easily confirm that A± are both null vectors, and so return the desired
points.

10.4.2 Trivectors, lines and circles

If a bivector now only represents a pair of points, the obvious question is how
do we describe a line? Suppose we construct the line through the points a and
b in V(p, q). A point on the line is given by

x = λa + (1 − λ)b. (10.95)

The conformal version of this line is

F (x) =
(
λ2a2 + 2λ(1 − λ)a·b + (1 − λ)2b

)
n + 2λa + 2(1 − λ)b − n̄

= λA + (1 − λ)B + 1
2λ(1 − λ)A·B n, (10.96)

and any multiple of this encodes the same point on the line. It is clear, then,
that a conformal point X is a linear combination of A, B and n, subject to the
constraint that X2 = 0. This is summarised by

(A∧B∧n)∧X = 0, X2 = 0. (10.97)
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So it is trivectors that represent lines in conformal geometry. This illustrates a
general feature of the conformal model — geometric objects are represented by
multivectors of one grade higher than their projective counterpart. The extra
degree of freedom is absorbed by the constraint that X2 = 0.

As stated above, if we apply a conformal transformation to a trivector repre-
senting a line, we must obtain a new line. But there is no reason to expect this to
be straight. To see what else can result, consider a simple inversion in the origin.
Suppose that (x1, x2) denote a pair of Cartesian coordinates for the Euclidean
plane, and consider the line x1 = 1. Points on the line have components (1, x2),
with −∞ ≤ x2 ≤ +∞. The image of this line under an inversion in the origin
has coordinates (x′

1, x
′
2), where

x′
1 =

1
1 + x2

2

, x′
2 =

x2

1 + x2
2

. (10.98)

It is now straightforward to show that

(x′
1 − 1

2 )2 + (x′
2)

2 =
(

1
2

)2
. (10.99)

Hence inversion of a line produces a circle, centred on (1/2, 0) and with radius
1/2.

It follows that a general trivector in conformal space can encode a circle, with
a line representing the special case of infinite radius. This is entirely sensible, as
three distinct points are required to specify a circle. The points define a plane,
and any three non-collinear points in a plane specify a unique circle. So, given
three points A1, A2, A3, the circle through all three is defined by

A1∧A2∧A3∧X = 0, (10.100)

together with the restriction (often unstated) that X2 = 0. The trivector

L = A1∧A2∧A3 (10.101)

therefore encodes a unique circle in conformal geometry. The test that the points
lie on a straight line is that the circle passes through the point at infinity,

L∧n = 0 ⇒ straight line. (10.102)

This explains why our earlier derivation of the line through A1 and A2 led to
the trivector A1∧A2∧n, which explicitly includes the point at infinity. Unlike
tests for linear dependence, testing for zero in equation (10.102) is numerically
acceptable. The reason is that the magnitude of L∧n controls the deviation from
straightness. If precision is limited, one can then define how close L∧n should
be to zero in order for the line to be treated as straight. This is quite different to
linear independence, where the concept of ‘nearly independent’ makes no sense.

Given that a trivector L encodes a circle, we should expect to be able to extract
the key geometric properties of the circle directly from L. In particular, we seek
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e1

e2

−e1

Figure 10.7 The unit circle. Three reference points are marked on the
circle.

expressions for the centre and radius of the circle. (The plane containing the
circle is specified by the 4-vector L∧n, as we explain in the following section.)
Any circle in a plane can be mapped onto any other by a translation and a
dilation. Under that latter we find that

L∧n 
→ (DαLD̃α)∧n = eαDα(L∧n)D̃α. (10.103)

It follows that (L∧n)2 scales as the inverse square of the radius. Next, consider
the unit circle in the circle in the xy plane, and take as three points on the circle
those shown in figure 10.7. The trivector for this circle is

L0 = F (e1)∧F (e2)∧F (−e1) = 16e1e2ē. (10.104)

It follows that
L2

0

(L0∧n)2
= −1, (10.105)

which is (minus) the square of the radius of the unit circle. We can translate
and dilate this into any circle we choose, so the radius ρ of the circle encoded by
the trivector L is given by

ρ2 = − L2

(L∧n)2
. (10.106)

This is a further illustration of how metric information is carried around in the
homogeneous framework of the conformal model. If L represents a straight line
we know that L∧n = 0, so the radius we obtain is infinite.

Similar reasoning produces a formula for the centre of a circle. Essentially the
only objects we have to work with are L and n. If we form LnL for the case of
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the unit circle we obtain

L0nL0 ∝ e1e2ēnēe1e2 = −n̄. (10.107)

But n̄ is the null vector for the origin, so this expression has returned the desired
point. Again, we can translate and dilate this result to obtain an arbitrary circle,
and we find in general that the centre C of the circle L is obtained by

C = LnL. (10.108)

We will see in section 10.5.5 that the operation L . . . L generates a reflection in
a circle. Equation (10.108) then says that the centre of a circle is the image of
the point at infinity under a reflection in the circle.

10.4.3 4-vectors, spheres and planes

We can apply the same reasoning for lines and circles to the case of planes and
spheres and, for mixed signature spaces, hyperboloids. Suppose initially that the
points a, b, c define a plane in V(p, q), so that an arbitrary point in the plane is
given by

x = αa + βb + γc, α + β + γ = 1. (10.109)

The conformal representation of x is

X = αA + βB + γC + δn, (10.110)

where A = f(a) etc., and

δ = 1
2 (αβA·B + αγA·C + βγB ·C). (10.111)

Varying α and β, together with the freedom to scale F (x), now produces general
null combinations of the vectors A, B, C and n. The equation for the plane can
then be written

A∧B∧C∧n∧X = 0. (10.112)

The plane passes through the points defined by A, B, C and the point at infinity
n. We can therefore see that a general plane in conformal space is defined by
four points.

If the four points in question do not lie on a (flat) plane, then the 4-vector
formed from their outer product defines a sphere. To see this we again consider
inversion in the origin, this time applied to the x1 = 1 plane. A point on the
plane has coordinates (1, x2, x3), and under an inversion this maps to the point
with coordinates

x′
1 =

1
1 + x2

2 + x2
3

, x′
2 =

y

1 + x2
2 + x2

3

, x′
3 =

z

1 + x2
2 + x2

3

. (10.113)
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The new coordinates satisfy(
x′

1 − 1
2

)2 + (x′
2)

2 + (x′
3)

2 =
(

1
2

)2
, (10.114)

which is the equation of a sphere. Inversion thus interchanges planes and spheres.
In particular, the point at infinity n is transformed to the origin n̄ under inver-
sion, which is now one of the points on the sphere.

Given any four distinct points A1, . . . , A4, not all on a line or circle, the equa-
tion of the unique sphere through all four points is

A1∧A2∧A3∧A4∧X = P∧X = 0, (10.115)

so the sphere is defined by the 4-vector P = A1∧A2∧A3∧A4. The sphere is flat
(a plane) if it passes through the point at infinity, the test for which is

A1∧A2∧A3∧A4∧n = P∧n = 0. (10.116)

The 4-vector P contains all of the relevant geometric information for a sphere.
The radius of the sphere ρ is given by

ρ2 =
P 2

(P∧n)2
, (10.117)

as is easily confirmed for the case of the unit sphere, P = e1e2e3ē. Similarly, the
centre of the sphere C = F (c) is given by

C = PnP. (10.118)

These formulae are the obvious generalisations of the results derived for circles.

10.5 Intersection and reflection in conformal space

One of the most significant advantages of the conformal approach to Euclidean
geometry is the ease with which it solves complicated intersection problems. So,
for example, finding the circle of intersection of two spheres is now no more
complicated than finding the line of intersection of two planes. In addition, the
concept of reflection is generalised in conformal space to include reflection in a
sphere. This provides a very compact means of encoding the key concepts of
inversive geometry.

10.5.1 Duality in conformal space

The concept of duality is key to intersecting objects in projective space, and the
same is true in conformal space. Suppose that we start with the Euclidean plane,
modelled in G(3, 1). Duality in this algebra interchanges spacelike and timelike
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bivectors. It also maps trivectors to vectors, and vice versa. A trivector encodes
a line, or circle, so the dual of the circle C is a vector c, where

c = C∗ = IC (10.119)

and I is the pseudoscalar for G(3, 1). The equation for the circle, X∧C = 0, can
now be written in dual form and reduces to

X ·c = −I(X∧C) = 0. (10.120)

The radius of the circle is now given by

ρ2 =
c2

(c·n)2
, (10.121)

as the vector dual to a circle has positive signature. This picture provides us
with an alternative view of the concept of a point as being a circle of zero radius.

Similar considerations hold for spheres in three-dimensional space. These are
represented as 4-vectors in G(4, 1), so their dual is a vector. We write

s = S∗ = IS, (10.122)

where I is the pseudoscalar, so that the equation of a sphere becomes

X ·s = I(X∧S) = 0. (10.123)

The radius of the sphere is again given by

ρ2 =
s2

(s·n)2
, (10.124)

so that points are spheres of zero radius. One can see that this is sensible by
considering an alternative equation for a sphere. Suppose we are interested in
the sphere with centre C and radius ρ2. The equation for this can be written

−2
X ·C

X ·nC ·n = ρ2. (10.125)

Rearranging, this equation becomes

X ·(2C + ρ2C ·nn) = 0, (10.126)

and if C is in standard form, C = F (c), we obtain

X ·(F (c) − ρ2n) = 0. (10.127)

We can therefore identify s = S∗ with the vector F (c)−ρ2n, which neatly encodes
the centre and radius of the sphere in a single vector. Whether the 4-vector S

or its dual vector s is most useful depends on whether the sphere is specified by
four points lying on it, or by its centre and radius. For a given sphere s we can
now write

s = λ(2C + ρ2C ·nn). (10.128)
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It is then straightforward to confirm that the radius is given by equation (10.124).
The centre of the circle can be recovered from

C

C ·n =
s

s·n − ρ2

2
n =

sns

2(s·n)2
. (10.129)

The sns form for the centre of a sphere is dual to the SnS expression found in
equation (10.118).

10.5.2 Intersection of two lines in a plane

As a simple example of intersection in the conformal model, consider the inter-
section of two lines in a Euclidean plane. The lines are described by trivectors
L1 and L2 in G(3, 1). The intersection is described by the bivector

B = (L∗
1∧L∗

2)
∗ = I(L1×L2), (10.130)

where I is the conformal pseudoscalar. The bivector B can contain zero, one or
two points, depending on the sign of its square, as described in section 10.4.1.
This is to be expected, as distinct circles can intersect at a maximum of two
points. If the lines are both straight, then one of the points of intersection will
be at infinity, and B∧n = 0.

To verify this result, consider the case of two straight lines, both passing
through the origin, and with the first line in the a direction and the second in
the b direction. With suitable normalisation we can write

L1 = aN, L2 = bN, (10.131)

where N = eē. The intersection of L1 and L2 is controlled by

B = I a∧b ∝ N (10.132)

and the bivector N contains the null vectors n and n̄. This confirms that the
lines intersect at the origin and infinity. Applying conformal transformations
to this result ensures that it holds for all lines in a plane, whether the lines
are straight or circular. The formulae for L1 and L2 also show that their inner
product is related to the angle between the lines,

〈L1L2〉 = a·b. (10.133)

We can therefore write

cos(θ) =
〈L1L2〉
|L1| |L2|

, (10.134)

where |L| =
√

(L2). This equation returns the angle between two lines. The
quantity is invariant under the full conformal group, and not just the Euclidean
group, because angles are conformal invariants. It follows that the same formula
must hold even if L1 and L2 describe circles. The angle between two circles is
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the angle made by their tangent vectors at the point of intersection. Two circles
intersect at a right angle, therefore, if

〈L1L2〉 = 0. (10.135)

This result can equally be expressed in terms of the dual vectors l1 and l2.

10.5.3 Intersection of a line and a surface

Now suppose that the 4-vector P defines a plane or sphere in three-dimensional
Euclidean space, and we wish to find the point of intersection with a line de-
scribed by the trivector L. The algebra proceeds entirely as expected and we
arrive at the bivector

B = (P ∗∧L∗)∗ = (IP )·L = I〈PL〉3. (10.136)

This bivector can again describe zero, one or two points, depending on the sign of
its square. This setup describes all possible intersections between lines or circles,
and planes or spheres — an extremely wide range of applications. Precisely the
same algebra enables us to answer whether a ring in space intersects a given
plane, or whether a straight line passes through a sphere.

10.5.4 Surface intersections

Next, suppose we wish to intersect two surfaces in three dimensions. Suppose
that these are spheres defined by the 4-vectors S1 and S2. Their intersection is
described by the trivector

L = I(S1×S2). (10.137)

This trivector directly encodes the circle formed from the intersection of two
spheres. As with the bivector case, the sign of L2 defines whether or not two
surfaces intersect. If L2 > 0 then the surfaces do intersect. If L2 = 0 then the
surfaces intersect at a point. Tests such as this are extremely helpful in graphics
applications.

We can similarly express the intersection in terms of the dual vectors s1 and
s2 as

L = I s1∧s2. (10.138)

As a check, the point X lies on both spheres if

X ·s1 = X ·s2 = 0. (10.139)

It follows that

X ·(s1∧s2) = X ·s1 s2 − X ·s2 s1 = 0. (10.140)
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The dual result is that X∧(I s1∧s2) = 0, which confirms that X lies in the space
defined by the trivector L.

10.5.5 Reflections in conformal space

At various points in previous sections we have obtained formulae which generate
reflections. We now discuss these more systematically. In section 2.6 we estab-
lished that the vector obtained by reflecting a in the hyperplane perpendicular
to l, l2 = 1, is −lal. But this formula assumes that the line and plane intersect
at the origin. We seek a more general expression, valid for an arbitrary line and
plane. Let P denote the plane and L the line we wish to reflect in the plane,
then the obvious candidate for the reflected line L′ is

L′ = PLP. (10.141)

(The sign of this is irrelevant in conformal space.) To verify that this is correct,
suppose that L passes through the origin in the a direction,

L = aN3 (10.142)

and the plane P is defined by the origin and the directions b and c,

P = b∧cN. (10.143)

In this case

L′ = b∧c a b∧cN =
(
−(I3 b∧c)a(I3 b∧c)

)
N, (10.144)

where I3 is the three-dimensional pseudoscalar. This result achieves the required
result. The vector a is reflected in the b∧c plane to obtain the desired direction.
The outer product with N then defines the line through the origin with the
required direction. Equation (10.141) is correct at the origin, so therefore holds
for all lines and planes, by conformal invariance.

There are a number of significant consequences of equation (10.141). The
first is that it recovers the correct line in three dimensions without having to
to find the point of reflection. The second is that it is straightforward to chain
together multiple reflections by forming successive products with planes. In this
way complicated reflections can be easily composed, all the time keeping track
of the direction and position of the resultant line. A further consequence is that
the same reflection formula must hold for higher dimensional objects. Suppose,
for example, we wish to reflect the sphere S in the plane P . The result is

S′ = PSP. (10.145)

This type of equation is extremely useful in dealing with wave propagation, where
a wavefront is modelled as a series of expanding spheres.

Conformal invariance of the reflection formula (10.141) ensures that the same
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formula holds for reflection in a circle, or in a sphere. For example, suppose
we wish to carry out a reflection in the unit circle in two-dimensional Euclidean
space. The circle is defined by L0 = e1e2ē, and the dual vector is

IL0 = e. (10.146)

Reflection in the unit circle is therefore performed by the operation

M 
→ eMe. (10.147)

This is an inversion, as discussed in section 10.3.3. In this manner, the main
results of inversive geometry are easily formulated in terms of reflections in con-
formal space.

10.6 Non-Euclidean geometry

The sudden growth in the subject of geometry in the nineteenth century was
stimulated in part by the discovery of geometries with very different properties
to Euclidean space. These were obtained by a simple modification of Euclid’s
parallel postulate. For Euclidean geometry this states that, given any line l

and a point P not on the line, there exists a unique line through P in the
plane of l and P which does not meet l. This is then a line parallel to l. For
many centuries this postulate was viewed as problematic, as it cannot be easily
experimentally verified. As a result, mathematicians attempted to remove the
parallel postulate by proving it from the remaining, uncontroversial, postulates
of Euclidean geometry. This enterprise proved fruitless, and the reason why
was discovered by Lobachevskii and Bolyai in the 1820s. One can replace the
parallel postulate with a different postulate, and obtain a new, mathematically
acceptable geometry.

There are in fact two alternative geometries one can obtain, by replacing
the statement that there is a single line through P which does not intersect
l with either an infinite number or zero. The case of an infinite number pro-
duces hyperbolic geometry, which is the non-Euclidean geometry constructed by
Lobachevskii and Bolyai. (In this section ‘non-Euclidean’ usually refers to the
hyperbolic case.) The case of zero lines produces spherical geometry. Intuitively,
the spherical case corresponds to space curling up, so that all (straight) lines
meet somewhere, and the hyperbolic case corresponds to space curving outwards,
so that lines do not meet. From the more modern perspective of Riemannian
geometry, we are talking about homogeneous, isotropic spaces, which have no
preferred points or directions. These can have positive, zero or negative curva-
ture, corresponding to spherical, Euclidean and hyperbolic geometries. Today,
the question of which of these correctly describes the universe on the largest
scales remains an outstanding problem in cosmology.

An extremely attractive feature of the conformal model of Euclidean geometry
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Figure 10.8 Circle limit III by Maurits Escher. c©2002 Cordon Art B.V.,
Baarn, Holland.

is that, with little modification, it can be applied to both hyperbolic and spherical
geometries as well. In essence, the geometry reduces to a choice of the point
at infinity, which in turn fixes the distance measure. This idea replaces the
concept of the absolute conic, adopted in classical projective geometry as a means
of imposing a distance measure. In this section we illustrate these ideas with
a discussion of the conformal approach to planar hyperbolic geometry. As a
concrete model of this we concentrate on the Poincaré disc. This version of
hyperbolic geometry is mathematically very appealing, and also gives rise to
some beautiful graphic designs, as popularised in the prints of Maurits Escher
(see figure 10.8).

10.6.1 The Poincaré disc

The Poincaré disc D consists of the set of points in the plane a distance r < 1
from the origin. At first sight this may not appear to be homogeneous, but in
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A

Figure 10.9 The Poincaré disc. Points inside the disc represent points in
a hyperbolic space. A set of d-lines are also shown. These are (Euclidean)
circles that intersect the unit circle at right angles. The d-lines through A
illustrate the parallel postulate for hyperbolic geometry.

fact the nature of the geometry will ensure that there is nothing special about
the origin. Note that points on the unit circle r = 1 are not included in this
model of hyperbolic geometry. The key to this geometry is the concept of a
non-Euclidean straight line. These are called d-lines, and represent geodesics in
hyperbolic geometry. A d-line consists of a section of a Euclidean circle which
intersects the unit circle at a right angle. Examples of d-lines are illustrated in
figure 10.9. Given any two points in the Poincaré disc there is a unique d-line
through them, which represents the ‘straight’ line between the points. It is now
clear that for any point not on a given d-line l, there are an infinite number of
d-lines through the point which do not intersect l.

We can now begin to encode these concepts in the conformal setting. We
continue to denote points in the plane with homogeneous null vectors in precisely
the same manner as the Euclidean case. Suppose, then, that X and Y are the
conformal vectors representing two points in the disc. The set of all circles
through these two points consists of trivectors of the form X∧Y ∧A, where A

is an additional point. But we require that the d-line intersects the unit circle
at right angles. The unit circle is described by the trivector Ie, where I is the
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pseudoscalar in G(3, 1). If a line L is perpendicular to the unit circle it satisfies

(Ie)·L = I(e∧L) = 0. (10.148)

It follows that all d-lines contain a factor of e. The d-line through X and Y must
therefore be described by the trivector

L = X∧Y ∧e. (10.149)

One can see now that a general scheme is beginning to emerge. Everywhere in
the Euclidean treatment that the vector n appears it is replaced in hyperbolic
geometry by the vector e. This vector represents the circle at infinity.

Given a pair of d-lines, they can either miss each other, or intersect at a point
in the disc D. If they intersect, the angle between the lines is given by the
Euclidean formula

cos(θ) =
L1 ·L2

|L1| |L2|
. (10.150)

It follows that angles are preserved by a general conformal transformation in
hyperbolic geometry. A non-Euclidean transformation takes d-lines to d-lines.
The transformation must therefore map (Euclidean) circles to circles, while pre-
serving orthogonality with e. The group of non-Euclidean transformations must
therefore be the subgroup of the conformal group which leaves e invariant. This
is confirmed in the following section, where we find the appropriate distance
measure for non-Euclidean geometry.

The fact that the point at infinity is represented by e, as opposed to n in
the Euclidean counterpart, provides an additional operation in non-Euclidean
geometry. This is inversion in e:

X 
→ eXe. (10.151)

As all non-Euclidean transformations leave e invariant, all geometric relations
remain unchanged under this inversion. Geometrically, the interpretation of the
inversion is quite clear. It maps everything inside the Poincaré disc to a ‘dual’
version outside the disc. In this dual space incidence relations and distances are
unchanged from their counterparts inside the disc.

10.6.2 Non-Euclidean translations and distance

The key to finding the correct distance measure in non-Euclidean geometry is
to first generalise the concept of a translation. Given points X and Y we know
that the d-line connecting them is defined by X∧Y∧e. This is the non-Euclidean
concept of a straight line. A non-Euclidean translation must therefore move
points along this line. Such a transformation must take X to Y , but must also
leave e invariant. The generator for such a transformation is the bivector

B = (X∧Y ∧e)e = Le, (10.152)
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–1

1

–1 1

Figure 10.10 A non-Euclidean translation. The figure near the origin is
translated via a boost to give the distorted figure on the right. This dis-
tortion in the Poincaré disc is one way of visualising the effect of a Lorentz
boost in spacetime.

where L = X∧Y ∧e. We find immediately that

B2 = L2 > 0, (10.153)

so non-Euclidean translations are hyperbolic transformations, as one might ex-
pect. An example of such a translation is shown in figure 10.10.

We next define

B̂ =
B

|B| , B̂2 = 1, (10.154)

so that we can write

Y = eαB̂/2Xe−αB̂/2. (10.155)

By varying α we obtain the set of points along the d-line through X and Y . To
obtain a distance measure, we first require a formula for α. If we decompose X

into

X = XB̂2 = X ·B̂ B̂ + X∧B̂ B̂ (10.156)

we obtain

Y = X∧B̂ B̂ + cosh(α)X ·B̂ B̂ − sinh(α)X ·B̂. (10.157)

The right-hand side must give zero when contracted with Y , so

〈X∧B̂ B̂∧Y 〉 + cosh(α)〈X ·B̂ B̂ ·Y 〉 + sinh(α) (X∧Y )·B̂ = 0. (10.158)
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To simplify this equation we first find

X∧B̂ =
X∧(X∧Y ∧e e)

|B| =
e·X L

|L| (10.159)

and

(X∧Y )·B̂ =
L2

|B| = |L|. (10.160)

It follows that

e·X e·Y + cosh(α)(X ·Y − e·X e·Y ) + sinh(α) |L| = 0, (10.161)

the solution to which is

cosh(α) = 1 − X ·Y
X ·e Y ·e . (10.162)

The half-angle formula is more relevant for the distance measure, and we find
that

sinh2(α/2) = − X ·Y
2X ·e Y ·e . (10.163)

This closely mirrors the Euclidean expression, with n replaced by e.
There are a number of obvious properties that a distance measure must satisfy.

Among these is the additive property that

d(X1,X2) + d(X2,X3) = d(X1,X3) (10.164)

for any three points X1, X2, X3 in this order along a d-line. Returning to the
translation formula of equation (10.155), suppose that Z is a third point along
the line, beyond Y . We can write

Z = eβB̂/2Y e−βB̂/2 = e(α + β)B̂Xe−(α + β)B̂/2. (10.165)

Clearly it is hyperbolic angles that must form the appropriate distance measure.
No other function satisfies the additive property. We therefore define the non-
Euclidean distance by

d(x, y) = 2 sinh−1

(
− X ·Y

2X ·e Y ·e

)1/2

. (10.166)

In terms of the position vectors x and y in the Poincaré disc we can write

d(x, y) = 2 sinh−1

(
|x − y|2

(1 − x2)(1 − y2)

)1/2

, (10.167)

where the modulus refers to the Euclidean distance. The presence of the arcsinh
function in the definition of distance reflects the fact that, in hyperbolic geome-
try, generators of translations have positive square and the appropriate distance
measure is the hyperbolic angle. Similarly, in spherical geometry translations
correspond to rotations, and it is the trigonometric angle which plays the role
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of distance. Euclidean geometry is therefore unique in that the generators of
translations are null bivectors. For these, combining translations reduces to the
addition of bivectors, and hence we recover the standard definition of Euclidean
distance.

10.6.3 Metrics and physical units

The derivation of the non-Euclidean distance formula of equation (10.166) forces
us to face an issue that has been ignored to date. Physical distances are di-
mensional quantities, whereas our formulae for distances in both Euclidean and
non-Euclidean geometries are manifestly dimensionless, as they are homogeneous
in X. To resolve this we cannot just demand that the vector x has dimensions,
as this would imply that the conformal vector X contained terms of mixed di-
mensions. Neither can this problem be circumvented by assigning dimensions of
distance to n̄ and (distance)−1 to n, as then e has mixed dimensions, and the
non-Euclidean formula of (10.166) is non-sensical.

The resolution is to introduce a fundamental length scale, λ, which is a positive
scalar with the dimensions of length. If the vector x has dimensions of length,
the conformal representation is then given by

X =
1

2λ2

(
x2n + 2λx − λ2n̄

)
. (10.168)

This representation ensures that X remains dimensionless, and is nothing more
than the conformal representation of x/λ. Physical distances can then be con-
verted into a dimensionally meaningful form by including appropriate factors
of λ. Curiously, the introduction of λ into the spacetime conformal model has
many similarities to the introduction of a cosmological constant Λ = λ2.

We can make contact with the metric encoding of distance by finding the
infinitesimal distance between the points x and x + dx. This defines the line
element

ds2 = 4λ4 dx2

(λ2 − x2)2
, (10.169)

where the factors of λ have been included and x is assumed to have dimensions
of distance. This line element is more often seen in polar coordinates, where it
takes the form

ds2 =
4λ4

(λ2 − r2)2
(dr2 + r2dθ2). (10.170)

This is the line element for a space of constant negative curvature, expressed in
terms of conformal coordinates. The coordinates are conformal because the line
element is that of a flat space multiplied by a scaling function. The geodesics
in this geometry are precisely the d-lines in the Poincaré disc. The Riemann
curvature for this metric shows that the space has uniform negative curvature,
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so the space is indeed homogeneous and isotropic — there are no preferred points
or directions. The centre of the disc is not a special point, and indeed it can be
translated to any other point by ‘boosting’ along a d-line.

10.6.4 Midpoints and circles in non-Euclidean geometry

Now that we have a conformal encoding of a straight line and of distance in non-
Euclidean geometry, we can proceed to discuss concepts such as the midpoint of
two points, and of the set of points a constant distance from a given point (a
non-Euclidean circle). Suppose that A and B are the conformal vectors of two
points in the Poincaré disc. Their midpoint C lies on the line L = A∧B∧e and
is equidistant from both A and B. The latter condition implies that

C ·A
C ·eA·e =

C ·B
C ·eB ·e . (10.171)

Both of the conditions for C are easily satisfied by setting

C =
A

2A·e +
B

2B ·e + αe, (10.172)

where α must be chosen such that C2 = 0. Normalising to C ·e = −1 we find
that the midpoint is

C = − 1√
1 + δ

(
A

2A·e +
B

2B ·e +
(√

1 + δ − 1
)
e

)
, (10.173)

where

δ = − A·B
2A·eB ·e . (10.174)

An equation such as this is rather harder to achieve without access to the con-
formal model.

Next suppose we wish to find the set of points a constant (non-Euclidean)
distance from the point C. This defines a non-Euclidean circle with centre C.
From equation (10.166), any point X on the circle must satisfy

− X ·C
2X ·eC ·e = constant = α2, (10.175)

so that the radius is sinh−1(α). It follows that

X ·(C + 2α2C ·e e) = 0. (10.176)

If we define s by

s = C + 2α2C ·e e (10.177)

we see that s2 > 0, and the circle is defined by X·s = 0. But this is precisely the
formula for a circle in Euclidean geometry, so non-Euclidean circles still appear
as ordinary circles when plotted in the Poincaré disc. The only difference is the
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A

Figure 10.11 Non-Euclidean circles. A series of non-Euclidean circles with
differing radii are shown, all about the common centre A. A d-line through
A is also shown. This intersects each circle at a right angle.

interpretation of their centre. The Euclidean centre of the circle s, defined by
sns, does not coincide with the non-Euclidean centre C. This is illustrated in
figure 10.11.

Suppose that A, B and C are three points in the Poincaré disc. We can still
define the line L through these points by

L = A∧B∧C, (10.178)

and this defines the circle through the three points regardless of the geometry we
are working in. All that is different in the two geometries is the position of the
midpoint and the size of the radius. The test that the three points lie on a d-line
is simply that L∧e = 0. Again, the Euclidean formula holds, but with n replaced
by e. Similar comments apply to other operations in conformal space, such as
reflection. Given a line L, points are reflected in this line by the map X 
→ LXL.
This formula is appropriate in both Euclidean and non-Euclidean geometry. In
the non-Euclidean case it is not hard to verify that LXL corresponds to first
finding the d-line through X intersecting L at right angles, and then finding the
point on this line an equal non-Euclidean distance on the other side. This is as
one would expect for the definition of reflection in a line.
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10.6.5 A unified framework for geometry

We have so far seen how Euclidean and hyperbolic geometries can both be han-
dled in terms of null vectors in conformal space. The key concept is the vector
representing the point at infinity, which remains invariant under the appropriate
symmetry group. The full conformal group of a space with signature (p, q) is
the orthogonal group O(p + 1, q + 1). The group of Euclidean transformations
is the subgroup of O(p + 1, q + 1) that leaves the vector n invariant. The hyper-
bolic group is the subgroup of O(p + 1, q + 1) which leaves e invariant. For the
case of planar geometry, with signature (2, 0), the hyperbolic group is O(2, 1).
The Killing form for this group is non-degenerate (see chapter 11), which makes
hyperbolic geometry a useful way of compactifying a flat space.

The remaining planar geometry to consider is spherical geometry. By now, it
should come as little surprise that spherical geometry is handled in the conformal
framework in terms of transformations which leave the vector ē invariant. For
the case of the plane, the conformal algebra has signature (3, 1), with ē the basis
vector with negative signature. The subgroup of the conformal group which
leaves ē invariant is therefore the orthogonal group O(3, 0), which is the group
one expects for a 2-sphere. The distance measure for spherical geometry is

d(x, y) = 2λ sin−1

(
− X ·Y

2X ·ē Y ·ē

)1/2

, (10.179)

with ē replacing n in the obvious manner. To see that this expression is correct,
suppose that we write

X

X ·ē = x̂ − ē, (10.180)

where x̂ is a unit vector built in the three-dimensional space spanned by the
vectors e1, e2 and e. With Y/Y ·ē written in the same way we find that

− X ·Y
2X ·ē Y ·ē =

1 − x̂·ŷ
2

= sin2(θ/2), (10.181)

where θ is the angle between the unit vectors on the 2-sphere. The distance
measure is then precisely the angle θ multiplied by the dimensional quantity λ,
which represents the radius of the sphere.

Conformal geometry provides a unified framework for the three types of planar
geometry because in all cases the conformal groups are the same. That is, the
group of transformations of sphere that leave angles in the sphere unchanged is
the same as for the plane and the hyperboloid. In all cases the group is O(3, 1).
The geometries are then recovered by a choice of distance measure. In classical
projective geometry the distance measure is defined by the introduction of the
absolute conic. All lines intersect this conic in a pair of points. The distance
between two points A and B is then found from the four-point ratio between A,
B, and the two points of intersection of the line through A and B and the absolute
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conic. In this way all geometries are united in the framework of projective
geometry. But there is a price to pay for this scheme — all coordinates have to
be complex, to ensure that all lines intersect the conic in two points. Recovering
a real geometry is then rather clumsy. In addition, the conformal group is not a
subgroup of the projective group, so much of the elegant unity exhibited by the
three geometries is lost. Conformal geometry is a more powerful framework for
a unified treatment of these geometries. Furthermore, the conformal approach
can be applied to spaces of any dimension with little modification. Trivectors
represent lines and circles, 4-vectors represent planes and spheres, and so on.

So far we have restricted ourselves to a single view of the various geometries,
but the discussion of the sphere illustrates that there are many different ways of
representing the underlying geometry. To begin with, we have plotted points on
the Euclidean plane according the the formula

x = −X∧N

X ·n N, (10.182)

where N = eē. This is the natural scheme for plotting on a Euclidean piece of
paper, as it ensures that the angle between lines on the paper is the correct angle
in each of the three geometries. Euclidean geometry plotted in this way recovers
the obvious standard picture of Euclidean geometry. Hyperbolic geometry led
to the Poincaré disc model, in which hyperbolic lines appear as circles. For
spherical geometry the ‘straight lines’ are great circles on a sphere. On the plane
these also plot as circles. This time the condition is that all circles intersect the
unit circle at antipodal points. This then defines the spherical line between
two points (see figure 10.12). This view of spherical geometry is precisely that
obtained from a stereographic projection of the sphere onto the plane. This
is not a surprise, as the conformal model was initially constructed in terms of
a stereographic projection, with the ē vector then enabling us to move to a
homogeneous framework. In this representation of spherical geometry the map

X 
→ ēXē (10.183)

is a symmetry operation. This maps points to their antipodal opposites on the
sphere. In the planar view this transformation is an inversion in the unit circle,
followed by a reflection in the origin.

We now have three separate geometries, all with conformal representations in
the plane such that the true angle between lines is the same as that measured on
the plane. The price for such a representation is that straight lines in spherical
and hyperbolic geometries do not appear straight in the plane. But we could
equally choose to replace the map of equation (10.182) with an alternative rule of
how to plot the null vector X on a planar piece of paper. The natural alternatives
to consider are replacing the vector n with e and ē. In total we then have three
different planar realisations of each of the two-dimensional geometries. First,
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Figure 10.12 Stereographic view of spherical geometry. All great circles on
the 2-sphere project onto circles in the plane which intersect the unit circle
(shown in bold) at antipodal points. A series of such lines are shown.

suppose we define

y =
X∧N

X ·e N. (10.184)

In terms of the vector x we have

y =
2x

1 − x2
, (10.185)

which represents a radial rescaling. Euclidean straight lines now appear as hy-
perbolae or ellipses, depending on whether or not the original line intersected
the disc. If the line intersected the disc then the map of equation (10.185) has
two branches and defines a hyperbola. If the line misses the disc then an ellipse
is obtained. In all cases the image lines pass through the origin, as this is the
image of the point at infinity.

The fact that the map of equation (10.185) is two-to-one means it has little
use as a version of Euclidean geometry. It is better suited to hyperbolic geom-
etry, as one might expect, as the Poincaré disc is now mapped onto the entire
plane. Hyperbolic straight lines now appear as (single-branch) hyperbolae on
the Euclidean page, all with their asymptotes crossing at the origin. If the dual
space outside the disc is included in the map, then this generates the second
branch of each hyperbola. Points then occur in pairs, with each point paired
with its image under reflection in the origin. Finally, we can consider spheri-
cal geometry as viewed on a plane through the map of equation (10.185). This
defines a standard projective map between a sphere and the plane. Antipodal
points on the sphere define the same point on the plane and spherical straight
lines appear as straight lines.

Similarly, we can consider plotting vectors in the plane according to
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y = −X∧N

X ·ē N = −F (x)∧N

F (x)·ē N (10.186)

or in terms of the vector x

y =
2x

1 + x2
. (10.187)

This defines a one-to-one map of the unit disc onto itself, and a two-to-one map
of the entire plane onto the disc. Euclidean straight lines now appear plotted as
ellipses inside the unit disc. This construction involves forming a stereographic
projection of the plane onto the 2-sphere, so that lines map to circles on the
sphere. The sphere is then mapped onto the plane by viewing from above, so
that circles on the sphere map to ellipses. All ellipses pass through the origin,
as this is the image of the point at infinity.

Similar comments apply to spherical geometry. Spherical lines are great circles
on the sphere, and viewed in the plane according to equation (10.187) great circles
appear as ellipses centred on the origin and touching the unit circle at their
endpoints. The two-to-one form of the projection means that circle intersections
are not faithfully represented in the disc as some of the apparent intersections
are actually caused by points on opposite sides of the plane. Finally, we consider
plotting hyperbolic geometry in the view of equation (10.187). The disc maps
onto itself, so we do have a faithful representation of hyperbolic geometry. This
is a representation in which hyperbolic lines appear straight on the page, though
angles are not rendered correctly, and non-Euclidean circles appear as ellipses.

As well as viewing each geometry on the Euclidean plane, we can also picture
the geometries on a sphere or a hyperboloid. The spherical picture is obtained
in equation (10.180), and the hyperboloid view is similarly obtained by setting

X

X ·e = x̂ + e, (10.188)

where x̂2 = −1. The set of x̂ defines a pair of hyperbolic sheets in the space
defined by the vectors {e1, e2, ē}. The fact that two sheets are obtained explains
why some views of hyperbolic geometry end up with points represented twice.
So, as well as three geometries (defined by a transformation group) and a variety
of plotting schemes, we also have a choice of space to draw on, providing a large
number of alternative schemes for studying the three geometries. At the back of
all of this is a single algebraic scheme, based on the geometric algebra of confor-
mal space. Any algebraic result involving products of null vectors immediately
produces a geometric theorem in each geometry, which can be viewed in a variety
of different ways.
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10.7 Spacetime conformal geometry

As a final application of the conformal approach to geometry we turn to space-
time. The conformal geometric algebra for a spacetime with signature (1, 3) is
the six-dimensional algebra with signature (2, 4). The algebra G(2, 4) contains
64 terms, which decompose into graded subspaces of dimensions 1, 6, 15, 20, 15,
6 and 1. As a basis for this space we use the standard spacetime algebra basis
{γµ}, together with the additional vectors {e, ē}. The pseudoscalar I is defined
by

I = γ0γ1γ2γ3eē. (10.189)

This has negative norm, I2 = −1. The conformal algebra allows us to simply
encode ideas such as closed circles in spacetime, or light-spheres centred on an
arbitrary point.

The conformal algebra of spacetime also arises classically in a slightly differ-
ent setting. In conformal geometry, circles and spheres are represented homoge-
neously as trivectors and 4-vectors. These are unoriented because L and −L are
used to encode the same object. A method of dealing with oriented spheres was
developed by Sophus Lie and is called Lie sphere geometry. A sphere in three
dimensions can be represented by a vector s in the conformal algebra G(4, 1),
with s2 > 0. Lie sphere geometry is obtained by introducing a further basis
vector of negative signature, f , and replacing s by the null vector

s̄ = s + |s|f, s̄2 = 0. (10.190)

Now the spheres encoded by s and −s have different representations as null
vectors in a space of signature (4, 2). This algebra is ideally suited to handling the
contact geometry of spheres. The signature shows that this space is isomorphic
to the conformal algebra of spacetime, so in a sense the introduction of the vector
f can be thought of as introducing a time direction. A sphere can then be viewed
as a light-sphere allowed to grow for a certain time. Orientation for spheres is
then handled by distinguishing between incoming and outgoing light-spheres.

The conformal geometry of spacetime is a rich and important subject. The
Poincaré group of spacetime translations and rotations is a subgroup of the full
conformal group, but in a number of subjects in theoretical physics, including
supersymmetry and supergravity, it is the full conformal group that is relevant.
One reason is that conformal symmetry is present in most massless theories. This
symmetry then has consequences that can carry over to the massive regime. We
will not develop the classical approach to spacetime conformal geometry further
here. Instead, we concentrate on an alternative route through to conformal
geometry, which unites the multiparticle spacetime algebra of chapter 9 with the
concept of a twistor.
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10.7.1 The spacetime conformal group

For most of this chapter we have avoided detailed descriptions of the relationships
between the groups involved in the geometric algebra formulation of conformal
geometry. For the following, however, it is helpful to have a clearer picture of
precisely how the various groups fit together. The subject of Lie groups in gen-
eral is discussed in chapter 11. The spacetime conformal group C(1, 3) consists
of spacetime maps x 
→ f(x) that preserve angles. This is the definition first
encountered in section 10.3. The group of orthogonal transformations O(2, 4)
is a double-cover representation of the conformal group, because in conformal
space both X and −X represent the same spacetime point. As with Lorentz
transformations, we are typically interested in the restricted conformal group.
This consists of transformations that preserve orientation and time sense, and
contains translations, proper orthochronous rotations, dilations and special con-
formal transformations. The restricted orthogonal group, SO+(2, 4), is a double-
cover representation of the restricted conformal group.

We can form a double-cover representation of SO+(2, 4) by writing all re-
stricted orthogonal transformations as rotor transformations a 
→ RaR̃. The
group of conformal rotors, denoted spin+(2, 4), is therefore a four-fold covering
of the restricted conformal group. The rotor group in G(2, 4) is isomorphic to
the Lie group SU(2, 2). It follows that the action of the restricted conformal
group can be represented in terms of complex linear transformations of four-
dimensional vectors, in a complex space of signature (2, 2). This is the basis
of the twistor program, initiated by Roger Penrose. Twistors were introduced
as objects describing the geometry of spacetime at a ‘pre-metric’ level, one of
the aims being to provide a route to a quantum theory of gravity. Instead of
points and a metric, twistors represent incidence relations between null rays.
Spacetime points and their metric relations then emerge as a secondary concept,
corresponding to the points of intersection of null lines.

As a first step in understanding the twistor program, we establish a concrete
representation of the conformal group within the spacetime algebra. The key to
this is the observation that the spinor inner product

〈ψ̃φ〉q = 〈ψ̃φ〉 − 〈ψ̃φIσ3〉Iσ3 (10.191)

defines a complex space with precisely the required metric. The complex struc-
ture is represented by right-multiplication by combinations of 1 and Iσ3, as
discussed in chapter 8. We continue to refer to ψ and φ as spinors, as they are
acted on by a spin representation of the restricted conformal group. To establish
a representation in terms of operators on ψ, we first form a representation of the
bivectors in G(2, 4) as

eγµ ↔ γµψγ0Iσ3 = γµψIγ3,

ēγµ ↔ Iγµψγ0.
(10.192)
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A representation of the even subalgebra of G(2, 4), and hence an arbitrary rotor,
can be constructed from these bivectors. The representation of each of the oper-
ations in the restricted conformal group can now be constructed from the rotors
found in section 10.3. We use the same symbol for the spinor representation of
the transformations as the vector case. A translation by the vector a has the
spin representation

Ta(ψ) = ψ + aψIγ3
1
2 (1 + σ3) . (10.193)

The spinor inner product of equation (10.191) is invariant under this transfor-
mation. To confirm this, suppose that we set

ψ′ = Ta(ψ) and φ′ = Ta(φ). (10.194)

The quantum inner product contains the terms

〈ψ̃′φ′〉 = 〈
(
φ + aφIγ3

1
2 (1 + σ3)

)(
ψ̃ − 1

2 (1 − σ3) Iγ3ψ̃a
)
〉

= 〈ψ̃φ〉 (10.195)

and

〈ψ̃′φ′Iσ3〉 = 〈
(
φ + aφIγ3

1
2 (1 + σ3)

)
Iσ3

(
ψ̃ − 1

2 (1 − σ3) Iγ3ψ̃a
)
〉

= 〈ψ̃φIσ3〉. (10.196)

It follows that

〈ψ̃′φ′〉q = 〈ψ̃φ〉q, (10.197)

as expected.
The spinor representation of a rotation about the origin is precisely the space-

time algebra rotor, so we can write

R0(ψ) = Rψ, (10.198)

where R0 denotes a rotation in the origin, and R is a spacetime rotor. Rotations
about arbitrary points are constructed from combinations of translations and
rotations. The dilation x 
→ exp(α)x has the spinor representation

Dα(ψ) = ψeασ3/2. (10.199)

This represents a dilation in the origin. Dilations about a general point are
also obtained from a combination of translations and a dilation in the origin.
The representation of the restricted conformal group is completed by the special
conformal transformations, which are represented by

Ka(ψ) = ψ − aψIγ3
1
2 (1 − σ3) . (10.200)

It is a routine exercise to confirm that the preceding operations do form a spin
representation of the restricted conformal group.
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The full conformal group includes inversions. These can be represented as
antiunitary operators. An inversion in the origin is represented by

ψ 
→ ψ′ = ψIσ2. (10.201)

The effect of this on the inner product of equation (10.191) is that we form

〈ψ̃′φ′〉q = 〈φ̃ψ〉q =
(
〈ψ̃φ〉q

)∼
. (10.202)

This representation of an inversion in the origin satisfies

Dα(ψIσ2) = D−α(ψ)Iσ2, (10.203)

as required.

10.7.2 Multiparticle representation of conformal vectors

We have defined a carrier space for a spin-1/2 representation of the spacetime
conformal group. A vector representation of the conformal groups can therefore
be constructed from quadratic combinations of spinors. Spinors can be thought
of as belonging to a complex four-dimensional space. The tensor product space
therefor contains 16 complex degrees of freedom. This decomposes into a ten-
dimensional symmetric space and six-dimensional antisymmetric space. The six
complex degrees of freedom in the antisymmetric representation are precisely
the dimensions required to construct a conformal vector. The ten-dimensional
symmetric space has 20 real degrees of freedom, and forms a representation of
trivectors in conformal spacetime.

In principle, then, we will form complex vectors in conformal spacetime. But
for a special class of spinor the conformal vector is real. If we translate a constant
spinor by the position vector r = xµγµ we form the object

Tr(ψ) = ψ + rψIγ3
1
2 (1 + σ3) , (10.204)

which is the spacetime algebra version of a twistor. A twistor is essentially a
spacetime algebra spinor with a particular position dependence. The key to
constructing a real conformal vector from an antisymmetric pair of twistors is
to impose the conditions that they are both null, and orthogonal. Suppose that
we set

X = Tr(ψ), Z = Tr(φ). (10.205)

The conditions that these generate a real conformal vector are then

〈X̃X〉q = 〈Z̃Z〉q = 〈X̃Z〉q = 0. (10.206)

The position dependence in X and Z does not affect the inner product, so the
same conditions must also be satisfied by ψ and φ. Choosing appropriate spinors
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satisfying these relationships essentially amounts to a choice of origin. The most
straightforward way to satisfy the requirements is to set

X = ω 1
2 (1 − σ3) + rωIγ3

1
2 (1 + σ3) (10.207)

and

Z = κ 1
2 (1 − σ3) + rκIγ3

1
2 (1 + σ3) , (10.208)

where ω and κ are Pauli spinors (spinors in the spacetime algebra that commute
with γ0).

To construct a vector from the two twistors X and Z we form their antisym-
metrised tensor product in the multiparticle spacetime algebra. We therefore
construct the multivector

ψr = (X1Z2 − Z1X2)E, (10.209)

where the notation follows section 9.2. If we now make use of the results in
table 9.2 we find that

ψr = (r·r ε − r1ηγ1
0J − ε̄)〈Iσ2κ̃ω〉q, (10.210)

where η is the Lorentz singlet state defined in equation (9.93), and ε and ε̄ are
defined by

ε = η 1
2 (1 + σ1

3), ε̄ = η 1
2 (1 − σ1

3). (10.211)

The two-particle state ψ closely resembles our standard encoding of a point as a
null vector in conformal space. The singlet state ε represents the point at infinity,
and is the spacetime algebra version of the infinity twistor. The opposite ideal,
ε̄, represents the origin (r = 0).

More generally, given arbitrary single-particle spinors, we arrive at a complex
six-dimensional vector. Restricting to the real subspace, a general point in this
space can be written as the state

ψP = (V − W )ε + P 1ηγ1
0 + (V + W )ε̄, (10.212)

where

P = Tγ0 + Xγ1 + Y γ2 + Zγ3. (10.213)

To form the inner product of such states we require the results that

〈ε̃ε〉q = 〈˜̄εε̄〉q = 0, 4〈ε̃ε̄〉q = 1. (10.214)

Now forming the quantum norm for the state ψP we find that

2〈ψ̃P ψP 〉q = T 2 + V 2 − W 2 − X2 − Y 2 − Z2. (10.215)

So (V,W, T,X, Y, Z) are the coordinates of a six-dimensional vector in a space
with signature (2, 4). This establishes the map between a two-particle antisym-
metrised spinor and a conformal vector.
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Our ‘real’ state ψr can be cast into standard form by removing the complex
factor on the right-hand side and setting

ψr 
→ ψr

4〈ψ̃rε〉q
. (10.216)

Once this is done, all reference to the original ω and κ spinors is removed. The
inner product between two two-particle states ψr and φs, where φs represents
the point s, returns

− 〈ψ̃rφs〉q
4〈ψ̃rε〉q〈φ̃sε〉q

= (r − s)·(r − s). (10.217)

The multiparticle inner product therefore recovers the square of the spacetime
distance between points. This result is one reason why points are encoded
through pairs of null twistors.

We have now established a complete representation of conformal vectors for
spacetime in terms of antisymmetrised products of a class of spinors, each eval-
uated in a single copy of the spacetime algebra. We should now check that
our representation of the conformal group through its action on spinors induces
the correct vector representation in the two-particle algebra. We start with our
standard multiparticle representation of a conformal vector as

ψr = r·r ε − r1ηγ1
0J − ε̄. (10.218)

The first operation to consider is a translation. The spinor representation of a
translation by a induces the map

ψr 
→ ψ′
r = Ta1Ta2ψr. (10.219)

After some algebra we establish that

ψ′
r = (r + a)·(r + a) ε − (r + a)1ηγ1

0J − ε̄, (10.220)

as required.
Next consider a Lorentz rotation centred on the origin. These are easily ac-

complished as they correspond to multiplying the single-particle spinor by the
appropriate rotor. This induces the map

ψr 
→ R1R2ψr = r·r R1R2ε − R1r1R2ηγ1
0J − R1R2ε̄

= r·r ε − (RrR̃)1ηγ1
0J − ε̄, (10.221)

which achieves the desired rotation. Reflections in planes through the origin are
equally easily achieved through the single-particle antiunitary operation

ψ 
→ Iaψγ2, (10.222)

388

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.012
https:/www.cambridge.org/core


10.7 SPACETIME CONFORMAL GEOMETRY

where a is the normal vector to the plane of reflection. Applied to the two-particle
state we obtain

ψr 
→ a·a
(
r·r ε + (ara−1)1ηγ1

0J − ε̄
)
, (10.223)

which is the conformal representation of the reflected vector −ara−1. As we
also have a representation of translations, we can rotate and reflect about an
arbitrary point.

Inversions in the origin are handled in conformal space by an operation that
swaps the vectors representing the origin and infinity. In the multiparticle setting
we must therefore interchange ε and ε̄, which is achieved by right-multiplication
by Iσ1

2Iσ
2
2,

ψr 
→ ψrIσ
1
2 Iσ2

2 = −r·r ε̄ + r1ηγ1
0J + ε

= −r·r(r′ ·r′ ε − (r′)1ηγ1
0J − ε̄), (10.224)

where r′ = r/(r·r). Dilations in the origin are performed in a similar manner, this
time by scaling ε and ε̄ through opposite amounts. This is successfully achieved
by the two-particle map induced by equation (10.199),

ψr 
→ ψ′
r = ψreα/2(σ1

3 + σ2
3). (10.225)

Special conformal transformations are also handled in the obvious way as the
two-particle extension of the Ka operator of equation (10.200). This completes
the description of the conformal group in the two-particle spacetime algebra
setting.

Conformal spacetime geometry can be formulated in an entirely ‘quantum’
language in terms of multiparticle states built from spinor representations of the
conformal group. This link between multiparticle quantum theory and confor-
mal geometry is quite remarkable, and is the basis for the twistor programme.
But one obvious question remains — is this abstract quantum-mechanical for-
mulation necessary, if all one is interested is the conformal geometric algebra
of spacetime? If the twistor programme is simply a highly convoluted way of
discussing conformal geometric algebra, then the answer is no. The question is
whether there is anything more fundamental about the quantum framework of
the twistor approach.

Advocates of the twistor program would argue that the route we have followed
here, which embeds a twistor within the spacetime algebra, reverses the logic
which initially motivates twistors. The idea is that they exist at a pre-metric
level, so that the spacetime interval between points emerges from a particular
two-particle quantum inner product. This hints at a route to a quantum theory of
gravity, where distance becomes a quantum observable. But much of the initial
promise of this work remains unfulfilled, and twistors are no longer the most
popular candidate for a quantum theory of gravity. For classical applications
to real spacetime geometry it does appear that all twistor methods have direct
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counterparts in the geometric algebra G(2, 4), and the latter approach avoids
much of the additional formal baggage required when employing twistors.

10.8 Notes

The authors would like to thank Joan Lasenby for her help in writing this chapter.
The subjects discussed in this chapter range from the foundations of algebraic
geometry, dating back to the nineteenth century and before, through to some
very modern applications. An excellent introduction to geometry is the book
Geometry by Brannan, Esplen & Gray (1999). Projective geometry is described
in the classic text by Semple & Kneebone (1998), and Lie sphere geometry is de-
scribed by Cecil (1992). A valuable tool for studying two-dimensional geometry
is the software package Cinderella, written by Richter-Gebert and Kortenkamp.
This package was used to produce a number of the illustrations in this chapter.

The geometric algebra formulation of projective geometry is described in the
pair of important papers ‘The design of linear algebra and geometry’ by Hestenes
and ‘Projective geometry with Clifford algebra’ by Hestenes & Ziegler (both
1991). These papers also include preliminary discussions of conformal geometry,
though the approach is different to that taken here. Projective geometry is
particularly relevant to the field of computer graphics, and some applications
of geometric algebra in this area are discussed in the papers by Stevenson &
Lasenby (1998) and Perwass & Lasenby (1998).

The systematic study of conformal geometry with geometric algebra was only
initiated in the 1990s and is one of the fastest developing areas of current re-
search. Some of the earliest developments are contained in Clifford Algebra to
Geometric Calculus by Hestenes & Sobczyk (1984), and in the paper ‘Distance
geometry and geometric algebra’ by Dress & Havel (1993), which emphasises
the role of the conformal metric. Uncovering the roles of the various geometric
primitives in conformal space was initiated by Hestenes (2001) in the paper ‘Old
wine in new bottles: a new algebraic framework for computational geometry’
and is described in detail in the papers by Hestenes, Li & Rockwood (1999a,b).
Applications to the study of surfaces are described in the paper ‘Surface evolu-
tion and representation using geometric algebra’ by Lasenby & Lasenby (2000b),
and a range of further applications are discussed in the proceedings of the 2001
conference Applications of Geometric Algebra in Computer Science and Engi-
neering (Dorst, Doran & Lasenby, 2002). The rapid development of the subject
has meant that a consistent notation is yet to be established by all authors.

The unification of Euclidean and non-Euclidean geometry in the conformal
framework is also described in the series of papers by Hestenes, Li & Rockwood
(1999a,b) and in a separate paper by Li (2001). The development in this chap-
ter goes further than these papers in giving a concrete realisation of traditional
methods within the geometric algebra framework. Twistor techniques are de-
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scribed in volume II of Spinors and Space-time by Penrose & Rindler (1986). A
preliminary discussion of how twistors are incorporated into spacetime algebra is
contained in the paper ‘2-spinors, twistors and supersymmetry in the spacetime
algebra’ by Lasenby, Doran & Gull (1993b). The multiparticle description of
conformal vectors is discussed in the paper ‘Applications of geometric algebra
in physics and links with engineering’ by Lasenby & Lasenby (2000a). Due to a
printing error all dot products in this paper appear as deltas, though once one
knows this the paper is readable!

10.9 Exercises

10.1 Let A, B, C, D denote four points on a line, and write their cross ratio
as (ABCD). Given that (ABCD) = k, prove that

(BACD) = (ABDC) = 1/k

and

(ACBD) = (DBCA) = 1 − k.

10.2 Prove that the cross ratio of four collinear points is a projective invariant,
regardless of the size of the space containing the line.

10.3 Given four points in a plane, no three of which are collinear, prove that
there exists a projective transformation that maps these to any second
set of four points, where again no three are collinear.

10.4 The vectors a, b, c, a′, b′, c′ all belong to G(3, 0). From these we define
the bivectors

A = b∧c, B = c∧a, C = a∧b,

with the same definitions holding for A′, B′, C ′. Prove that

〈A×A′ B×B′ C×C ′〉 = 〈a∧b∧c a′∧b′∧c′〉〈a∧a′ b∧b′ c∧c′〉.

This proves Desargues’ theorem for two triangles in a common plane.
Does the theorem still hold in three dimensions when the triangles lie
on different planes?

10.5 Given six vectors a1, . . . , a6 representing points in the projective plane,
prove that

a5∧a4∧a3

a5∧a1∧a3

a6∧a2∧a1

a6∧a2∧a4
=

A543

A513

A621

A624
,

where Aijk is the area of the triangle whose vertices are described pro-
jectively by the vectors ai, aj , ak. How does this ratio of areas transform
under a projective transformation?
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10.6 A Möbius transformation in the complex plane is defined by

z 
→ z′ =
az + b

cz + d
,

where a, b, c, d are complex numbers. Prove that, viewed as a map of
the complex plane onto itself, a Möbius transformation is a conformal
transformation. Can all conformal transformations in the plane be rep-
resented as Möbius transformations? If not, which operation is missing?

10.7 Find the general form of the rotor, in conformal space, for a rotation
through θ in the a∧b plane, about the point with position vector a.

10.8 A special conformal transformation in Euclidean space corresponds to a
combination of an inversion in the origin, a translation by b and a further
inversion in the origin. Prove that the result of this can be written

x 
→= x
1

1 + bx
.

Hence show that the linear function f(a) = a·∇x is given by

f(a) =
(1 + bx)a(1 + xb)
(1 + 2b·x + b2x2)2

.

Why does this transformation leave angles unchanged?
10.9 Given a conformal bivector B, with B2 > 0, why does this encode a

pair of Euclidean points? Prove that the midpoint of these two points
is described by

C = BnB.

10.10 Two circles in a Euclidean plane are described by conformal trivectors L1

and L2. By expressing the dual vectors l1 and l2 in terms of the centre
and radius of the circles, confirm directly that the circles intersect at
right angles if

l1 ·l2 = 0.

10.11 The conformal vector X denotes a point lying on the circle L, L∧X = 0,
where L is a trivector. Prove that the tangent vector T to the circle at
X can be written

T = (X ·L)∧n.

10.12 A non-Euclidean translation along the line through X and Y is generated
by the bivector B = Le, where

L = X∧Y ∧e.

Prove that the hyperbolic angle α which takes us from X to Y is given
by

cosh(α) = 1 − X ·Y
X ·e Y ·e .
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10.13 The line element over the Poincaré disc is defined by

ds2 =
1

1 − r2
(dr2 + r2dθ2),

where r and θ are polar coordinates and r < 1. Prove that geodesics in
this geometry all intersect the circle r = 1 at right angles.

10.14 Suppose that ψ is an even element of the spacetime algebra. This is
acted on by the following linear transformations:

R0(ψ) = Rψ,

Ta(ψ) = ψ + aψIγ3
1
2 (1 + σ3) ,

Dα(ψ) = ψeασ3/2,

Ka(ψ) = ψ − aψIγ3
1
2 (1 − σ3) ,

where R is a spacetime rotor. Prove that this set of linear transfor-
mations generate a representation of the restricted conformal group of
spacetime.
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11

Further topics in calculus and
group theory

In this chapter we collect together a number of diverse algebraic ideas and tech-
niques. The first part of the chapter deals with some advanced topics in calculus.
We introduce the multivector derivative, which is a valuable tool in Lagrangian
analysis. We also show how the vector derivative can be adapted to provide a
compact notation for studying linear functions. We then extend the multivector
derivative to the case where we differentiate with respect to a linear function.
Finally in this part we look briefly at Grassmann calculus, which is a major
ingredient in modern quantum field theory.

The second major topic covered in this chapter is the theory of Lie groups.
We provide a detailed analysis of spin groups over a real geometric algebra. By
introducing invariant bivectors we show how both the unitary and general linear
groups can be represented in terms of spin groups. It then follows that all Lie
algebras can be represented as bivector algebras under the commutator product.
Working in this way we construct the main Lie groups as subgroups of rotation
groups. This is a valuable alternative procedure to the more common method
of describing Lie groups in terms of matrices. Throughout this chapter we use
the tilde symbol for the reverse, R̃. This avoids confusion with the Hermitian
conjugate, which is required in section 11.4 on complex structures.

11.1 Multivector calculus

Before extending our analysis of linear functions in geometric algebra, we first
discuss differentiation with respect to a multivector. Suppose that the multivec-
tor F is an arbitrary function of some multivector argument X, F = F (X). The
derivative of F with respect to X in the A direction is defined by

A∗∂XF (X) = lim
τ 	→0

F (X + τA) − F (X)
τ

, (11.1)
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where A∗B = 〈AB〉. The multivector derivative ∂X is defined in terms of its
directional derivatives by

∂

∂X
= ∂X =

∑
i<···<j

ei∧· · ·∧ej(ej∧· · ·∧ei)∗∂X , (11.2)

where the {ei} are a set of frame vectors for the space of interest. The definition
shows how the multivector derivative ∂X inherits the multivector properties of
its argument X, as well as a calculus from equation (11.1). This is the natural
generalisation of the vector derivative ∇ to a general multivector.

Most of the properties of the multivector derivative follow from the result that

∂X〈XA〉 = PX(A), (11.3)

where PX(A) is the projection of A onto the grades contained in X. Leibniz’s
rule is then used to build up results for more complicated functions. We employ
the same rules for the multivector derivative as for the vector derivative. The
derivative acts on objects to its immediate right unless brackets are present.
If the ∂X is intended to only act on B then this is written as ∂̇XAḂ, where
the overdot denotes the multivector on which the derivative acts. For example,
Leibniz’s rule can be written as

∂X(AB) = ∂̇XȦB + ∂̇XAḂ. (11.4)

As an example, suppose that ψ is a general even element. The derivative of the
scalar product 〈ψψ̃〉 is

∂ψ〈ψψ̃〉 = ∂̇ψ〈ψ̇ψ̃〉 + ∂̇ψ〈ψ ˙̃
ψ〉 = 2ψ̃. (11.5)

For the second term we used the result that

∂̇ψ〈ψ ˙̃
ψ〉 = ∂̇ψ〈ψ̇ψ̃〉 = ψ̃, (11.6)

which follows from the fact that any scalar term reverses to give itself. This result
for the derivative of 〈ψψ̃〉 can be verified rather more laboriously by expanding
out in a basis.

11.1.1 The vector derivative and multilinear algebra

The derivative with respect to a vector was first introduced in chapter 6 as an
essential component of field theory. Here we exploit the properties of the vector
derivative in a rather different setting. Suppose that a denotes an arbitrary vec-
tor. We write the derivative with respect a as ∂a. Algebraically, this derivative
has the properties of a vector. It is essentially the same object as the vector
derivative, except that we are not differentiating with respect to the position
dependence of a function. Instead we will use ∂a to differentiate a variety of

395

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.013
https:/www.cambridge.org/core


FURTHER TOPICS IN CALCULUS AND GROUP THEORY

expressions that are linear in a. Introducing the tools of calculus may appear
unnecessary for the analysis of linear algebra, but the notation does have some
practical advantages. Combinations of a and ∂a can be used to perform contrac-
tions and protractions without having to introduce a basis frame. For example,
the results of section 4.3.2 can be summarised in the compact formulae

∂aa·Ar = rAr,

∂aa∧Ar = (n − r)Ar, (11.7)

∂aAra = (−1)r(n − 2r)Ar.

Similarly, the vector derivative allows the trace of a linear function to be written
simply as

tr(f) = ∂a ·f(a). (11.8)

The trace is the first of a series of scalar invariants that can be defined from
f. These are compactly handled using the vector derivative. Suppose that
{a1, a2, . . . , an} denote a set of n independent vectors. We define the multi-
vector variable

a(r) = a1∧a2∧· · ·∧ar (11.9)

with the associated derivative

∂(r) =
1
r!

∂ar
∧∂ar−1∧· · ·∧∂a1 . (11.10)

Since

〈Ar∧∂a a∧Br〉 = (n − r)〈ArBr〉, (11.11)

it follows that

∂(r)a(r) =
n!

(n − r)! r!
=
(

n

r

)
. (11.12)

We also make the further abbreviation

f(a(r)) = f(a1)∧f(a2)∧· · ·∧f(ar) = f(r). (11.13)

This notation allows us to write

∂(1) ·f(1) = ∂a1 ·f(a1) = tr(f) (11.14)

and

∂(n)f(n) = ∂(n)a(n)det (f) = det (f). (11.15)

These two invariants are clearly special cases of the range of invariants ∂(r) ·f(r).
To understand the importance of the ∂(r) ·f(r) invariants, consider the charac-

teristic polynomial for f. This is formed by constructing the determinant of the
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function G(a) = f(a) − λa, which yields

det (G) = ∂(n)G(n)

= ∂(n)

(
f(a1) − λa1

)
∧
(
f(a2) − λa2

)
∧· · ·∧

(
f(an) − λan

)
= ∂(n)

(
f(n) − nλf(n−1)∧an + · · · + (−λ)na(n)

)
. (11.16)

A general term in this expression goes as

(−λ)s

(
n

s

)
∂(n) ·

(
f(n−s)∧an−s+1∧· · ·∧an

)
= (−λ)s∂(n−s) ·f(n−s). (11.17)

It follows that the characteristic polynomial is simply

C(λ) =
n∑

s=0

(−λ)n−s∂(s) ·f(s), (11.18)

where ∂(0) ·f(0) = 1. This expression clearly demonstrates the significance of the
invariant quantities ∂(r) ·f(r).

The Cayley–Hamilton theorem states that
n∑

s=0

(−1)n−s∂(s) ·f(s) fn−s(a) = 0, (11.19)

where fr(a) denotes the r-fold application of f on a. This says that a linear
function satisfies its own characteristic equation. The theorem can be proved
quite generally without any assumptions about the form of f — it applies for
any linear function, in any linear space of any dimension and signature. An
immediate consequence is that, if e is an eigenvector of f,

f(e) = λe, (11.20)

then λ automatically satisfies the characteristic equation.

11.1.2 Calculus for linear functions

As well as the ability to differentiate with respect to a multivector, it is also very
useful to build up results for the derivative with respect to a linear function. We
start by introducing a fixed frame {ei}, and define the scalar coefficients

fij = ei ·f(ej). (11.21)

Now consider the derivative with respect to fij of the scalar f(b)·c. This is

∂fij
f(b)·c = ∂fij

(flkbkcl)

= cibj . (11.22)

Multiplying both sides of this equation by a·ej ei we obtain

a·ej ei∂fij
f(b)·c = a·b c, (11.23)
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which assembles a frame-independent vector on the right-hand side. It follows
that the operator a · ej ei∂fij

must also be frame-independent. We therefore
define the vector-valued differential operator ∂f(a) by

∂f(a) = a·ej ei∂fij
. (11.24)

The essential property of ∂f(a) is

∂f(a)f(b)·c = a·b c, (11.25)

which simply restates equation (11.23). As with the vector derivative, ∂f(a) has
the algebraic properties of a vector, which can be exploited in analysing a range
of expressions.

Equation (11.25), together with Leibniz’s rule, is sufficient to derive the main
results for the ∂f(a) operator. For example, suppose that B is a bivector, and we
construct

∂f(a)〈f(b∧c)B〉 = ∂̇f(a)〈ḟ(b)f(c)B〉 − ∂̇f(a)〈ḟ(c)f(b)B〉
= a·b f(c)·B − a·c f(b)·B
= f
(
a·(b∧c)

)
·B. (11.26)

This extends by linearity to give

∂f(a)〈f(A)B〉 = f(a·A)·B, (11.27)

where A and B are both bivectors. Proceeding in this manner, we obtain the
general formula

∂f(a)〈f(A)B〉 =
∑

r

〈f(a·Ar)Br〉1. (11.28)

For a fixed grade-r multivector Ar, we can now write

∂f(a)f(Ar) = ∂f(a)〈f(Ar)Ẋr〉∂̇Xr

= f(a·Ar)·Ẋr ∂̇Xr

= (n − r + 1)f(a·Ar). (11.29)

This is a very powerful result. For example, suppose that for Ar we take the
pseudoscalar I. We obtain

∂f(a)f(I) = ∂f(a)det (f)I = f(a·I). (11.30)

It follows that

∂f(a)det (f) = det (f )̄f−1(a), (11.31)

where we have used equation (4.152) This derivation is considerably more com-
pact than any available to conventional matrix/tensor methods.
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Equation (11.28) can be used to derive formulae for the functional derivative
of the adjoint. The general result is

∂f(a) f̄(Ar) = ∂f(a)〈f(Ẋr)Ar〉∂̇Xr

= f(a·Ẋr)·Ar ∂̇Xr
. (11.32)

When A is a vector, this admits the simpler form

∂f(a) f̄(b) = ba. (11.33)

If f is a symmetric function then f = f̄. But this fact cannot be exploited when
differentiating with respect to f, since fij and fji must be treated as independent
variables for the purposes of calculus.

11.2 Grassmann calculus

For most of his lifetime, Grassmann’s work on algebra and geometry was largely
ignored by the wider mathematical community. Today, however, Grassmann
algebra is a fundamental ingredient in theoretical physics. Fermionic creation
operators generate a Grassmann algebra, and Grassmann (anticommuting) vari-
ables are important components of path-integral quantisation, supersymmetry
and string theory. In this section we describe how the main algebraic results of
Grassmann calculus can be formulated in a straightforward manner within geo-
metric algebra. This reverses the standard approach, by which one progresses
from Grassmann to Clifford algebra via quantization.

Suppose that {ζi} are a set of n Grassmann variables, satisfying the anticom-
mutation relations

{ζi, ζj} = 0. (11.34)

The Grassmann variables {ζi} are mapped into geometric algebra by introducing
a set of n linearly independent vectors {ei}. We do not need to specify any
properties for their inner products, though some calculations are performed more
easily if we assume that the {ei} belong to a Euclidean algebra. The role of the
product of Grassmann variables is taken over by the exterior product in geometric
algebra, so we write

ζiζj ↔ ei ∧ ej . (11.35)

Equation (11.34) is satisfied by virtue of the antisymmetry of the exterior prod-
uct. Any combination of Grassmann variables can now be replaced in the obvious
manner by a multivector.

In order for the above scheme to have computational power, we need a trans-
lation for the Grassmann calculus introduced by Berezin. In this calculus, dif-
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ferentiation is defined by the rules

∂ζj

∂ζi
= δij , ζj

←−
∂

∂ζi
= δij , (11.36)

together with the graded Leibniz rule,

∂

∂ζi
(f1f2) =

∂f1

∂ζi
f2 + (−1)[f1]f1

∂f2

∂ζi
, (11.37)

where [f1] is the parity of f1. The parity of a Grassmann variable is determined
by whether it contains an even or odd number of vectors. Berezin differentiation
is handled within the algebra generated by the {ei} frame by introducing the
reciprocal frame {ei}, and replacing

∂

∂ζi
f ↔ ei ·f (11.38)

so that
∂ζj

∂ζi
↔ ei ·ej = δi

j . (11.39)

The graded Leibniz rule follows from the basic identities of geometric algebra.
For example, if f1 and f2 are grade-1 and so are treated as vectors in geometric
algebra, then the rule (11.37) simply restates the familiar result

ei ·(f1∧f2) = ei ·f1 f2 − f1 ei ·f2. (11.40)

Right action by a Grassmann derivative operator translates in a similar manner:

(f)
←−
∂

∂ζi
↔ f ·ei. (11.41)

The standard results for Grassmann calculus follow simply from this basic trans-
lation scheme.

Grassmann integration is defined to be essentially the same operation as right
differentiation: ∫

f(ζ)dζndζn−1 · · · dζ1 = f(ζ)
←−
∂

∂ζn

←−
∂

∂ζn−1
· · ·

←−
∂

∂ζ1
. (11.42)

The equivalent operation in geometric algebra is therefore a right-sided contrac-
tion, as given in equation (11.38). The most important formula is that for the
total integral∫

f(ζ)dζndζn−1 · · · dζ1 ↔ (· · · ((F ·en)·en−1) · · · )·e1 = 〈FEn〉, (11.43)

where F is the multivector equivalent of f(ζ) and En is the pseudoscalar for the
{ei} vectors,

En = en∧en−1∧· · ·∧e1. (11.44)
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Equation (11.43) does nothing more than pick out the coefficient of the pseudoscalar
part of F .

A ‘change of variables’ is performed by a linear transformation f, with

e′i = f(ei), ei′ = f̄−1(ei). (11.45)

It follows that

E′
n = det (f)En, En′ = det (f)−1 En, (11.46)

so that a change of variables in a Grassmann multiple integral picks up a Jacobian
factor of det (f)−1. This contrasts with the factor of det (f) for a Riemannian
integral. In a similar manner all of the main results of Grassmann calculus can
be derived in geometric algebra. Often these derivations are simpler, as access
to the geometric product offers a quick route through the algebra.

11.3 Lie groups

In earlier chapters we saw that rotors form a continuous group, in the same way
that rotations do. Continuous groups of this type are called Lie groups, after the
mathematician Sophus Lie, and they play an important role in a wide range of
subjects in physics. Lie groups contain an infinite number of elements but, like
vector spaces, the elements can usually be written in terms of a finite number
of parameters. For example, three-dimensional rotations can be parameterised
in terms of the three Euler angles. The reason is that the elements of the group
belong to a topological space — the group manifold. In two-dimensional Euclid-
ean space all rotors correspond to phase factors, so the rotor group manifold is
the unit circle. Every point on the circle corresponds to a distinct rotor.

Similarly, in three dimensions rotors are built from the space of scalars and
bivectors. The only condition they have to satisfy is that RR̃ = 1. Suppose that
we write

R = x0 + x1Ie1 + x2Ie2 + x3Ie3. (11.47)

Then

RR̃ = x0
2 + x1

2 + x2
2 + x3

2 = 1. (11.48)

This defines a unit vector in the four-dimensional space spanned by {x0, xi}. The
group manifold is therefore the set of unit vectors in four-dimensional space. This
is called a 3-sphere S3 — it is the four-dimensional analogue of the surface of a
ball. In higher dimensions the rotor group manifolds become increasingly more
complicated.

Since all rotations are generated by the double-sided formula RaR̃, both R and
−R correspond to the same rotation. The group manifold for three-dimensional
rotations, rather than for the rotors themselves, is therefore more complicated
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that S3. It involves taking a 3-sphere and projectively identifying opposite
points. The fact that the group manifold for rotors is somewhat simpler than
that for rotations has many applications. If the orientation of a rigid body is
described by a rotor, the configuration space for the dynamics of the rigid body
is a 3-sphere. This is important when looking for best-fit rotations, or extrap-
olating between two rotations to find their midpoint. The group manifold is
also the appropriate setting for a Lagrangian treatment. This has implications
for constructing conjugate momenta, which are essential for the transition to
a quantum theory. Applications of this include the rotational energy levels of
molecules, many of which can be viewed as rigid bodies.

11.3.1 Formal definitions

The fact that the elements of a Lie group belong to a manifold is sufficient to
provide an abstract definition of a general Lie group. A Lie group is defined
as a manifold, M, together with a product φ(x, y). Points on the manifold
can be labelled with vectors {x, y}, which can be viewed as lying in a higher
dimensional embedding space (as with the 3-sphere). The product φ(x, y) takes
as its argument two points in the manifold, and returns a third. This encodes
the group product. The final set of conditions apply to φ(x, y) and ensure that
the product has the correct group properties. These are

(i) Closure. φ(x, y) ∈ M ∀x, y ∈ M.
(ii) Identity. There exists an element e ∈ M such that φ(e, x) = φ(x, e) = x,

∀x ∈ M.
(iii) Inverse. For every element x ∈ M there exists a unique element x̄ such

that φ(x, x̄) = φ(x̄, x) = e.
(iv) Associativity. φ

(
φ(x, y), z

)
= φ

(
x, φ(y, z)

)
, ∀x, y, z ∈ M.

Any manifold with a product defined on it with the preceding properties is
called a Lie group manifold. Many of the group properties of the group can be
uncovered by examining the properties near the identity element. The product
then induces a Lie bracket structure on elements of the tangent space at the
identity. The tangent space is a linear space and the vectors in this space,
together with their bracket, form a Lie algebra.

11.3.2 Spin groups and the bivector algebra

The general theory of Lie groups is rather too abstract for our purposes. In-
stead, we will adopt a different approach to the subject by concentrating on the
properties of rotors, and their associated spin groups. The Lie algebra of a spin
group is defined by a set of bivectors. We will establish that every Lie algebra
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can be represented as a bivector algebra, and that every matrix Lie group can
be represented in terms of a spin group.

Before proceeding, we need to clarify some of the terminology for the various
groups discussed in this chapter. We let G(p, q) denote the geometric algebra
of a space of signature p, q, and write V for the space of grade-1 vectors. The
orthogonal group O(p, q) is the set of all linear transformations f mapping V 
→ V
that preserve the inner product. That is,

f̄ f(a) = a ∀a ∈ V. (11.49)

Orthogonal transformations can have determinant 1 or −1. The special orthog-
onal group SO(p, q) is the subgroup of O(p, q) of linear transformations with
determinant 1. Orthogonal transformations can be constructed from series of
reflections, each of which can be written as

a 
→ −mam−1, (11.50)

where m is a non-null vector. Reflections have determinant −1, so do not belong
to SO(p, q). If we restrict m to be a unit vector, m2 = ±1, then the set of all unit
vectors form a group under the geometric product. This is called the pin group,
Pin(p, q). The pin group is a double-cover representation of the orthogonal group.
The elements of the pin group all satisfy

MM̃ = ±1 ∀M ∈ Pin(p, q). (11.51)

The elements of the pin group split into those of even grade, and those of
odd grade. The even-grade elements form a subgroup called the spin group,
Spin(p, q). The spin group consists of even-grade multivectors S ∈ G(p, q) satis-
fying

SaS−1 ∈ V ∀a ∈ V, SS̃ = ±1. (11.52)

The transformations defined by S all have determinant +1, so the spin group is
a double-cover representation of the special orthogonal group SO(p, q).

Rotors are elements of the spin group satisfying the further constraint that
RR̃ = 1. These define the rotor group, sometimes denoted Spin+(p, q). For
rotors we have R−1 = R̃, and their action on multivectors is defined by the
familiar double-sided formula

M 
→ RMR̃. (11.53)

With the exception of rotors in G(1, 1), the rotor group is a subgroup of the
spin group consisting of elements that are connected to the identity. That is,
all elements of the rotor group can be connected to the identity by a single
unbroken path in the group manifold. It follows that rotors form a double-cover
representation of the connected subgroup of SO(p, q). For Euclidean spaces the
special orthogonal group is connected, and for these spaces there is no distinction
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between the spin group and rotor group. In mixed signature spaces the spin
group differs from the rotor group by the direct product with a discrete group.
For example, the rotor group in spacetime is a representation of the group of
proper orthochronous transformations (see section 5.4).

In Euclidean spaces we know that all rotations can be written as the exponen-
tial of a bivector. The natural question now is can any rotor be written as the
exponential of a bivector? To answer this question, consider a family of rotors
R(λ), which specifies a path on the rotor group manifold. Differentiating the
normalisation condition RR̃ = 1 we find that

d

dλ
(RR̃) = 0 = R′R̃ + RR̃′, (11.54)

where the primes denote differentiation with respect to λ. Now define the set
vectors

a(λ) = R(λ)a0R̃(λ), (11.55)

where a0 is some fixed initial vector. Differentiating this expression we find that

d

dλ
a(λ) = R′a0R̃ + Ra0R̃

′ = (R′R̃)a(λ) − a(λ)(R′R̃). (11.56)

The quantity R′R̃ reverses to minus itself, so can only contain terms of grade
2, 6, 10 etc. But the commutator of R′R̃ with any vector must return another
vector, otherwise the derivative of a(λ) would grow non-vector terms. It follows
that R′R̃ can only contain a bivector component. We can therefore write

d

dλ
R(λ) = −1

2B(λ)R(λ). (11.57)

Locally, around any rotor, we can write

R(λ + δλ) = (1 − 1
2δλB)R(λ) = exp(−δλB/2)R(λ). (11.58)

In this way, bivectors capture all of the local information about the rotor group.
All ‘nearby’ rotors differ by a term that is the exponential of a bivector.

Now suppose we look for paths satisfying

R(0) = 1, R(λ + µ) = R(λ)R(µ). (11.59)

The set R(λ) form a one-parameter subgroup of the rotor group. For the case
of three-dimensional rotations the interpretation of this subgroup is clear — it
is the group of all rotations in a fixed plane. For this path we find that

d

dλ
R(λ + µ) = − 1

2B(λ + µ)R(λ + µ)

=
d

dλ

(
R(λ)R(µ)

)
= −1

2B(λ)R(λ)R(µ). (11.60)
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It follows that B is constant along this curve. We can therefore integrate equa-
tion (11.57) to get

R(λ) = e−λB/2. (11.61)

This confirms that all rotors near the origin can be written as the exponential
of a bivector. For Euclidean space it turns out that all rotors lie on a path
described by equation (11.59) and so can be written as the exponential of a
bivector. This is not the case in mixed signature spaces, though it does turn out
that in Lorentzian spaces every rotor can be written as

R(λ) = ±e−λB/2. (11.62)

It is instructive to establish the inverse result that the exponential of a bivector
always returns a rotor. To see this, return to the one-parameter family of vectors

a(λ) = e−λB/2a0eλB/2. (11.63)

To establish that these are the result of rotations we need only establish that
a is a vector, as the remaining properties follow automatically. Differentiating
with respect to λ, we find that

da

dλ
= e−λB/2a0 ·B eλB/2,

d2a

dλ2
= e−λB/2(a0 ·B)·B e−λB/2 etc.

(11.64)

For every extra derivative we pick up a further inner product with the bivector
B. It follows that every term in the Taylor series of a(λ) is a vector, and the
overall operation is grade-preserving, as it must be. We have also proved the
following useful Taylor expansion:

e−B/2aeB/2 = a + a·B +
1
2!

(a·B)·B + · · · . (11.65)

This series is convergent for all bivectors B.

11.3.3 Examples of rotor groups

The preceding definitions are illustrated neatly by the algebras G(1, 1) and
G(1, 2). First suppose that γ0 and γ1 are basis vectors for G(1, 1), with γ2

0 = 1
and γ2

1 = −1. The spin group consists of even-grade elements, which take the
form α + βγ1γ0. The restriction that ψψ̃ = ±1 becomes

α2 − β2 = ±1, (11.66)

which defines four unconnected hyperbolic curves. The rotor group consists of
the subgroup for which α2 − β2 = 1. This defines two unconnected branches
of a hyperbola, so the rotor group in G(1, 1) is not connected. For the case
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of Euclidean spaces the scalar product 〈ψψ̃〉 is positive definite, so there is no
difference between the spin and rotor groups, which are always connected.

Now suppose we add a further vector γ2 of negative signature, and write a
general even element as

R = R0 + R1γ1γ0 + R2γ2γ0 + R3γ1γ2. (11.67)

The rotor group is specified by the single extra condition that RR̃ = 1, which
becomes

(R0)2 − (R1)2 − (R2)2 + (R3)2 = 1. (11.68)

It follows that we can write

R = cosh(α)
(
cos(θ) + sin(θ)γ1γ2

)
+ sinh(α)

(
cos(φ) + sin(φ)γ1γ2

)
γ1γ0. (11.69)

This parameterisation confirms that the group must now be connected. Given
an arbitrary rotor we simply find the values of the parameters (α, θ, φ), then
smoothly run them down to zero to establish a path in the group manifold that
connects the rotor to the identity. The reason we can do this in G(1, 2) but
could not in G(1, 1) is that the former contains a bivector generator of negative
signature. This ensures that −1 is connected to the identity. Among all algebras
G(p, q), with p + q > 1, the algebra G(1, 1) is unique in containing no bivector
with negative square.

While the rotor group in G(1, 2) is connected, it is straightforward to construct
examples of rotors that cannot be written as the exponential of a bivector. For
example, consider the rotor

R = exp
(
(γ0 + γ1)γ2

)
= 1 + (γ0 + γ1)γ2. (11.70)

While this rotor clearly is the exponential of a bivector, it is impossible to write
the rotor −R in this way. This is why the strongest statement that can be
made about rotors in a mixed signature space is that they can be written as
± exp(−B/2).

11.3.4 The bivector algebra

The operation of commuting a multivector with a bivector is always grade-
preserving. In particular, the commutator of a bivector with a second bivector
produces a third bivector. That is, the space of bivectors is closed under the com-
mutator product. This closed algebra defines the Lie algebra of the associated
rotor group. The group is formed from the algebra by the act of exponentiation.
The commutator of two bivectors expresses the fact that rotations do not com-
mute. If we apply a pair of rotations, and then perform the back rotations in
the incorrect order, the result is the new rotation

RaR̃ = R̃2R̃1(R2R1aR̃1R̃2)R1R2. (11.71)
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Now suppose that we are working close to the identity, so that we can write

R = e−B/2 = eB2/2eB1/2e−B2/2e−B1/2. (11.72)

Expanding the exponentials we find that

B = B1×B2 + higher order terms. (11.73)

This is an example of a more general result known as the Baker–Campbell–
Hausdorff formula. This states that if

eC = eAeB , (11.74)

then we have

C = A + B + A×B +
1
3
(
A×(A×B) + B×(B×A)

)
+ · · · . (11.75)

The series converges for generators of rotors sufficiently close to the identity.
(The precise definition of ‘sufficiently close’ was clarified by Hausdorff.)

Now suppose that we write

R1 = exp(−λB1/2), R2 = exp(−λB2/2), (11.76)

so that R(λ) is a path in the group manifold. Equation (11.73) ensures that

R(λ) = 1 − λ2B1×B2/2 + · · · . (11.77)

In the tangent space at the identity the new generator is the commutator of the
two original bivectors. The bivector algebra must therefore be closed under the
commutator product. This is the way in which the local structure of a rotor
group around the identity is passed to the bivector algebra. In the abstract
theory of Lie groups, the Lie algebra elements are acted on by the Lie bracket,
which is antisymmetric and satisfies the Jacobi identity. For a rotor group the
Lie bracket is simply the commutator product for bivectors. The Jacobi identity
for the Lie algebra then reduces to the identity

(A×B)×C + (C×A)×B + (B×C)×A = 0, (11.78)

which holds for any three bivectors A, B and C.

11.3.5 Structure constants and the Killing form

Suppose now that we introduce a basis set of bivectors {Bi}. The commutator of
any pair of these returns a third bivector, which can also be expanded in terms
of the basis set. We can therefore write

Bj×Bk = Ci
jkBi. (11.79)

The Ci
jk are called the structure constants of the Lie algebra. They provide

one of the most compact encodings of the group properties, since knowledge of
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FURTHER TOPICS IN CALCULUS AND GROUP THEORY

the bracket structure is sufficient to recover most of the properties of the group.
The structure constants also provide a route to solving the problem of classifying
all possible Lie algebras over the real and complex fields. The solution of this
problem was a significant achievement, completed by the mathematician Élie
Cartan.

The adjoint representation of a Lie group is defined in terms of functions
mapping the Lie algebra onto itself. Every element of a Lie group induces an
adjoint representation through its action on the Lie algebra. For the case of rotor
groups the Lie algebra is the bivector algebra, and the adjoint representation
consists of a map of the form

B 
→ RBR̃ = AdR(B). (11.80)

It is immediately clear that this representation satisfies

AdR1

(
AdR2(B)

)
= AdR1R2(B). (11.81)

The adjoint representation of the group induces an adjoint representation adA/2

of the Lie algebra as

adA/2(B) = A×B. (11.82)

The adjoint representation of an element of the Lie algebra can be considered as
a linear map on the space of bivectors. The matrix corresponding to the adjoint
representation of the basis bivector Bj is defined by the structure coefficients

(adBj
)i
k = 2Ci

jk. (11.83)

The Killing form for a Lie algebra is defined through the adjoint representation
as

K(A,B) = tr(adAadB). (11.84)

Up to an irrelevant normalisation, the Killing form for a bivector algebra is
simply the inner product

K(A,B) = A·B, (11.85)

which is the definition we shall adopt. It is immediately clear that rotor groups
in Euclidean space have a negative-definite Killing form. An algebra with a
negative-definite Killing form is said to be of compact type, and the associated
Lie group is compact.

11.4 Complex structures and unitary groups

So far we have only dealt with the properties of real rotation groups, but it turns
out that this is sufficient for us to uncover the properties of all Lie algebras. We
can start to see how this works by studying how complex groups fit into our real
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geometric algebra. The ideas developed in this section are useful in a number of
areas, particularly Hamiltonian dynamics and geometric quantum mechanics.

11.4.1 Complex spaces

The simplest algebraic way to define a complex structure is to introduce a com-
muting scalar quantity j with the property j2 = −1, and to add the assumption
that all linear superpositions are now taken over the complex field. A more at-
tractive, geometric alternative is to work in a real space of dimension 2n and
introduce a bivector in this space to play the role of the complex structure. We
saw in section 6.3 that complex analysis can be performed in the geometric alge-
bra of the real two-dimensional plane with the role of the unit imaginary played
by the unit pseudoscalar. Here we generalise this idea to an n-dimensional com-
plex space.

Our starting point is a real n-dimensional vector space. Suppose that this has
some arbitrary basis {ek}, which need not be orthonormal. Now introduce a
further set of n-vectors {fk} perpendicular to the {ek}, with the properties

fi ·fj = ei ·ej , fi ·ej = 0, (11.86)

which hold for all i, j = 1, . . . , n. From these vectors we construct the bivector

J =
n∑

i=1

ei∧f i = ei∧f i, (11.87)

where the {fk} are the reciprocal vectors to the {fk} frame. For this and the
following section we assume that repeated indices are summed from 1, . . . , n.
The bivector J is independent of the initial choice of frame {ei}. To see this,
introduce a second pair of frames {e′i} and {f ′

i} related in the same manner as
the {ek}, {fk} pair. For these we find that

J ′ = e′i∧f ′i = e′i ·ej ej∧f ′i = f ′
i ·f jej∧f ′i = ej∧f j = J. (11.88)

In particular, if the {ek} frame is chosen to be orthonormal, we find that

J = e1f1 + e2f2 + · · · + enfn = J1 + J2 + · · · + Jn. (11.89)

Each bivector blade Ji then provides the complex structure for the ith plane.
To understand the properties of the bivector J we first form the products

ei ·J = ei ·ej f j = fi ·fj f j = fi (11.90)

and

fi ·J = −ej fi ·f j = −ei. (11.91)
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It follows that
(ei ·J)·J = fi ·J = −ei,

(fi ·J)·J = −ei ·J = −fi,
(11.92)

and hence that

(a·J)·J = −a, (11.93)

for any vector a. We can now see how J will take over the role of the unit
imaginary. For example, the analogue of phase rotations is generated by the
bivector J , which describes a series of coupled rotations in each of the Ji planes.
A Taylor expansion then yields

e−Jφ/2aeJφ/2 = a + φ a·J +
φ2

2!
(a·J)·J · · ·

= cos(φ)a + sin(φ)a·J. (11.94)

The map a 
→ a·J is therefore a π/2 rotation. Setting φ = π we also see that

aeJπ/2 = −eJπ/2a, (11.95)

so exp(Jπ/2) anticommutes with every vector in the algebra. The only multi-
vector with this property is the pseudoscalar, so we have

eJπ/2 = I2n, (11.96)

where I2n is the pseudoscalar of the 2n-dimensional algebra.
Next we need a means of distinguishing the real and imaginary parts of a

vector. As with the two-dimensional case, this requires picking out a preferred
set of directions to represent the real axes. As a matter of convention we choose
to identify these with the original {ek} vectors. A real vector a in the 2n-
dimensional algebra can now be mapped to a set of complex coefficients {ai} as
follows:

ai = a·ei + j a·fi. (11.97)

The complex inner product therefore becomes

〈a|b〉 = aib∗i = (a·ei + j a·f i)(b·ei − j b·fi)

= a·ei b·ei + a·f i b·fi + j(a·f i b·ei − a·ei b·fi)

= a·b + j(a∧b)·J. (11.98)

This shows that the complex inner product combines two geometrically distinct
terms. The real part is the usual vector inner product, and it follows immediately
that aia∗

i = a2. The imaginary part is an antisymmetric product formed by
projecting the bivector a∧b onto J . Antisymmetric products such as these play
an important role in symplectic geometry and Hamiltonian mechanics.
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11.4.2 Unitary transformations

We are free to consider any linear function defined over our 2n-dimensional vector
space. However, only a subset of these can be represented by complex matrices
— those that observe the complex structure. These transformations are linear
over the complex field, so must satisfy

f(αa + βa·J) = αf(a) + βf(a)·J. (11.99)

It follows that complex linear transformations satisfy

f(a·J) = f(a)·J (11.100)

for any vector a in the 2n-dimensional vector space.
The study of complex linear functions now reduces to the study of functions

satisfying the condition (11.100). For example, the matrix operation of Her-
mitian conjugation has

〈a|f(b)〉 = 〈f†(a)|b〉. (11.101)

By considering the various terms in this identity we see immediately that the
Hermitian adjoint is the same as the familiar adjoint function f̄. That is, f† = f̄.
This explains why it is Hermitian conjugation that is so important in analysing
complex matrices. Similarly, suppose that a is a complex eigenvector of the
complex function f. This implies that

f(a) = αa + βa·J. (11.102)

Clearly, if a satisfies this equation, then a·J satisfies

f(a·J) = αa·J − βa. (11.103)

It follows that a∧(a·J) is an eigenbivector, with

f
(
a∧(a·J)

)
= (α2 + β2)a∧(a·J). (11.104)

Next we need to establish the invariance group of the Hermitian inner product.
This group must leave invariant both terms in equation (11.98). This includes
the inner product a · b, which tells us that the invariance group is built from
reflections and rotations. The fact that the linear transformations preserve the
complex structure then ensures that the antisymmetric term is also invariant.
To see this, suppose that f satisfies f̄ = f−1, together with equation (11.100). It
follows that(

f(a)∧f(b)
)
·J = f(a)·

(
f(b)·J

)
= f(a)·f(b·J) = (a∧b)·J. (11.105)

This result can be summarised concisely as

f(J) = J. (11.106)

Unitary groups are therefore constructed from reflections and rotations which
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leave J invariant. For a reflection to satisfy this constraint would require that
the vector generator m satisfies

mJm−1 = J. (11.107)

But this implies that m·J = 0, and hence that (m·J)·J = −m = 0. There are
therefore no vector generators of reflections, and hence all unitary transforma-
tions are generated by elements of the spin group. So far we have not specified
the underlying signature, so our description applies equally to the unitary groups
U(n) and U(p, q). These groups can be represented in terms of even multivectors
in G(2n, 0) and G(2p, 2q) respectively.

To simplify matters, we now restrict to the Euclidean case, so we seek a rotor
description of the unitary group U(n). The spin group and rotor group in G(2n, 0)
are the same, so the unitary group has a double-cover representation in terms of
rotors satisfying

RJR̃ = J. (11.108)

Writing R = exp(−B/2), we see that the bivector generators of the unitary
group must satisfy

B×J = 0. (11.109)

This defines a bivector representation of the Lie algebra u(n) of the unitary group
U(n). We can construct bivectors satisfying equation (11.109) by first using the
Jacobi identity to prove that(

(a·J)∧(b·J)
)
×J = −(a·J)∧b + (b·J)∧a

= −(a∧b)×J. (11.110)

It follows that (
a∧b + (a·J)∧(b·J)

)
×J = 0. (11.111)

Any bivector of the form on the left-hand side will therefore commute with J .
Suppose now that the {ei} and {fi} are orthonormal vectors. We can work
through all combinations of these to arrive at the bivector algebra in table 11.1.
Establishing the closure of this algebra under the commutator product is straight-
forward. The bivector algebra contains J , which commutes with all other ele-
ments and is responsible for a global phase term. Removing this term defines
the Lie algebra su(n) of the special unitary group SU(n). The analysis can be
repeated with a different signature base space to construct a bivector represen-
tation of the Lie algebra u(p, q).

11.5 The general linear group

We have seen how to represent both rotation groups and unitary groups in terms
of spin groups. We will now see how all matrix groups can be represented by spin
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11.5 THE GENERAL LINEAR GROUP

Eij = eiej + fifj (i < j = 1, . . . , n)
Fij = eifj − fiej (i < j = 1, . . . , n)
Ji = eifi (i = 1, . . . , n)

Table 11.1 The Lie algebra u(n). The bivectors all belong to the geometric
algebra G(2n, 0), and the vectors {ei} and {fi} form an orthonormal basis
for this algebra. The complex structure is generated by the bivector J =
J1 + · · · + Jn.

groups, and hence that all possible Lie algebras can be represented as bivector
algebras. This is a significant motivation for the treatment adopted in this
chapter. Formulating general linear functions as rotors is achieved by working
in a balanced algebra, generated by equal numbers of vectors with positive and
negative square. Some of the algebraic considerations for these types of algebra
were encountered in the discussions of spacetime and conformal geometry.

11.5.1 The balanced algebra G(n, n)

Suppose that the vectors {ei} span a non-degenerate space of unspecified sig-
nature. We introduce a second frame {fk}, orthogonal to the first and with
opposite signature, with the properties

fi ·fj = −ei ·ej , ei ·fj = 0. (11.112)

The vectors {ei, fi} therefore generate the algebra G(n, n), regardless of the
signature of the original {ei} space. We next introduce the balanced analogue
of the complex bivector J by defining

K = ei∧f i. (11.113)

This has the properties that

ei ·K = ei ·ej f j = −fi ·fj f j = −fi (11.114)

and

fi ·K = −fi ·f j ej = −ei. (11.115)

It follows that

(a·K)·K = K ·(K ·a) = a ∀a ∈ V. (11.116)

There is therefore a crucial sign difference compared with the complex bivector J .
This means that K does not generate a complex structure, but instead generates
a null structure. To see this, we first form

(a·K)2 = −
(
(a·K)·K

)
·a = −a2, (11.117)
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so the vector a·K has opposite signature to a. Given a general vector a ∈ G(n, n)
we can define two separate null vectors by writing

a = 1
2 (a + a·K) + 1

2 (a − a·K). (11.118)

In this way the vector space V of G(n, n) splits into two null spaces, V+ and V−.
Vectors in V+ satisfy

a+ ·K = a+ ∀a+ ∈ V+, (11.119)

with a similar expression (with a minus sign) holding for V−. Both of the spaces
V+ and V− are entirely null, and they are dual spaces to one another. Working
entirely with vectors in V+ is a further way of formulating a Grassmann algebra
within geometric algebra.

11.5.2 Linear transformations

We will shortly demonstrate that every linear function acting on an n-dimen-
sional vector space, a 
→ f(a), can be represented in V+ by a transformation of
the form

a+ 
→ Ma+M−1. (11.120)

Here M belongs to a subgroup of the spin group for G(n, n), and a+ is the image
of a in V+ defined by

a+ = a + a·K. (11.121)

In this sense we form a double-cover representation of the general linear group.
The relevant subgroup consists of transformations that map the subspaces V+

and V− entirely within themselves. For this to hold we require that

(Ma+M−1)·K = Ma+M−1, (11.122)

so we must have

a+ = M−1 (Ma+M−1)·K M

= M−1 1
2 (Ma+M−1K − KMa+M−1)M

= a+ ·(M−1KM). (11.123)

It follows that we require M−1KM = K, or

MK = KM. (11.124)

As with the unitary case, M must belong to the spin group. The bivector
generators of this group must commute with K. The Jacobi identity ensures
that the commutator product of two bivectors that commute with K results in
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Eij = eiej − fifj (i < j = 1, . . . , n)
Fij = eifj − fiej (i < j = 1, . . . , n)
Ki = eifi (i = 1, . . . , n)

Table 11.2 The Lie algebra gl(n). The bivectors all belong to the geo-
metric algebra G(n, n). The {ei} vectors are orthonormal with positive
signature, and the {fi} are orthonormal with negative signature. The alge-
bra contains the bivector K = K1 + · · ·+ Kn, which generates the Abelian
subgroup of global dilations. Factoring out this bivector produces the al-
gebra sl(n).

a third that also commutes with K. We proceed as with the unitary group and
construct(

(a·K)∧(b·K)
)
×K = a∧(b·K) + (a·K)∧b = (a∧b)×K, (11.125)

so that (
a∧b − (a·K)∧(b·K)

)
×K = 0. (11.126)

We can again run through all combinations of the basis bivectors to obtain the
basis for the Lie algebra of the general linear group listed in table 11.2. The
difference in structure between the Lie algebras of the linear group and the
unitary group is due solely to the different signatures of their underlying spaces.

The remaining step is to give an explicit construction of a representation of
a linear transformation as an element of the spin group. The key to this is the
singular value decomposition of section 4.4.8. This decomposition shows that any
n × n matrix (with non-zero determinant) can be decomposed into a positive-
definite diagonal matrix sandwiched between two orthogonal matrices. To find
a suitable encoding in terms of rotors, all we have to do is find representations
of orthogonal transformations and positive dilations.

Rotations are clearly present as they are generated by the Eij bivectors in the
Lie algebra of table 11.2. These bivectors jointly rotate the {ei} and {fi} vectors
by the same amount. But the orthogonal group also includes reflections, so we
need to represent these as well. Suppose the reflection in G(p, q) is generated by
the unit vector n, n2 = 1. We define

n̄ = n·K, n̄2 = −1, (11.127)

and consider the multivector nn̄. This satisfies

nn̄K = 2n n̄·K + nKn̄ = 2(n2 + n̄2) + Knn̄ = Knn̄, (11.128)

so the bivector does commute with K. But since

nn̄(nn̄)∼ = −1 (11.129)
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this bivector is not a rotor. It belongs to the spin group, but not the rotor group.
The action of nn̄ on vectors a+ ∈ V+ results in the vector

−nn̄a+n̄n = −nn̄an̄n − (nn̄an̄n)·K = −nan − (nan)·K, (11.130)

where a is the original vector, in the same space as n. Since n̄ is in the orthogonal
space generated by the {fi} vectors, n̄ anticommutes with a. Equation (11.130)
is the required result for a reflection. The need to include reflections forces us
to work with elements of the full spin group in G(n, n).

The final step is to see how dilations are formulated with rotors. Suppose
that we now require a positive dilation in the n direction. We again form the
bivector nn̄, which is constructed from the Fij and Ki Lie algebra generators.
With n+ = n + n̄ the equivalent of the vector n in V+, we find that

e−λnn̄/2n+eλnn̄/2 =
(
cosh(λ) − nn̄ sinh(λ)

)
(n + n̄)

= eλn+, (11.131)

which is a pure dilation. Furthermore, any vector perpendicular to n has an
image in V+ that commutes with nn̄ and so is unaffected by the action of the
rotor. These are precisely the required properties of the positive dilation, which
completes the construction.

We now have an alternative means of representing every matrix group within
geometric algebra. Since all Lie algebras can be represented by matrices, we have
proved that all Lie algebras can be realised as bivector algebras. The accom-
panying Lie group elements can then all be written as even products of unit
vectors. This is potentially a very powerful idea. One immediate construct one
can form this way is the tensor product of two linear functions. All one requires
for this is a separate copy of the algebra G(n, n) for each linear operator. As with
the multiparticle spacetime algebra construction of chapter 9, the generators of
each space are orthogonal, so anticommute. It follows that even elements from
either space commute. So rotors from either space can be multiplied commuta-
tively, forming a spinor representation of the tensor product. The combined rotor
generates the correct tensor product action on vectors in the combined space.
The tensor product can therefore be constructed from the geometric product.

11.6 Notes

The multivector derivative and the use of the vector derivative in analysing
linear functions are described in detail in the book Clifford Algebra to Geometric
Calculus by Hestenes & Sobczyk (1984). This book also contains an elegant proof
of the Cayley–Hamilton theorem, and details of the geometric algebra approach
to Lie group theory. Some further material is contained in the ‘Lectures in
geometric algebra’ by Doran et al. (1996a).
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The basis of Grassmann calculus is described in The Method of Second Quan-
tisation by Berezin (1966). A summary of the main results from this is contained
in the appendices to the paper ‘Particle spin dynamics as the Grassmann variant
of classical mechanics’ by Berezin and Marinov (1977). More recently, Grass-
mann calculus has been extended to the field of superanalysis, as described in
the books by Berezin (1987) and de Witt (1984). Similar themes also reappear in
the subject of non-commutative geometry, as discussed by Connes & Lott (1990)
and Coquereaux, Jadczyk & Kastler (1991). The geometric algebra treatment of
Grassmann calculus was introduced in the papers ‘Grassmann calculus, pseudo-
classical mechanics and geometric algebra’ by Lasenby, Doran & Gull (1993c)
and ‘Grassmann mechanics, multivector derivatives and geometric algebra’ by
Doran, Lasenby & Gull (1993b). Some additional material is contained in the
thesis by Doran (1994). These works also show how the super-Lie bracket, and
super-Lie algebras, can be formulated within geometric algebra.

The subject of Lie groups is covered in an enormous range of textbooks. The
series entitled Group Theory in Physics by Cornwell (1984a,1984b,1989) are par-
ticularly recommended, as are the books by Georgi (1982) and Gilmore (1974).
The subject of pin and spin groups has also been discussed widely. Thorough
treatments can be found in the books An Introduction to Spinors and Geometry
by Benn & Tucker (1988) and Clifford Algebras and Spinors by Lounesto (1997).
The construction of the general linear group in terms of rotors was first described
in the paper ‘Lie groups as spin groups’ by Doran et al. (1993). The thesis by
Doran (1994) contains explicit constructions of a number of further Lie algebras,
including symplectic and quaternionic algebras.

11.7 Exercises

11.1 The function f maps vectors to vectors in the spacetime algebra accord-
ing to

f(a) = a + αa·γ+ γ+,

where γ+ is the null vector γ0 + γ3. Find the characteristic equation
satisfied by f. What are the roots of the characteristic polynomial and
how many independent eigenvectors are there? Verify that f satisfies its
own characteristic equation.

11.2 Suppose that the vectors γ0, γ1 form an orthogonal basis for a space of
signature (1, 1). Show that the linear function f1,

f1(a) = −12a·γ0 γ0 + 2a·γ0 γ1 + 2a·γ1 γ0 + a·γ1 γ1,

has no symmetric square root. Similarly, show that the function f2,

f2(a) = 8a·γ0 γ0 + a·γ0 γ1 + a·γ1 γ0 − a·γ1 γ1,

417

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.013
https:/www.cambridge.org/core


FURTHER TOPICS IN CALCULUS AND GROUP THEORY

has two symmetric square roots, and find them both.
11.3 The function φ(λ) is defined by

φ(λ) = det
(
exp(λf)

)
where f is a linear function. The exponential function is defined by the
power series

exp(λf)(a) =
∞∑

r=0

λr

r!
fr(a)

where fr(a) denotes the r-fold application of f and f0(a) = a. Prove that
φ(λ) satisfies

dφ

dλ
= ∂a ·f(a)φ(λ),

and hence prove that

det
(
exp(f)

)
= exp

(
∂a ·f(a)

)
.

11.4 Prove the following results for the functional derivative:

∂f(a)∂b ·fr(b) = rfr−1(a), r ≥ 1,

∂f(a)〈̄f−1(Ar)Br〉 = −〈̄f−1(a)·Br f̄−1(Ar)〉1.

11.5 Given a non-singular function f in Euclidean space, the function ε is
defined by

ε = 1
2 ln

(
f̄ f
)
. (E11.1)

The logarithm can be defined either by a power series, or by diagonalising
f̄ f and taking the logarithm of the eigenvalues. Prove that

∂f(a)∂b ·ε(b) = f̄−1(a),

∂f(a)∂b ·ε2(b) = f̄−1ε(a).

11.6 Prove that left and right-sided Grassmann derivatives commute.
11.7 Suppose that x, y and e are unit vectors in G(4, 0), with the pseudoscalar

denoted by I. Prove that the product φ(x, y), where

φ(x, y) = 〈xey(1 + I)〉1,

satisfies all the axioms of a Lie group product, with e the identity ele-
ment. Which group does this product define?

11.8 The multivector R is defined by

R = −1 − (γ0 + γ1)γ2,

where {γ0, γ1, γ2} are an orthonormal basis for G(1, 2). Prove that R is
a rotor, and that it is impossible to find a bivector B such that R =
exp(−B/2).
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11.9 The vectors {ei, fi}, i = 1, . . . , n form an orthonormal basis for G(2n, 0).
The Lie algebra u(n) is defined by the following bivectors:

Eij = eiej + fifj (i < j = 1, . . . , n),

Fij = eifj − fiej (i < j = 1, . . . , n),

Ji = eifi.

Prove that this algebra is closed under the commutator product. Hence
find the structure constants of the unitary group.

11.10 Prove that the Lie algebras su(4) and so(6) are isomorphic. Repeat the
analysis for the case of su(2, 2) and so(2, 4). This latter isomorphism is
important in the theory of twistors.
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Lagrangian and Hamiltonian
techniques

The Lagrangian formulation of mechanics is popular in practically all modern
treatments of the subject. The ideas date back to the pioneering work of Euler,
Lagrange and Hamilton, who showed how the equations of Newtonian dynamics
could be derived from variational principles. In these, the evolution of a sys-
tem is viewed as a path in some parameter space. The path the system follows
is one which extremises a quantity called the action, which is the integral of
the Lagrangian with respect to the evolution parameter (usually time). The
mathematics behind this approach was clear from the outset, but a thorough
physical understanding had to wait until the arrival of quantum theory. In the
path-integral formulation of quantum mechanics a particle is viewed as simulta-
neously following all possible paths. By assigning a phase factor to the action for
each path and summing these, one obtains the amplitude for a quantum process.
The classical limit can then be understood as resulting from trajectories that
reinforce the amplitude. In this manner classical trajectories emerge as those
which make the action stationary.

A closely related idea is the Hamiltonian formulation of dynamics. The advan-
tage of this approach is that it produces a set of first-order equations, making
it well suited to numerical methods. The Hamiltonian approach also exposes
the appropriate geometry for classical dynamical systems, which is a symplec-
tic manifold. The Lagrangian and Hamiltonian formulations are well suited to
studying the role of symmetry in physics. Any symmetry present in the La-
grangian will remain present in the equations of motion, and will produce a set
of possible paths all related by the appropriate symmetry group. In this chapter
we will touch on many of these ideas, and provide a number of Lagrangians for
systems of physical interest. We also show how the method can be extended to
the case of a multivector Lagrangian, which establishes contact with the systems
studied in pseudoclassical mechanics.
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12.1 THE EULER–LAGRANGE EQUATIONS

12.1 The Euler–Lagrange equations

Suppose that a system is described by the multivector variables Xi, i = 1, . . . , n.
(The use of multivector variables makes this derivation slightly more general
than usually seen.) The Lagrangian L is a scalar-valued function of Xi and Ẋi,
and possibly time, where the dot denotes the derivative with respect to time.
The action for the system is

S =
∫ t2

t1

dt L(Xi, Ẋi, t), (12.1)

and we seek the equations for a path for which the action is stationary. The
solution to this problem is standard application of variational calculus. We
write

Xi(t) = X0
i (t) + εYi(t), (12.2)

where Yi is a multivector containing the same grades as Xi and which vanishes
at the endpoints, ε is a scalar, and X0

i represents the extremal path. It follows
that the action must satisfy

dS

dε

∣∣∣∣
ε=0

= 0, (12.3)

in order to ensure that X0
i is a stationary solution. The chain rule now gives

dS

dε

∣∣∣∣
ε=0

=
∫ t2

t1

dt

n∑
i=1

(
Yi∗∂Xi

L + Ẏi∗∂Ẋi
L
)

=
∫ t2

t1

dt

n∑
i=1

Yi∗
(
∂Xi

L − d

dt
(∂Ẋi

L)
)
, (12.4)

where A∗B = 〈AB〉. This integral must equal zero for all paths Yi, from which
we can read off the Euler–Lagrange equations in the form

∂L

∂Xi
− d

dt

(
∂L

∂Ẋi

)
= 0, ∀i = 1, . . . , n. (12.5)

The multivector derivative ensures that there are as many equations as there are
grades present in the Xi, which implies we have precisely the same number of
equations as there are degrees of freedom in the system.

12.1.1 Symmetries and conservation laws

Suppose now that we consider a scalar-parameterised transformation of the dy-
namical variables, so that we have

X ′
i = X ′

i(Xi, α). (12.6)
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LAGRANGIAN AND HAMILTONIAN TECHNIQUES

We further assume that α = 0 corresponds to the identity transformation (this
restriction can be removed if necessary). The first-order change in Xi is denoted
by δXi, where

δXi =
∂X ′

i

∂α

∣∣∣∣
α=0

. (12.7)

We define the new Lagrangian

L′(Xi, Ẋi) = L(X ′
i, Ẋ

′
i), (12.8)

which is obtained from L simply by replacing each of the dynamical variables by
their transformed equivalent. The chain rule now gives

dL′

dα

∣∣∣∣
α=0

=
n∑

i=1

(
(δXi)∗∂Xi

L + (δẊi)∗∂Ẋ′
i
L
)
. (12.9)

If we now suppose that the Xi satisfy the Euler–Lagrange equations, we can
rewrite the right-hand side as a total derivative to obtain

dL′

dα

∣∣∣∣
α=0

=
d

dt

n∑
i=1

(
(δXi)∗∂Ẋi

L
)
. (12.10)

This result applies for any transformation, and can be used in a number of ways.
If the transformation is a symmetry of the Lagrangian, then L′ is indepen-

dent of α. In this case we immediately establish that a conjugate quantity
is conserved. That is, symmetries of the Lagrangian produce conjugate con-
served quantities. This is Noether’s theorem, and it is valuable for extracting
conserved quantities from dynamical systems. The fact that the derivation of
equation (12.10) assumed the equations of motion were satisfied means that the
quantity is conserved ‘on-shell’. Some symmetries can also be extended ‘off-shell’,
which becomes an important issue in quantum and supersymmetric systems.

An important application of equation (12.10) is to the case of time translation,

X ′
i(t, α) = Xi(t + α), (12.11)

so that
∂X ′

i

∂α

∣∣∣∣
α=0

= Ẋi. (12.12)

If there is no explicit time dependence in the Lagrangian, then equation (12.10)
gives

dL

dt
=

d

dt

n∑
i=1

(
Ẋi∗∂Ẋi

L
)
. (12.13)

We therefore define the conserved Hamiltonian by

H =
n∑

i=1

Ẋi∗∂Ẋi
L − L. (12.14)
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12.1 THE EULER–LAGRANGE EQUATIONS

This is more often written in terms of the generalised momenta

Pi = ∂Ẋi
L, (12.15)

so that

H =
n∑

i=1

Ẋi∗Pi − L. (12.16)

The Hamiltonian gives the total energy in the system, and is conserved for
systems with no explicit time dependence.

12.1.2 Point particle actions

The simplest application of the Lagrangian framework is for a particle moving in
three dimensions in an external potential V (x). The Lagrangian is the difference
between the kinetic and potential energies,

L =
mv2

2
− V (x), (12.17)

where v = ẋ. The Euler–Lagrange equations give

mv̇ = −∇V, (12.18)

which identifies −∇V with the force on a particle. The Hamiltonian is

H =
p2

2m
+ V, (12.19)

where p = mv. The Hamiltonian is conserved if V is independent of time.
The relativistic action for a free point particle raises some new issues. We

begin with the simplest form of the action, which is

S = −m

∫
dt (1 − ẋ2)1/2, (12.20)

where the overdot denotes the derivative with respect to time t, and we work in
units with c = 1. The momentum is

p =
∂L

∂ẋ
=

mẋ

(1 − ẋ2)1/2
, (12.21)

and the equations of motion state that p is constant. The Hamiltonian is

H = p·ẋ − L = (p2 + m2)1/2, (12.22)

and is also conserved.
The fact that the energy and momentum are dealt with differently is unsatis-

factory from the point of view of Lorentz invariance, so we seek an alternative
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LAGRANGIAN AND HAMILTONIAN TECHNIQUES

formulation which is manifestly covariant. This can be achieved from the obser-
vation that the action is equivalent to

S = −m

∫
dλ (x′ ·x′)1/2, (12.23)

where x′ = ∂λx(λ). This integral is unchanged under a reparameterisation of
the trajectory. By identifying λ with t we recover equation (12.20), and setting
λ equal to the proper time τ we see that the action is −m times the proper
time along the path. Variation with respect to the relativistic position x now
produces

d

dλ

(
mx′

(x′ ·x′)1/2

)
= 0. (12.24)

If we now set λ equal to the proper time the left-hand side becomes m times the
relativistic acceleration v̇, where overdots now denote the derivative with respect
to proper time.

Interaction with an electromagnetic field is included through a term in −qx′·A,
producing the action

S =
∫

dλ
(
−m(x′ ·x′)1/2 − qx′ ·A(x)

)
. (12.25)

Variation with respect to x now produces

−q∇A(x)·x′ +
d

dλ

(
m

x′

(x′ ·x′)1/2
+ qA(x)

)
= 0. (12.26)

Setting λ equal to the proper time, we find that

mv̇ = q
(
∇A(x)·v − v ·∇A(x)

)
= qF ·v, (12.27)

where F = ∇∧A. We therefore recover the Lorentz force law, as discussed in
section 5.5.3.

The square root in the free-particle action of equation (12.23) is often incon-
venient, and can be removed by the inclusion of an einbein. This is a scalar
function e(λ), which has the transformation property under reparameterisations
that

e(ν) =
dλ

dν
e(λ), (12.28)

where ν(λ) denotes a new parameterisation for the trajectory. The action can
now be written in the equivalent form

S = −1
2

∫
dλ
(
e−1x′ ·x′ + m2e

)
. (12.29)
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12.1 THE EULER–LAGRANGE EQUATIONS

Variation of e produces

e =
(x′ ·x′)1/2

m
, (12.30)

and substitution of this back into the action recovers equation (12.23). A first-
order form of the action can also be developed by introducing the momentum p

and writing

S =
∫

dλ
(
−p·x′ +

e

2
(p2 − m2)

)
. (12.31)

Variation of e produces the constraint equation p2 = m2, and variation of p

produces x′ = ep. This ensures that e is again given by equation (12.30). Finally,
the x variation determines

p′ =
d

dλ

(
mx′

(x′ ·x′)1/2

)
= 0, (12.32)

recovering the desired equation. In each of these cases interaction with an
electromagnetic field is included through a term in −qx′ ·A. Moving to a
reparameterisation-invariant formulation ensures that Lorentz covariance is man-
ifest, but it limits the use of Hamiltonian techniques. Hamiltonians deal with
energy, so picking out a Hamiltonian almost always implies breaking manifest
Lorentz covariance.

12.1.3 Rigid-body dynamics

As a further application, consider a rigid body as discussed in section 3.4.3. The
configuration of the body is described by the variables x0(t) and R(t), where x0

is the position of the centre of mass, and R is a three-dimensional rotor. We will
ignore the motion of the centre of mass and concentrate on the rotational degrees
of freedom. We also assume for simplicity that the object is freely rotating, so
the Lagrangian is given by the rotational energy,

L = − 1
2ΩB ·I(ΩB). (12.33)

Here I(B) is the inertia tensor, and

ΩB = −2R†Ṙ, (12.34)

where the dagger denotes the reverse operation in three dimensions.
The fact that the degrees of freedom are described by a rotor presents a slight

problem. Rotors belong to a Lie group, and so form a group manifold. The La-
grangian is then a function defined for paths on the group manifold, which makes
the Euler–Lagrange equations slightly more difficult to write down. There are
two main methods of proceeding. The first is to introduce an explicit parameter-
isation of R, such as the Euler angles, and to compute the Lagrangian in terms
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LAGRANGIAN AND HAMILTONIAN TECHNIQUES

of these. This has the disadvantage of introducing a fixed coordinate system,
making it difficult to assemble the final equations into a coordinate-free form.
The structure of the rotor group provides a more elegant alternative. We replace
the rotor R by an arbitrary even element (a spinor) ψ. The constraint ψψ† = 1
is enforced through the inclusion of a Lagrange multiplier. This method allows
us to use the coordinate-free apparatus of multivector calculus in the variational
principle and leads quickly to the full set of Euler equations.

Our Lagrangian is now

L(ψ, ψ̇) = − 1
2ΩB ·I(ΩB) − λ(ψψ† − 1), (12.35)

where the dynamical variable is the spinor ψ, and λ is a Lagrange multiplier.
The bivector ΩB is determined from ψ by

ΩB = −ψ†ψ̇ + ψ̇†ψ, (12.36)

which is a bivector, as required. The Euler–Lagrange equations reduce to the
single multivector equation

∂ψL − d

dt

(
∂ψ̇L

)
= 0. (12.37)

The symmetry of the inertia tensor simplifies the derivatives, and we obtain

∂ψ

(
− 1

2ΩB ·I(ΩB)
)

= −2I(ΩB)ψ̇†,

∂ψ̇

(
− 1

2ΩB ·I(ΩB)
)

= 2I(ΩB)ψ†,
(12.38)

where we have used the results of section 11.1. After reversing, the Euler–
Lagrange equation for ψ is simply

d

dt

(
ψI(ΩB)

)
+ ψ̇I(ΩB) = λψ. (12.39)

Variation with respect to the Lagrange multiplier λ enforces the constraint that
ψψ† = 1, which means we can now replace ψ with the rotor R. We therefore
arrive at the equation

I(Ω̇B) − ΩBI(ΩB) = λ. (12.40)

The scalar part of this equation determines λ and shows that, in the absence
of any applied couple, the rotational energy is a constant of the motion. The
bivector part of equation (12.40) recovers the familiar equation

I(Ω̇B) − ΩB×I(ΩB) = 0, (12.41)

as found in section 3.4.3. The Lagrange multiplier has avoided any need for
handling the rotor group manifold.
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12.2 CLASSICAL MODELS FOR SPIN-1/2 PARTICLES

12.2 Classical models for spin-1/2 particles

The use of non-relativistic spinors in describing the dynamics of a rigid body
demonstrates that spinors are not necessarily restricted to applications in quan-
tum mechanics. This is significant in addressing the question: what is the clas-
sical analogue of the Dirac equation? That is, what classical dynamical system
produces the Dirac equation on quantisation? There have been many attempts
to answer this question, and in the following sections we investigate two of them.

12.2.1 Rotor dynamics

For our first classical model of a fermion, we start with the Lagrangian for the
Dirac field. Following the notation of section 8.2 this is

LDirac = 〈∇ψIγ3ψ̃ − mψψ̃〉. (12.42)

The properties of this Lagrangian are studied in detail in chapter 13. Focusing
on the first (kinetic) term, we can write this as

〈∇ψIγ3ψ̃〉 = 〈∇ψIσ3ψ
−1ψγ0ψ̃〉 = 〈J∇ψIσ3ψ

−1〉, (12.43)

where J = ψγ0ψ̃ is the Dirac current. The streamlines of J describe how the
probability density flows through spacetime. To reduce to a point-particle model,
we assume that only the derivatives along a streamline are important and that
the density is concentrated entirely on one streamline. This streamline is then
identified with the particle worldline, and the kinetic term becomes

〈J ·∇ψIσ3ψ
−1〉 = 〈ψ′Iσ3ψ

−1〉, (12.44)

where the prime denotes the derivative with respect to some parameter along
the worldline. Now recall from section 8.2 that a Dirac spinor decomposes into

ψ = ρ1/2eIβ/2R, (12.45)

where ρ and β are scalars, and R is a Lorentz rotor (a member of the connected
subgroup of the spin group). The inverse, ψ−1, is therefore

ψ−1 = ρ−1/2e−Iβ/2R̃. (12.46)

Substituting this parameterisation into equation (12.44), we find that

〈ψ′Iσ3ψ
−1〉 = 〈R′Iσ3R̃〉. (12.47)

The dynamics are now parameterised by a Lorentz rotor, as opposed to a full
spinor. Given that the magnitude of a spinor is related to the quantum concept
of probability density, it is sensible that the classical model should only depend
on the rotor component.

To complete the model we need to impose the condition that the current ψγ0ψ̃
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defines the tangent to the worldline. This is achieved by including a Lagrange
multiplier to enforce the constraint that

x′ = eRγ0R̃, (12.48)

where e is an einbein. Finally, the mass term mψψ̃ becomes simply em, where
again the einbein ensures reparameterisation invariance. The full Lagrangian is
now

L(x, x′, R,R′, p, e) = 〈R′Iσ3R̃ − p(x′ − eRγ0R̃) − em〉, (12.49)

and the action is formed by integrating this with respect to the evolution pa-
rameter λ. The p equation returns the constraint of equation (12.48), and the
einbein e returns

p·(Rγ0R̃) = m. (12.50)

After variation we can choose the parameterisation such that e = 1, and x′ is
replaced by ẋ, with dots denoting the derivative with respect to proper time
along the worldline x(τ). It follows that p · ẋ = m. Clearly, then, we can
identify p with the momentum. The x variation then says that the momentum
is constant.

The final equation requires varying R, which lies on the group manifold of the
rotor group Spin+(1, 3). This variation can be performed in a number of ways.
We could extend the technique employed for rigid-body mechanics, and relax
the normalisation constraint so that R becomes a full spinor. The normalisation
is then enforced by a pair of Lagrange multipliers (one each for the scalar and
pseudoscalar terms). However, we can avoid this by returning to the original
form of the Lagrangian in terms of ψ and replacing the relevant terms by

〈R′Iσ3R̃ + epRγ0R̃〉 = 〈ψ′Iσ3ψ
−1 + epψγ0ψ̃/ρ〉, (12.51)

where ρ = |ψγ0ψ̃|. This form ensures that L is only dependent on the rotor
component of ψ, but still allows us to vary L with respect to ψ. This is easier
than constructing the derivative on the group manifold. To proceed we need a
pair of additional results. The first is that

∂ψ〈Mψ−1〉 = −ψ−1Mψ−1, (12.52)

which holds for any even multivector M . The second is that

2ρ∂ψρ = ∂ψ〈ψγ0ψ̃ψγ0ψ̃〉 = 4γ0ψ̃ψγ0ψ̃, (12.53)

which implies that

∂ψρ = 2ρψ−1. (12.54)

The ψ variation now produces (after setting λ equal to proper time τ)

−ψ−1ψ̇Iσ3ψ
−1 +

e

ρ
(2γ0ψ̃p − 2ψ−1〈pψγ0ψ̃〉) −

d

dτ
(Iσ3ψ

−1) = 0. (12.55)
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On multiplying through by ψ we obtain

Ṡ + 2p∧ẋ = 0, (12.56)

where

S = ψIσ3ψ
−1 = RIσ3R̃. (12.57)

The rotor variation therefore produces an equation which states that the total
angular momentum is conserved. This shows that the classical model has many
of the desired features. Linear momentum is conserved, and the spin-1/2 nature
of the particle is captured in the total angular momentum.

The simplest solution to the equations of motion has mẋ = p, so that the
particle is at rest in the p frame. The spin bivector is also constant, as one
would expect in the absence of interaction. There are a range of further solutions,
however, which are of interest. Suppose that we align γ0 with momentum, and
write

p =
m

cosh(α)
γ0 = m∗γ0, (12.58)

which defines the ‘effective mass’ m∗. The equations of motion are then solved
by

R = eIσ3m∗τ eασ2/2,

x = τ cosh(α) γ0 −
sinh(α)

2m∗ γ1e−2Iσ3m∗τ .
(12.59)

The total angular momentum is

1
2S + p∧x = 1

2 cosh(α) Iσ3, (12.60)

which is constant. This solution describes a particle rotating at angular frequency
2m/ cosh(α) (as measured by the proper time), and with a radius of

r0 =
1

2m
sinh(α) cosh(α). (12.61)

As α increases, the momentum goes ‘off-shell’, and the particle can ‘borrow’
energy to execute a circular motion and feel out its surroundings. This model
therefore captures some aspects of fermionic quantum mechanics, exhibiting a
form of zitterbewegung, while still describing a point-particle trajectory.

For many applications the model constructed here is unnecessarily compli-
cated, and we instead choose to work with the somewhat simpler Lagrangian

L(x, x′, ψ, ψ′, p, e) = 〈ψ′Iσ3ψ̃ − p(x′ − eψγ0ψ̃) − emψψ̃〉. (12.62)

Global phase invariance of L ensures that 〈ψψ̃〉 is constant and can be set to 1. If
the initial conditions are chosen suitably, one can also show that the 4-vector part
of ψψ̃ remains zero, and the motion reduces to that of the previous model. An
open question is whether either of these models produces the Dirac equation on
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quantisation. The problem is that a path-integral quantisation involves the group
manifold of Spin+(1, 3), which is non-compact. In addition, the Lagrangian is
first order, which can give rise to complications in the path integral.

A deficiency of the classical model is exposed when we couple the particle to
the electromagnetic field. If we consider the phase transformation

R 
→ ReIσ3φ, (12.63)

then this introduces a term going as −∂λφ = −x′ · (∇φ) into the Lagrangian.
Local phase invariance is therefore restored by modifying the Lagrangian to

L(x, x′, R,R′, p, e) = 〈R′Iσ3R̃ − p(x′ − eRγ0R̃) − qx′ ·A − em〉, (12.64)

where A is the electromagnetic vector potential. The qx′ ·A term is the natural
point-particle equivalent of the interaction term qJ ·A in the Dirac Lagrangian.
Variation now modifies the p equation in the expected manner to read

ṗ = qF ·ẋ. (12.65)

But the spin equation is not affected — we do not naturally pick up the g = 2
behaviour for the gyromagnetic ratio of a spin-1/2 particle. This is disappointing,
given that the A term is all that is required to guarantee that g = 2 in Dirac
theory. The problem can be rectified by introducing a further term into the
Lagrangian, going as

Lg =
〈
− q

2m
FRIσ3R̃

〉
=
〈
− q

2m
FψIσ3ψ

−1
〉

. (12.66)

This modifies both the R and p equations to give

Ṡ = 2ẋ∧p +
q

m
F×S,

ṗ = qF ·ẋ +
q

2m
∇F (x)·S.

(12.67)

These equations have the expected form for a particle with g = 2, but the value
of the gyromagnetic ratio has been put in by hand.

12.2.2 Pseudoclassical mechanics

A quite different approach to the classical mechanics of a spin-1/2 particle is
provided by pseudoclassical mechanics, which introduces the interesting new
concept of a multivector-valued Lagrangian. We only consider the simplest case
of a non-relativistic model. The model is motivated by the idea that the spin
operators satisfy

ŝiŝj + ŝj ŝi =
--h2

2
δij . (12.68)

The classical analogue of these relations should have zero on the right-hand side,
so the particle is described by a set of anticommuting Grassmann variables.

430

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.014
https:/www.cambridge.org/core


12.2 CLASSICAL MODELS FOR SPIN-1/2 PARTICLES

This argument runs contrary to the viewpoint of this book, which is that there
is nothing at all quantum-mechanical about a Clifford algebra, but the model
itself is interesting. We introduce a set of three Grassmann variables {ζi} and
define the Lagrangian

L = 1
2ζiζ̇i − 1

2εijkωiζjζk, (12.69)

where the ωi are constants. Following the prescription of section 11.2 we replace
the Grassmann variables with a set of three vectors {ei} under the exterior
product. The Lagrangian then becomes

L = 1
2ei∧ėi − ω, (12.70)

where

ω = 1
2εijkωiejek = ω1(e2∧e3) + ω2(e3∧e1) + ω3(e1∧e2). (12.71)

The Lagrangian is now a bivector, and not simply a scalar. This raises an imme-
diate question — how can the variational principle be applied to a multivector?
The answer is that all components of the Lagrangian must remain stationary
under variation. Suppose that we contract L with an arbitrary bivector B to
form the scalar 〈LB〉. Variation of this produces the Euler–Lagrange equation

∂ei
〈LB〉 − d

dt
(∂ėi

〈LB〉) = 0. (12.72)

Treating the {ei} as vector variables, we arrive at the equation

(ėi + εijkωjek)·B = 0. (12.73)

But we must demand that this vanishes for all possible B, from which we extract
the equation

ėi + εijkωjek = 0. (12.74)

This is the general method for handling multivector Lagrangians. The contrac-
tion with any constant multivector must result in a scalar Lagrangian which
is stationary when the equations of motion are satisfied. Equation (12.73) il-
lustrates a further feature. For a fixed B, equation (12.73) is not sufficient to
extract the full set of equations. It is only by allowing B to vary, and hence treat
the Lagrangian as a bivector, that the full equations are extracted.

To solve equation (12.74) we first establish that ω is constant,

ω̇ = 0, (12.75)

which follows immediately from the equation of motion. Next we introduce the
reciprocal frame {ei} and write the equation of motion in the form

ėi = ei ·ω. (12.76)

431

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.014
https:/www.cambridge.org/core


LAGRANGIAN AND HAMILTONIAN TECHNIQUES

Now suppose that we define the symmetric function g by

g(a) =
3∑

i=1

a·ei ei, (12.77)

so that g(ei) = ei. The function g is a form of metric for the non-orthonormal
frame ei. On differentiating g(a), holding a constant, we find that

d

dt
g(a) =

3∑
i=1

(
a·(ei ·ω)ei + a·ei ei ·ω

)
= ω ·a + a·ω = 0. (12.78)

It follows that the function g is constant, even though the ei vectors vary in
time. The motion is found by introducing the square root of g, which satisfies

h̄h(a) = g(a), h̄ = h. (12.79)

This function is found by diagonalising g and taking the square root of the
eigenvalues. It follows that

δj
i = ei ·ej = g(ei)·ej = h(ei)·h(ej). (12.80)

The vectors h(ei) are therefore orthonormal, so we write

fi = h(ei), fi ·fj = δij . (12.81)

These vectors satisfy

ḟi = fi ·Ω, (12.82)

where

Ω = ω1f2f3 + ω2f3f1 + ω3f1f2. (12.83)

Since h(Ω) = ω, we see that Ω is a constant bivector. It follows that the {fi}
frame simply rotates at a constant frequency in the Ω plane. The solution for
the ei vectors is therefore

ei(t) = h−1
(
e−Ωt/2fi(0)eΩt/2). (12.84)

The only motion taking place in this system is that a fixed set of orthonormal
vectors is rotating in a constant plane, and the resulting frame is then distorted
by a constant symmetric function. A simple picture of this type is fairly typical
of pseudoclassical systems when analysed in this manner.

12.3 Hamiltonian techniques

The Hamiltonian formulation of mechanics is important in a range of applica-
tions, not least because of its superior handling of numerical issues. We start by
forming Hamilton’s equations in local coordinates, before placing Hamiltonian
dynamics in a more geometric setting. Suppose that a dynamical system is
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described in terms of a Lagrangian L(qi, q̇i, t), where the {qi} are a set of n

coordinates for configuration space. The Euler–Lagrange equations are

d

dt

(
∂L

∂q̇i

)
=

∂L

∂qi
. (12.85)

These equations typically result in a set of n second-order equations that re-
late the generalised momenta to the forces in the system. The Euler–Lagrange
equations are equivalent to the set of 2n first-order equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (12.86)

These are Hamilton’s equations. The Hamiltonian H(qi, pi, t) is given by

H(qi, pi, t) =
n∑

i=1

piq̇i − L(qi, q̇i, t) (12.87)

in which the q̇i are expressed in terms of the pi by inverting the equations

pi =
∂L

∂q̇i
. (12.88)

The transformation from a Lagrangian to a Hamiltonian framework is called a
Legendre transformation. We move from considering dynamics in n-dimensional
configuration space to a 2n-dimensional phase space.

If the Hamiltonian is independent of time we can immediately see that it is
conserved. That is, H gives the conserved energy in the system. The proof is
straightforward:

dH

dt
=

n∑
i=1

(
q̇i

∂H

∂qi
+ ṗi

∂H

∂pi

)
= 0. (12.89)

Phase space provides a very useful way of analysing the motion and stability of
complicated systems. As a simple example, consider a pendulum consisting of a
mass m attached to a rigid rod of length a. The configuration of the system is
described by a single angle θ, and the Lagrangian is

L =
ma2θ̇2

2
+ mga cos(θ). (12.90)

The Hamiltonian is therefore

H =
p2

θ

2ma2
− mga cos(θ), (12.91)

and this is conserved. The trajectories of the system can be visualised in terms
of a phase-space portrait, which plots surfaces of constant H in phase space.
Sample trajectories are shown in figure 12.1. The figure illustrates how the
phase portrait can capture global aspects of the system, such as the behaviour
of the system as the energy gets close to value for which the pendulum can
complete a full loop.
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Figure 12.1 A phase portrait. The q coordinate represents the angle and
p is the canonical momentum. The Hamiltonian is p2 − cos(q). As H
approaches 1 a bifurcation appears, corresponding to the energy for which
the pendulum can complete a loop. The system is periodic, so the phase
portrait can be thought of as wrapping up into a cylinder

12.3.1 Symplectic geometry

The natural setting for Hamilton’s equations is provided by symplectic geometry.
A symplectic manifold (M,Ω) consists of a 2n-dimensional manifold M together
with a closed, non-degenerate 2-form Ω. We will assume that n is finite so
as to avoid discussion of the technicalities of infinite-dimensional spaces. We
can analyse this structure using the apparatus of vector manifolds, described
in section 6.5. A symplectic manifold does not have a metric structure, so we
must take care not to employ the metric induced in the vector manifold by its
embedding. This means we must distinguish tangent and cotangent spaces, as
we can only apply the inner product between tangent and cotangent vectors. We
denote the tangent space at x by TxM , and the cotangent space T ∗

x M .
The covariant vector derivative is denoted by ∇, and always results in a mul-

tivector that is intrinsic to the manifold (in section 6.5.3 this derivative was
denoted D). The 2-form Ω is a bivector field evaluated in the cotangent space.
The statement that Ω is closed is simply

∇∧Ω = 0. (12.92)

This is required in order that the Poisson bracket satisfies the Jacobi identity.
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The condition that Ω is non-degenerate is simply that

Ω(x)·a 	= 0, ∀a 	= 0, a ∈ TxM. (12.93)

If we view Ω(x) · a as a linear map from TxM to T ∗
x M , then Ω being non-

degenerate implies that the map has non-zero determinant, so is invertible. The
inverse map is generated by a second bivector, which we label J . This second
bivector lies in the tangent space, and can be viewed as the inverse of Ω. The
two bivectors are related by the pair of equations

J ·(Ω·a) = a, ∀a ∈ TxM,

Ω·(J ·a∗) = a∗, ∀a∗ ∈ T ∗
x M.

(12.94)

The properties of Ω and J can be understood simply by introducing a set of local
coordinates (pi, qi) over M . In terms of these we define the tangent vectors

ei =
∂x

∂pi
, fi =

∂x

∂qi
, (12.95)

and the cotangent vectors

ei = ∇pi, f i = ∇qi. (12.96)

We then set

Ω =
n∑

i=1

f i∧ei, J =
n∑

i=1

ei∧fi. (12.97)

So J and Ω both have a similar structure to the complex bivector introduced in
section 11.4. By construction, Ω is clearly closed. It is also straightforward to
verify the relations

Ω·ei = f i, Ω·fi = −ei,

J ·ei = −fi, J ·f i = ei,
(12.98)

which confirm that equations (12.94) are satisfied.
The Hamiltonian H(x, t) is a scalar field defined over M , and the dynamics of

the system are governed by the equation

ẋ = (∇H)·J. (12.99)

This is an identity between tangent vectors. In terms of local coordinates this
equation becomes

ṗiei + q̇ifi =
(

ei ∂H

∂pi
+ f i ∂H

∂qi

)
·J = fi

∂H

∂pi
− ei

∂H

∂qi
, (12.100)

where repeated indices are summed over 1, . . . , n. We therefore recover Hamil-
ton’s equations in local coordinates.
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12.3.2 Conservation theorems and the Poisson bracket

We now restrict to the case where H is independent of time t. Suppose that a
scalar function f(x) is defined over phase space. The evolution of this along a
phase space trajectory x(t) is determined by

ḟ = ẋ·∇f = (∇f∧∇H)·J. (12.101)

It follows immediately that Ḣ = 0. A further consequence follows if H is invari-
ant along some direction a in phase space. If we form the directional derivative
of H we obtain

a·∇H =
(
J ·(Ω·a)

)
·∇H = (Ω·a)·ẋ. (12.102)

So if H is unchanged in the a direction we have

(Ω·a)·ẋ = 0, (12.103)

so all flows are perpendicular to the cotangent vector Ω·a.
The equation for the evolution of f leads naturally to the definition of the

Poisson bracket of a Hamiltonian system. Given two scalar fields f and g the
Poisson bracket is defined by

{f(x), g(x)} = (∇f∧∇g)·J. (12.104)

In terms of local coordinates this takes the more familiar form

{f(x), g(x)} =
∑

i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (12.105)

The geometric form neatly brings out the antisymmetry of the Poisson bracket.
It follows, for example, that the Poisson bracket with the Hamiltonian returns
the time development of a scalar field:

{f,H} = (∇f∧∇H)·J = ḟ . (12.106)

Poisson brackets and the Hamiltonian formulation of dynamics provide a natural
route through to quantum mechanics, where Poisson brackets are replaced by
operator commutation relations.

An important property satisfied by the Poisson bracket is the Jacobi identity

{{f, g}, h} + {{g, h}, f} + {{h, f}, g} = 0, (12.107)

which is easily confirmed in terms of local coordinates. This identity links the
Poisson bracket structure to a Lie algebra structure. The identity is satisfied by
any symplectic manifold, as we now establish. We first write

{f, g} =
(
∇∧(f∇g)

)
·J = (J ·∇)·(f∇g), (12.108)

436

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.014
https:/www.cambridge.org/core


12.3 HAMILTONIAN TECHNIQUES

which follows from the identity that ∇∧∇ = 0 (every exact form is closed). The
Jacobi identity now reduces to

(J ·∇)·
(
(∇f∧∇g)·J ∇h + cyclic permutations

)
= 0. (12.109)

If we define

T = ∇f∧∇g∧∇h, (12.110)

then equation (12.109) simplifies to

(J ·∇)·(J ·T ) = 0. (12.111)

To simplify this equation further we employ the identity

(B∧B)·a = 2B∧(B ·a), (12.112)

which holds for any bivector B and vector a. We can now write

(J ·∇)·(J ·T ) = (J ·∇̇)·(J̇ ·T ) + 1
2 (J∧J)·(∇∧T ) (12.113)

and the final term here vanishes as T is exact. It follows that the Jacobi identity
reduces to the condition

(J ·∇)∧J = 0. (12.114)

The final task is to demonstrate that this identity for J is equivalent to the
statement that Ω is closed. Equation (12.114) is evaluated entirely in tangent
space. If we use Ω to map each term into the cotangent space we arrive at the
equivalent expression

eα∧eβ∧∇̇〈J̇(Ω·eα)∧(Ω·eβ)〉 = 0, (12.115)

where Greek indices are summed from 1 to 2n, with the first n covering the
ei frame, and the second n covering the fi frame. This identity is equivalent to

∇∧(eα∧eβ〈J(Ω·eα)∧(Ω·eβ)〉) − eα∧eβ∧∇〈J̌(Ω·eα)∧(Ω·eβ)〉 = 0, (12.116)

where the check denotes that J is not differentiated in the second expression.
The frame derivatives in this expression can all be shown to vanish, which leaves

2∇∧Ω − eα∧eβ∧∇̇〈J(Ω̇·eα)∧(Ω·eβ) + J(Ω·eα)∧(Ω̇·eβ)〉 = 0. (12.117)

This is equivalent to

−2∇∧Ω = 0, (12.118)

which proves the main result. Any symplectic manifold admits a Poisson bracket
structure that satisfies the Jacobi identity. As such, any symplectic manifold can
form the basis for a Hamiltonian system.
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12.3.3 The cotangent bundle

In practice, the phase space for a Hamiltonian system is often the cotangent
bundle of configuration space. This works as follows. Suppose that Q denotes
configuration space. It is a manifold with potentially non-trivial topology. At
each point q in the manifold we define the cotangent space T ∗

q Q. If qi form a set
of local coordinates in configuration space, then ∇qi define a set of basis vectors
for T ∗

q Q. An arbitrary cotangent vector can be written as pi∇qi, so the pi can
be used as coordinates for T ∗

q Q. Now consider the bundle of all tangent spaces,
T ∗Q. This is a manifold, and a general point in T ∗Q is specified by the set of
2n coordinates (qi, pi). The first n of these locate the position over Q, and the
second n locate a point within the cotangent space. The cotangent bundle T ∗Q

is a symplectic manifold, with the symplectic structure defined by

Ω =
n∑

i=1

∇qi∧∇pi. (12.119)

The reason this structure often arises is that, while there may be constraints
placed on configuration space, there are usually no restrictions in momentum
space. Returning to the case of the simple pendulum, Q is a circle since θ is a
periodic coordinate. But there are no such constraints on θ̇, so the cotangent
space is a line. The manifold T ∗Q can therefore be visualised as a cylinder,
which is the phase space for the pendulum.

12.3.4 Canonical transformations

Suppose that (M1,Ω1) and (M2,Ω2) are two symplectic manifolds. We let f

denote a map from M1 to M2, which we write as

x′ = f(x), x ∈ M1, x′ ∈ M2. (12.120)

This map is canonical if it respects the symplectic structure. That is, we must
have

f̄(Ω2) = Ω1, f(J1) = J2. (12.121)

Here

f(a) = a·∇f(x) (12.122)

is a map from TxM1 to Tx′M2. The fact that Ω is non-degenerate means that
we can define a volume form on either manifold by

V =
1
n!
〈(Ω)n〉2n =

1
n!
〈Ω∧Ω∧· · ·∧Ω〉2n. (12.123)

The map f̄ must preserve this volume form, so has non-zero determinant. It
follows that f is invertible for a canonical transformation, and hence so too is f .
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As a check, the Poisson bracket structure remains intact as

J1 ·(∇f∧∇g) = J2 · f̄−1(∇f∧∇g) = J2 ·(∇2f∧∇2g), (12.124)

where ∇2 = f̄−1(∇) is the vector derivative on M2. It follows that the dynam-
ics can be formulated on either M1 or M2, and the physical results will remain
unchanged. This is potentially a very powerful result. The set of all possible
symplectic transformations is large, and there may well by a suitable transforma-
tion which can dramatically simplify the dynamics. This is particularly evident
when one notices that symplectic transformations can mix up the position and
momentum coordinates in one space. These transformations are richer than
simply converting between configuration spaces.

In some applications, phase space is simply R2n, and the bivector J is constant.
In this case we can consider canonical transformations which map phase space
onto itself. For these the map f is canonical if and only if

f(J) = J. (12.125)

Linear transformations satisfying this identity define the symplectic group. This
can be analysed using the spin group approach developed in section 11.4.

12.4 Lagrangian field theory

The Lagrangian approach to classical dynamics extends to field theory, which
can be viewed as the dynamics of systems with an infinite number of degrees of
freedom. There are some technical issues connected with the infinite size of the
configuration space, but we will not discuss these here. Suppose that the system
of interest depends on a field ψ(x), where for simplicity we will assume that x

is a spacetime vector. This does not restrict us to relativistic theories, as there
is no need to restrict the Lagrangian to be Lorentz-invariant. The action is now
defined as an integral over a region of spacetime by

S =
∫

d4xL(ψ, ∂µψ, x), (12.126)

where L is the Lagrangian density and xµ are a set of fixed orthonormal coordi-
nates for spacetime. More general coordinate systems are easily accommodated
with the inclusion of suitable factors of the Jacobian.

The derivation of the Euler–Lagrange equations proceeds precisely as in sec-
tion 12.1. We assume that ψ0(x) represents the extremal path, satisfying the
desired boundary conditions, and look for variations of the form

ψ(x) = ψ0(x) + εφ(x). (12.127)

Here φ(x) is a field of the same form as ψ(x), which vanishes over the boundary.
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The first-order variation in the action is (summation convention in force)

dS

dε

∣∣∣∣
ε=0

=
∫

d4x

(
φ(x)∗ ∂L

∂ψ
+

∂φ

∂xµ
∗ ∂L

∂(∂µψ)

)
. (12.128)

The final term is integrated by parts, and the boundary term vanishes. We
therefore find that

dS

dε

∣∣∣∣
ε=0

=
∫

d4x φ(x)∗
(

∂L
∂ψ

− ∂

∂xµ

(
∂L

∂(∂µψ)

))
, (12.129)

from which we can read off the variational equations as

∂L
∂ψ

− ∂

∂xµ

(
∂L

∂(∂µψ)

)
= 0. (12.130)

If more fields are present we obtain an equation of this form for each field. Our
main applications of these equations are in the following chapters, where we
discuss gauge theories and gravitation. Here we illustrate the equations with a
pair of examples concerned with elastic and fluid materials.

12.4.1 Hyperelastic materials

The equations of continuum mechanics, which govern an elastic body, were de-
rived in section 6.6. For certain elastic materials it is possible to obtain these
equations from a variational principle. We follow the notation of section 6.6, so
f is the displacement field, f(a) is the directional derivative of f , and C = f̄ f is
the Cauchy–Green tensor. The materials of interest here are called hyperelastic.
These are defined by the property that, in the absence of external fields, their
internal energy U is a function of C only. A suitable action for this system is

S =
∫

dt d3x

(
ρ(x)

2
ḟ2 − U(∂if)

)
, (12.131)

from which we can read off L. Overdots denote the derivative with respect to
time, and the integral runs over the space of the reference copy of the body.

The Euler–Lagrange equations are found entirely from the variation of the
action with respect to the displacement field f . Since the Lagrangian depends
on f through only its time and space derivatives, the Euler–Lagrange equations
are

∂

∂t

(
∂L
∂ḟ

)
+

∂

∂xi

(
∂L

∂(∂if)

)
= 0. (12.132)

These simplify to

ρv̇ =
∂

∂xi

(
∂U

∂(∂if)

)
, (12.133)
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where v = ẏ is the local velocity of the body. Comparison with equation (6.319)
tells us that we must have

T(ei) =
∂U

∂(∂if)
, (12.134)

where {ei} is the (fixed) coordinate frame defined by the xi coordinates. To
simplify the right-hand side we employ the derivative with respect to a linear
function, as defined in section 11.1.2. From the definition of equation (11.24) we
have

∂

∂f(ei)
= ej

∂

∂fji
. (12.135)

The scalars fji are defined by

fji = ej ·f(ei) = ej ·(∂if). (12.136)

These are the components of the vector ∂if , so we can write

∂

∂(∂if)
= ej

∂

∂fji
=

∂

∂f(ei)
. (12.137)

The notation for the derivative with respect to f(ei) is slightly misleading, as f

is never evaluated on ei. Instead, we have

T(a) = ∂f(a)U(C). (12.138)

The fact that U is a function of C = f̄ f ensures that the second Piola–Kirchoff
stress T = f−1T is a symmetric function.

To make further progress we must specify the precise form of U , which amounts
to specifying the constitutive properties of the system. The simplest hyperelastic
materials to consider are isotropic and homogeneous. For these the internal
energy can only depend on the principal stretches:

W = W (λ1, λ2, λ3). (12.139)

Even within this class there are a large variety of models one can consider. To
obtain a linear model the energy should be quadratic in the strains, where linear
in this context refers to the relationship between the stress and strain tensors,
and not to the underlying dynamics. A natural model to consider is to define
the strain by

E(a) = C1/2(a) − a, (12.140)

and set

U(E) = G tr(E2) + (B/2 − G/3) tr(E)2

= G
(
tr(C) − 2tr(C1/2) + 3

)
+ (B/2 − G/3)

(
tr(C1/2) − 3

)2
, (12.141)

where B and G are respectively the (constant) bulk and the shear moduli. To
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find the stress tensor we need the derivative of tr((̄ff)1/2). To evaluate this we
first write

(̄ff)1/2 = exp
(

1
2 ln(C)

)
= exp(Eln), (12.142)

where

Eln = 1
2 ln(C). (12.143)

We can now make use of the result

∂f(a)tr(En
ln) = nf̄−1En−1

ln (a) (12.144)

to prove that

∂f(a)tr
(
(̄ff)1/2

)
= f̄−1(̄ff)1/2(a). (12.145)

The stress tensor T therefore evaluates to

T = 2G(f − f̄−1(̄ff)1/2) + (B − 2G/3)tr(E )̄f−1(̄ff)1/2

= f̄−1(̄ff)1/2
(
2GE + (B − 2G/3)tr(E)I

)
, (12.146)

where I is the identity transformation. The bracketed term is the expression we
would expect to see in a linear theory. The extra pre-factor can be understood
in terms of a singular-value decomposition of f. We write

f = RC1/2, (12.147)

where R is a rotation. We then find that

f̄−1C1/2 = RC−1/2C1/2 = R, (12.148)

which recovers the rotation. We can now write

T(a) = R
(
(2GE(a) + (B − 2G/3)tr(E)a

)
. (12.149)

This can be understood as a linear function of E , followed by a rotation to align
the principal axes in the reference configuration with those in the body.

The definition of Eln raises the interesting prospect that this could be used as
an alternative definition of the strain. For an isotropic, homogeneous media this
amounts to choosing an energy density of

Uln = G
(
(ln λ1)2 + (lnλ2)2 + (lnλ3)2

)
+ (B/2 − G/3)

(
ln(λ1λ2λ3)

)2
. (12.150)

This definition has the same behaviour under small deflection as the potential
energy of equation (12.141), but differences emerge as the stresses build up. In
essence, the logarithmic definition of energy defines a material which retains its
elastic properties no matter what shape it is stretched into. This limits the
application of Uln for modelling physical objects, though it may well be of use
in computer graphics simulations, as routines built on Uln will not break down
when forces become large.
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12.4.2 Relativistic fluid dynamics

The field equations for a relativistic fluid can be formulated in a number of
different ways. Here we give a fairly direct derivation, albeit from a slightly
surprising starting point. We start with the action integral

S =
∫

d4x
(
−ε + J ·(∇λ) − µJ ·∇η

)
, (12.151)

where J(x) is a spacetime current, ε is the total energy density and η is the
entropy. The current can be written as

J = ρv, v2 = 1, (12.152)

and we assume that ε is a function of ρ and η only, which we write as

ε = ρ(1 + e(ρ, η)). (12.153)

The remaining terms λ and µ are Lagrange multipliers enforcing the two con-
straints

∇·J = 0, v ·∇η = 0. (12.154)

These are two of the four equations of motion. The first constraint is that the
current is conserved, so the total number of particles in the system is constant.
The second constraint says that entropy is constant along the field lines of J . The
various constraints and assumptions ensure that we are describing a relativistic
ideal fluid.

Variation with respect to η yields the equation

∂e

∂η
= v ·∇µ, (12.155)

and variation with respect to J produces

v(1 + e) + vρ
∂e

∂ρ
= ∇λ − µ∇η. (12.156)

In the derivation of this equation we have employed the result that

∂Jf(ρ) = v
∂f

∂ρ
. (12.157)

Next, we define the pressure P by

P = ρ2 ∂e

∂ρ
, (12.158)

so that equation (12.156) becomes

v(ε + P ) = ρ(∇λ − µ∇η). (12.159)
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LAGRANGIAN AND HAMILTONIAN TECHNIQUES

The final step is to remove the Lagrange multipliers by employing the constraint
equations. First we contract equation (12.159) with v to obtain

ε + P = ρv ·∇λ = J ·(∇λ). (12.160)

Next we differentiate equation (12.159) to obtain

J ·∇(∇λ − µ∇η) = v ·∇
(
v(ε + P )

)
+ v(ε + P )J ·∇(ρ−1)

= v ·∇
(
v(ε + P )

)
+ v(ε + P )∇·v. (12.161)

The left-hand side is manipulated as follows:

J ·∇(∇λ − µ∇η) = ∇(J ·∇ λ) − ∇̇J̇ ·∇λ − ρ
∂e

∂η
∇η + µ∇̇J̇ ·∇η

= ∇(ε + P ) − ρ
∂e

∂η
∇η − ∇̇J̇ ·v (ε + P )

ρ

= ∇P + ∇ρ
∂ε

∂ρ
− (ε + P )

ρ
∇ρ

= ∇P. (12.162)

We therefore arrive at the equation

v ·∇
(
v(ε + P )

)
+ v(ε + P )∇·v = ∇P, (12.163)

which describes a relativistic ideal fluid. This is more clearly seen if we introduce
the relativistic stress-energy tensor T(a), which is defined by

T(a) = (ε + P )a·v v − Pa. (12.164)

The rest frame of the fluid is defined locally by v. We find that T(v) = εv,
so that ε is the local energy density, as required. In any spacelike direction n

perpendicular to v we have T(n) = −Pn, which shows that the local stress is
governed by an isotropic pressure P . These are the relativistic definitions of the
stress-energy tensor for an ideal fluid. The field equations reduce to the single
conservation equation

Ṫ(∇̇) = 0, (12.165)

which expresses relativistic conservation of the stress-energy tensor. Electromag-
netic coupling is included simply with the addition of the term −qJ ·A to the
Lagrangian density.

12.5 Notes

The Lagrangian formulation of mechanics is described in a wide range of books.
Analytical Mechanics by Hand & Finch (1998) contains a detailed introduction
and, despite its name, Introduction to Mechanics and Symmetry by Marsden &
Ratiu (1994) contains a more detailed description of Lagrangian and Hamiltonian
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methods and symplectic geometry. Further applications, including relativistic
fluid dynamics, are contained in The Variational Principles of Dynamics by
Kupershmidt (1992).

Pseudoclassical mechanics was introduced by Berezin & Marinov (1977). Fur-
ther references are contained in the notes to chapter 11. Similar ideas to those
developed in this chapter have been applied in the supersymmetric setting by
Heumann & Manton (2000). The section on spinor models of relativistic spin-1/2
point particles was motivated by the initial work of Barut & Zanghi (1984). The
description given here contains a number of refinements, many of which are also
discussed in Doran (1994). A detailed discussion of the complexities involved
in performing a path-integral quantisation of such systems is given by Barut &
Duru (1989).

12.6 Exercises

12.1 A relativistic action for a point particle is defined by

S =
∫

dλ
(
−p·ẋ +

e

2
(p2 − m2) − qx′ ·A(x)

)
,

where A is an external field representing the electromagnetic vector po-
tential. Vary S with respect to x, p and e to obtain the Lorentz force
law.

12.2 Prove that

∂ψ〈Mψ−1〉 = −ψ−1Mψ−1,

where ψ and M are even multivectors.
12.3 The configuration of a rigid body is described by a rotor R. If we relax

the normalisation of R and replace it by ψ, explain why we can write
ΩB as

ΩB = −2R̃Ṙ = −ψ−1ψ̇ + ψ̇†ψ†−1
.

Now define the Lagrangian

L(ψ, ψ̇) = −1
2ΩB · I(ΩB),

where I is the inertia tensor. Find the Euler–Lagrange equation for
variation with respect to ψ. Prove that this produces the equation of
motion J̇ = 0, where J is the angular momentum. Why does this method
work?

12.4 One classical model for a spin-1/2 particle describes the motion in terms
of a rotor R and a momentum p. The rotor determines the quantities

ẋ = Rγ0R̃, S = RIσ3R̃
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and the equations of motion are

ṗ = 0, p·ẋ = m, Ṡ + 2ẋ∧p = 0.

Verify that these are solved by

p =
m

cosh(α)
γ0 = m∗γ0, R = eIσ3m∗τ eασ2/2.

Integrate ẋ to find the trajectory of the particle and comment on its
properties.

12.5 Find the equations of motion for the Lagrangian

L = 〈ψ′Iσ3ψ̃ − p(x′ − eψγ0ψ̃) − emψψ̃ − qx′ ·A〉,

where ψ is a spinor and A(x) is an external electromagnetic vector po-
tential. Comment on the form of the solutions.

12.6 A set of vectors satisfy the equations

ėi + εijkωjek = 0,

where the ωi are constant. Prove that the volume element E is constant,
where

E = e1∧e2∧e3.

12.7 The relativistic Hamiltonian for a charged particle in three dimensions
is defined by

H(p,x, t) =
(
(p − qA)2 + m2)1/2 + qφ,

where φ + A = Aγ0 and the vector potential A is a function of x and
t. Find Hamilton’s equations and prove that these recover the Lorentz
force law.

12.8 Fill in the missing steps in the proof that a closed non-degenerate 2-form
in a symplectic manifold guarantees that the Poisson bracket satisfies the
Jacobi identity.

12.9 A system is described by the Hamiltonian

H(p, q) =
1
2

(
1
q2

+ p2q4

)
.

Find a canonical transformation which maps this onto the Hamiltonian
for a simple harmonic oscillator.

12.10 The total energy in a hyperelastic medium is given by

E =
∫

d3x

(
ρ(x)

2
ḟ2 + U

)
.

Prove that the energy flow per unit area perpendicular to n is given by
ḟ ·T(n), where n is a vector in the reference configuration.
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12.11 An incompressible elastic material is one for which det f = 1. The
Mooney–Rivlin model for rubber is as an incompressible material with
internal energy

U = α(λ2
1 + λ2

2 + λ2
3 − 3) + β((λ2λ3)2 + (λ3λ1)2 + (λ1λ2)2 − 3),

where the λi denote the principal strains. Analyse the properties of this
material under uniform pressure. What happens when two of the λi

pass through 41/3?
12.12 A hyperelastic material is defined with an energy density

Uln = G
(
(ln λ1)2 + (ln λ2)2 + (ln λ3)2

)
+ (B/2 − G/3)

(
ln(λ1λ2λ3)

)2
.

Prove that when this system is placed under isotropic pressure P we
have

−3B ln λ = P.
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13

Symmetry and gauge theory

The fundamental forces of nature can all be described in terms of gauge the-
ories. Not long after the advent of quantum theory, physicists realised that
electromagnetic interactions arise from demanding invariance of quantum wave
equations under local changes of phase. This idea was later extended by Yang
and Mills, who showed how to construct theories based on more complicated,
non-commutative Lie groups. This is the basis for the standard model of the
electroweak and strong interactions. Around this time physicists also turned
their attention to gravitation, and discovered that general relativity could also
be formulated as a gauge theory. But this time there was a price to pay. The
existence of spinor fields means that the simple geometric structure of general
relativity has to be modified by the inclusion of a torsion field, leading to an
Einstein–Cartan theory. For clarity, we use the term general relativity to refer
to the theory defined by Einstein, with zero torsion and the connection given by
the Christoffel symbol. The extended theory, with torsion present, is referred to
as Einstein–Cartan theory.

While gauge theory is the dominant method in particle physics, it is less
popular as a means of analysing gravitational interactions. This is, in part,
due to the perception that the gauge theory equations are more complicated
than their geometric counterparts. In this and the following chapter we argue
that this apparent complexity is a reflection of the inappropriate mathematical
techniques typically employed when analysing the gauge theory equations. The
spacetime algebra provides the appropriate setting for a gauge formulation of
gravity and, applied carefully, this approach is often easier to compute with
than the metric formulation. We demonstrate that, in the absence of torsion
and highly esoteric topology, the gauge and metric approaches produce the same
physical predictions.

We begin with a discussion of symmetry in the Maxwell and Dirac theories.
Our starting point is the field Lagrangian, which we analyse using Noether’s
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13.1 CONSERVATION LAWS IN FIELD THEORY

theorem. In particular, we use this to extract the canonical energy-momentum
tensor, which is conserved in the absence of external fields. We then turn to the
wider subject of gauge theories, before deriving the properties of the gauge fields
for gravitation. This chapter concludes with a derivation of the gravitational
field equations, and a discussion of the observable quantities in the theory. For
the source matter, observables are contained in the functional energy-momentum
tensor, which is closely related to the canonical tensor. Applications of the field
equations are contained in chapter 14. Throughout the present chapter various
results and notation from chapter 11 are assumed without comment.

13.1 Conservation laws in field theory

In section 12.4 we derived the Euler–Lagrange equations for field theory, and
demonstrated how to apply these to the cases of elasticity and relativistic fluid
dynamics. In this section we concentrate on conservation theorems for La-
grangian field theory. As all of the applications that will concern us are to
relativistic field theory, we assume from the outset that the we are describing
field theory in a (flat) spacetime. Given a Lagrangian density L(ψi, ∂µψi), where
ψi, i = 1, . . . , n are a set of multivector fields, the Euler–Lagrange equations gov-
erning the evolution of the system are

∂L
∂ψi

− ∂

∂xµ

(
∂L

∂(∂µψi)

)
= 0, (13.1)

where xµ = γµ·x are a set of fixed orthonormal coordinates. For the applications
of interest here the final equations can always be assembled into a frame-free
form. Curvilinear coordinates can then be introduced to analyse these equations,
if desired.

To obtain a version of Noether’s theorem appropriate for field theory we follow
the derivation of section 12.1.1. For simplicity we assume that only one field is
present. The results are easily extended to the case of more fields by summing
over all of the fields present. Suppose that ψ′(x) is a new field obtained from
ψ(x) by a scalar-parameterised transformation of the form

ψ′(x) = f(ψ(x), α), (13.2)

with α = 0 corresponding to the identity. We again define

δψ =
∂ψ′

∂α

∣∣∣∣
α=0

. (13.3)

With L′ denoting the original Lagrangian evaluated on the transformed fields
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SYMMETRY AND GAUGE THEORY

we find that
∂L′

∂α

∣∣∣∣
α=0

= (δψ)∗ ∂L
∂ψ

+ ∂µ(δψ)∗ ∂L
∂(∂µψ)

=
∂

∂xµ

(
(δψ)∗ ∂L

∂(∂µψ)

)
. (13.4)

This equation relates the change in the Lagrangian to the divergence of the
current J , where

J = γµ (δψ)∗ ∂L
∂(∂µψ)

. (13.5)

If the transformation is a symmetry of the system then L′ is independent of α.
In this case we immediately establish that the conjugate current is conserved,
that is,

∇·J = 0. (13.6)

Symmetries of a field Lagrangian therefore give rise to conserved currents. These
in turn define Lorentz-invariant constants via

Q =
∫

d3x J0, (13.7)

where J0 = J ·γ0 is the density measured in the γ0 frame. The fact that this is
constant follows from

dQ

dt
=
∫

d3x
∂J0

∂t
=
∫

d3x∇·J = 0, (13.8)

where we assume that the current J falls off sufficiently fast at infinity. The value
of Q is constant, and independent of the spatial hypersurface used to define the
integral.

If the transformation involves a change in the spacetime dependence, Noether’s
theorem does apply, but we have to be careful in defining the transformation law
for L. Suppose that we define

ψ′(x) = ψ(x′), (13.9)

where

x′ = f(x). (13.10)

The differential is defined in the usual way as

f(a) = a·∇f(x). (13.11)

The transformed action is

S =
∫

d4xL(ψ(x′))

=
∫

d4x′ det (f)−1L(ψ(x′)) (13.12)
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13.1 CONSERVATION LAWS IN FIELD THEORY

from which we see that the correct definition of the transformed Lagrangian is

L′(ψ′(x)) = det (f)−1L(ψ(x′)). (13.13)

This transformation law demonstrates that L is indeed a Lagrangian density.

13.1.1 Spacetime symmetries

One of the most important spacetime symmetries is translational invariance.
All fundamental theories are assumed to give rise to the same physical predic-
tions, independent of the position of the fields in (flat) spacetime. That is, the
background space is assumed to be homogeneous. A more careful discussion of
this principle, and its relation to gravitation, is contained in section 13.4.1. In
terms of the Lagrangian, this principle is encoded in the statement that all x

dependence enters L through the fields. In this case we can apply Noether’s the-
orem to extract a conserved quantity, though we could proceed equally simply
by differentiating L directly to obtain

a·∇L = (a·∇ψ)∗ ∂L
∂ψ

+
(
a·∇(∂µψ)

)
∗ ∂L

∂(∂µψ)

=
∂

∂xµ

(
(a·∇ψ)∗ ∂L

∂(∂µψ)

)
, (13.14)

where the field equations have been assumed. We can therefore define the con-
served current conjugate to translations by

T(a) = γµ(a·∇ψ)∗ ∂L
∂(∂µψ)

− aL. (13.15)

This defines a linear function of a, called the canonical energy-momentum tensor.
This is a conserved tensor if the system is invariant under translations, so

∇·T(a) = 0, ∀ constant a. (13.16)

The canonical energy-momentum tensor need not be symmetric, and its adjoint
is found to be

T̄(a) = ∂b〈T(b)a〉 = a·γµ ∇̇
〈
ψ̇∗ ∂L

∂(∂µψ)

〉
− aL. (13.17)

The conservation equation for the adjoint tensor is

˙̄T(∇̇) = 0. (13.18)

If more than one field is present, the energy-momentum tensor is the sum of the
individual contributions from each field.

One can similarly define a conserved tensor conjugate to rotations. This time
the assumption is that spacetime is isotropic, so does not contain any preferred
directions except those defined by the fields themselves. The derivation is slightly
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more complicated now, as the fields transform in different ways depending on
their spins. For all cases we have

x′ = R̃xR, R = eαB/2, (13.19)

and in general we can write

δψ = −B ·(x∧∇)ψ + δBψ, (13.20)

where ψ is a general field, and the precise form of δBψ depends on the spin. The
transformation x′ = R̃xR has unit Jacobian, so Noether’s theorem gives

−B ·(x∧∇)L =
∂

∂xµ

((
−B ·(x∧∇)ψ + δBψ

)
∗ ∂L

∂(∂µψ)

)
. (13.21)

We can therefore read off the canonical angular momentum tensor J(B), where

J(B) = γµ

(
−B ·(x∧∇)ψ + δBψ

)
∗ ∂L

∂(∂µψ)
+ B ·xL

= T(x·B) + (δBψ)∗ ∂L
∂(∂µψ)

. (13.22)

This is a vector-valued linear function of the bivector B, which is conserved for
all constant B.

The adjoint function J̄(a) is often easier to work with. This evaluates to

J̄(a) = ∂B〈J(B)a〉 = T̄(a)∧x + S(a), (13.23)

which is a bivector-valued linear function of the vector a. The form of J̄(a)
generalises the point-particle definition of angular momentum to the field theory
setting. The term S(a) is the canonical spin tensor,

S(a) = a·γµ ∂B

〈
(δBψ)

∂L
∂(∂µψ)

〉
. (13.24)

The conservation equation for J̄ states that

˙̄J(∇̇) = 0 = ˙̄T(∇̇)∧x + T̄(∇̇)∧ẋ + Ṡ(∇̇). (13.25)

Since the energy-momentum tensor is also conserved, conservation of angular
momentum reduces to the equation

T̄(∂a)∧a + Ṡ(∇̇) = 0. (13.26)

So, in any homogeneous, isotropic, relativistic field theory, the antisymmetric
part of the canonical energy-momentum tensor is a total divergence.
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13.2 Electromagnetism

As a first application of the preceding results we consider electromagnetism.
The dynamical variable in electromagnetism is the vector potential A, and the
electromagnetic Lagrangian density is

L = 1
2F ·F − A·J, (13.27)

where F = ∇∧A, and A couples to an external current J . An electromagnetic
gauge transformation is defined by

A 
→ A + ∇φ(x), (13.28)

where φ(x) is a scalar field. Gauge invariance of the Lagrangian is ensured by
requiring that the current J is conserved. The field equation is

−J − ∂

∂xµ

(
1
2

∂

∂(∂µA)
〈FF 〉

)
= −J − ∂

∂xµ
(∇∧A)·γµ = 0, (13.29)

which simplifies to the familiar equation

∇·F = J. (13.30)

The remaining Maxwell equation, ∇∧F = 0, follows from the definition of F in
terms of A.

13.2.1 The electromagnetic energy-momentum tensor

To calculate the free-field energy-momentum tensor, we set J = 0 and work with
the Lagrangian density

L0 = 1
2 〈F

2〉. (13.31)

Equation (13.15) yields the energy-momentum tensor

T(a) = (a·∇A)·F − 1
2a〈F 2〉. (13.32)

This expression is somewhat unsatisfactory as it stands, as it is not gauge-
invariant. In order to find a gauge-invariant form of the energy-momentum
tensor we write

a·∇A = a·F + ∇̇(Ȧ·a). (13.33)

If we now employ the field equations we can write

T(a) = F ·(F ·a) − 1
2aF ·F + ∇·(A·aF ). (13.34)

The first two terms are gauge-invariant, and the final term is a total divergence.
In most classical applications the total divergence can be ignored, as its integral
over any finite volume results in a boundary term which can be set to zero.
In quantum field theory the issue of how to handle gauge invariance is more
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complicated. Typically, manifest gauge invariance is lost at the level of the
quantum field equations, and only recovered in the physical predictions of the
theory. With the boundary term removed, the remaining terms recover the
familiar classical free-field electromagnetic energy-momentum tensor,

Tem(a) = F ·(F ·a) − 1
2aF ·F

= 1
2FaF̃ , (13.35)

as found in section 7.2.3. This tensor is gauge-invariant, traceless and sym-
metric. It is also equal to the functional energy-momentum tensor, defined in
section 13.5.4.

13.2.2 Angular momentum in electromagnetism

The canonical angular momentum is found by considering the symmetry trans-
formation

A′(x) = RA(x′)R̃, (13.36)

with R and x′ as defined in equation (13.19). The transformation law for x

implies that

∇x′ = R̃∇R, (13.37)

so that the new field satisfies

∇∧A′ = R∇x′∧A(x′) R̃ = RF (x′)R̃. (13.38)

It follows that the transformed free-field Lagrangian only depends on α through
the transformed position dependence, as required for isotropy. We also find that

δA = B ·A − (B ·x)·∇A, (13.39)

so equation (13.22) gives

J(B) =
(
B ·A − (B ·x)·∇A

)
·F + 1

2B ·x〈F 2〉. (13.40)

As with the canonical energy-momentum tensor, the angular momentum tensor
is not manifestly gauge-invariant. This time we write

(B ·x)·∇A = (B ·x)·(∇∧A) + ∇̇(B ·x)·Ȧ
= (B ·x)·F + ∇

(
(B ·x)·A

)
+ B ·A, (13.41)

so that

J(B) = −
(
(B ·x)·F

)
·F + 1

2B ·x〈F 2〉 − ∇·
(
(B ·x)·AF

)
. (13.42)

The final term is again a total divergence which can be ignored. We therefore
define

Jem(B) = −
(
(B ·x)·F

)
·F + 1

2B ·x〈F 2〉 = Tem(x·B), (13.43)
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which is now manifestly gauge-invariant. The adjoint is simply

J̄em(a) = Tem(a)∧x. (13.44)

Conservation of angular momentum implies that

∇·Tem(x·B) = ∂a ·Tem(a·B) = (T̄em(∂a)∧a)·B = 0. (13.45)

This holds because Tem(a) is symmetric.
The redefinition of the energy-momentum and angular momentum tensors for

electromagnetism removes the spin term and absorbs it directly into Tem(a)∧x.
This guarantees that the fields are gauge-invariant, but suppresses the spin-1
nature of the electromagnetic field. For gravitational interactions the canonical
energy-momentum and spin tensors are not as important as their functional
equivalents. In the case of electromagnetism, the latter are guaranteed to be
(electromagnetic) gauge-invariant, and the spin contribution does turn out to
vanish.

13.2.3 Conformal invariance of free-field electromagnetism

In addition to invariance under Poincaré transformations, free-field electromag-
netism is invariant under the full conformal group of spacetime. Conformal
geometry is discussed in detail in chapter 10. Here we are interested in the field
theory manifestation of conformal invariance. We start by considering an arbi-
trary displacement, x′ = f(x). Gauge invariance tells us that A must transform
in the same manner as ∇ (it is a 1-form), so we define

A′(x) = f̄(A(x′)). (13.46)

The electromagnetic field strength therefore transforms to

∇∧A′(x) = f̄
(
f̄−1(∇)∧A(x′)

)
= f̄
(
F (x′)

)
, (13.47)

where we have made use of the results

∇̇∧˙̄f(a) = 0 (13.48)

and

∇x′ = f̄−1(∇). (13.49)

These formulae are derived in section 6.5.6. The transformed Lagrangian density
is now

L′ = 1
2det (f)−1 〈̄f

(
F (x′)

)
f̄
(
F (x′)

)
〉. (13.50)

We therefore define a symmetry of the action integral if f satisfies

f̄(A)· f̄(B) = det (f)A·B (13.51)
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for any pair of bivectors A and B. This is clearly satisfied by any orthogonal
transformation, but it is also satisfied by dilations. The Lagrangian for the
free electromagnetic field is therefore symmetric under any displacement whose
derivative is a local orthogonal transformation coupled with a dilation. This
defines the conformal group.

As a simple example, consider the dilation x′ = exp(α)x. For this transforma-
tion Noether’s theorem gives

x·∇L = −4L + ∇·
(

γµ (A + x·∇A)∗ ∂L
∂(∂µA)

)
, (13.52)

from which we extract the conserved current

J = T(x) + A·F = Tem(x) + ∇·(A·xF ). (13.53)

The final term is the divergence of a bivector so is automatically conserved.
Dilation invariance therefore tells us that

∇·Tem(x) = 0, (13.54)

which holds because Tem is conserved and traceless. The latter property is
typical of scale-invariant theories.

Similarly, a special conformal transformation maps the position vector x to x′,
where

x′ = f(x) = (x−1 + αa)−1 = x(1 + αax)−1. (13.55)

The derivative transformation is

f(b) = b·∇f(x) = (1 + αxa)−1b(1 + αax)−1, (13.56)

which is a local rotation and dilation. The determinant is

det (f) = (1 + 2αa·x + α2a2x2)−4. (13.57)

We also find that
∂x′

∂α

∣∣∣∣
α=0

= −xax (13.58)

and
∂

∂α
det (f)−1

∣∣∣∣
α=0

= 8x·a. (13.59)

Noether’s theorem for special conformal transformations can then be shown to
produce the conserved tensor Tem(xax). Conservation again follows from the
properties of Tem .
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13.3 DIRAC THEORY

13.3 Dirac theory

The free-field Dirac Lagrangian is

L = 〈∇ψIγ3ψ̃ − mψψ̃〉, (13.60)

where ψ is a spinor field. Variation with respect to ψ produces the Euler–
Lagrange equation

(∇ψIγ3)∼ − 2mψ̃ +
∂

∂xµ
(Iγ3ψ̃γµ) = 0, (13.61)

which reverses to recover the Dirac equation in the form

∇ψIγ3 = mψ. (13.62)

This derivation departs from that given in many textbooks, as we do not consider
ψ and ψ̃ as independent variables. Instead we view L as a real scalar function of
a single field ψ. An immediate consequence of the field equations is that L = 0
when the Dirac equation is satisfied. This behaviour is typical of first-order
systems.

13.3.1 Spacetime transformations

The canonical energy-momentum tensor for the Dirac field is easily found,

TD(a) = γµ〈a·∇ψIγ3ψ̃γµ〉 − aL
= 〈a·∇ψIγ3ψ̃〉1. (13.63)

This energy-momentum tensor is not symmetric. Its adjoint is

T̄D(a) = ∇̇〈ψ̇Iγ3ψ̃a〉, (13.64)

and the antisymmetric term is governed by the bivector

∂a∧TD(a) = ∇̇∧〈ψ̇Iγ3ψ̃〉1. (13.65)

This bivector can be written as

∇̇∧〈ψ̇Iγ3ψ̃〉1 =
〈
〈∇ψIγ3ψ̃ − ∇̇〈ψ̇Iγ3ψ̃〉3

〉
2

= − 1
2∇·(ψIγ3ψ̃). (13.66)

So, as stated in section 13.1.1, the antisymmetric component of the energy-
momentum tensor is a total divergence. In this case we can write

∂a∧TD(a) = − 1
2∇·S, (13.67)

where S is the spin trivector

S = ψIγ3ψ̃. (13.68)
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Rotational invariance follows from the transformation

ψ′(x) = Rψ(x′) (13.69)

with R and x′ as defined in equation (13.19). The wavefunction ψ is subject to
the single-sided transformation law appropriate for spinors. One can easily show
that the rotors cancel out of the transformed Lagrangian, and the conjugate
angular momentum is

J(B) = 〈(−B ·x)·∇ψIγ3ψ̃〉1 + 1
2B ·(ψIγ3ψ̃). (13.70)

The adjoint gives

J̄(a) = T̄(a)∧x + 1
2a·S, (13.71)

which neatly exposes the spin contribution to the angular momentum. Compar-
ison with equation (12.56) confirms that the point-particle models discussed in
section 12.2.1 do correctly capture the properties of the field angular momentum.

The mass term in the free-field Dirac Lagrangian is the sole term breaking
conformal invariance. Spacetime spinors have a conformal weight of 3/2, so
dilations are defined by

ψ′(x) = e3α/2ψ(eαx). (13.72)

For this transformation, Noether’s theorem gives rise to the canonical vector
TD(x), which satisfies the partial conservation law

∇·TD(x) = 〈mψψ̃〉. (13.73)

Special conformal transformations are also interesting to consider. With the
transformation as defined in equation (13.55), we write the derivative transfor-
mation as

a·∇x′ = f(a) =
1
ρ
RaR̃, (13.74)

where

ρ = 1 + 2αa·x + α2a2x2, R =
1 + αax

ρ1/2
. (13.75)

We define the transformed spinor by

ψ′(x) =
1

ρ3/2
R̃ψ(x′) = (1 + αax)−2(1 + αxa)−1ψ(x′). (13.76)

This transformation of ψ defines a symmetry of the action because of the re-
markable result that

∇
(
(1 + αax)−2(1 + αxa)−1

)
= 0. (13.77)

It follows that

∇ψ′(x) =
1

ρ5/2
R̃∇x′ψ(x′), (13.78)
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13.3 DIRAC THEORY

which is precisely the transformation required in the Dirac action. More gener-
ally, a special conformal transformation can be applied to any spacetime mono-
genic to obtain a new monogenic function. Equation (13.77) is an example of
the general result that

∇
(

1 + αxa

(1 + 2αx·a + α2a2x2)n/2

)
= 0, (13.79)

which holds in an n-dimensional space of arbitrary signature.
The conserved tensor conjugate to special conformal transformations, Tc, is

found from Noether’s theorem to be

Tc(a) = TD(xax) + (a∧x)·S. (13.80)

The partial conservation law for this is

∇·Tc(a) = 2ma·x〈ψψ̃〉. (13.81)

For both dilations and special conformal transformations we recover a genuine
conservation law if the mass m is set to zero. This is the basis for an important
technique in quantum field theory. In high-energy experiments it is often a
reasonable approximation to treat the particles as massless. One can then take
advantage of the conformal symmetry to compute a range of consequences for
the outcome of experiment. Typically, these predictions will be valid up to order
m/E, where E is the energy.

13.3.2 Internal symmetries and phase invariance

As well as spacetime symmetries there are a number of internal symmetries of
the Dirac action we can consider. The first of these is the duality transformation

ψ′ = ψeIα. (13.82)

Equation (13.4) produces the relation

∇·(ψγ3ψ̃) = 2〈mIψψ̃〉. (13.83)

So the spin vector defines a conserved current in the massless limit. This is the
partially-conserved axial current, which is important in scattering calculations.

Further transformations to consider are internal rotations of the form

ψ′ = ψeαB , (13.84)

where B is a bivector. In this case equation (13.4) reduces to

∇·
(
ψ B ·(Iγ3) ψ̃) = 0, (13.85)

where we have applied the Dirac equation. This yields conserved currents for
any component of B which commutes with γ3. This space is spanned by σ1, σ2
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and Iσ3. Of these, only Iσ3 has the additional property of leaving invariant the
observable current ψγ0ψ̃. This is the case of a phase transformation, and the
conjugate conserved quantity is precisely the current J , so

∇·J = 0, J = ψγ0ψ̃. (13.86)

This is an example of the general result in quantum theory that phase invari-
ance ensures that probability density is conserved, and wavefunction evolution
is unitary.

The phase transformation law

ψ 
→ ψ′ = ψeφIσ3 (13.87)

is a global symmetry of the Lagrangian, because φ is a constant. If ψ satisfies
the Dirac equation, then so to does ψ′. We arrive at a gauge theory if we convert
this global symmetry to a local one. There are a number of reasons for believing
that this is a sensible way to construct interactions in field theory. One moti-
vation is from the structure of the physical statements that can be extracted
from Dirac theory. Quantum theory makes predictions about the values of ob-
servables, which are formed from inner products between spinors, 〈ψ|φ〉. These
inner products are invariant under local changes of phase. Similarly, quantum
theory can make statements about the equality of two spinor expressions, for
example

ψ = ψ1 + ψ2. (13.88)

This might decompose ψ into two orthogonal eigenstates of some operator.
Again, if all spinors pick up the same locally-varying phase factor then the physi-
cal predictions are unchanged. In addition, a global change of phase corresponds
to simultaneously changing the phase of the wavefunction everywhere in the uni-
verse. While this can be conceived of mathematically, it does not make a great
deal of physical sense. The ultimate motivation, however, comes from the fact
that gauge theories are spectacularly successful. All of the known fundamental
forces can be described by the procedure of turning a global symmetry into a
local symmetry.

13.3.3 Covariant derivatives and minimal coupling

Now that we are clear on the motivation, we must find how to modify the Dirac
equation in order that phase changes become a local symmetry. This is the
prototype gauge theory. We start by writing

ψ′ = ψR, (13.89)

where R is a position-dependent rotor. We will later set R = exp(Iσ3φ(x)). This
slightly more general formulation eases the transition to the more complicated
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13.3 DIRAC THEORY

cases of electroweak and gravitational interactions. The equation for ψ′ now
includes the term

∇ψ′ = γµ
(
∂µψR + ψ∂µR

)
. (13.90)

We need to modify the ∇ operator to be able to cancel out the term in the
derivative of R. We therefore define a new, covariant derivative operator D,
where

Dψ = γµDµψ. (13.91)

The directional covariant derivatives Dµ contain an extra term going as

Dµψ = ∂µψ + 1
2ψΩµ, (13.92)

where Ωµ is a multivector field whose nature and transformation properties we
have to determine. (The factor of 1/2 is inserted for later convenience.) The
index indicates that Ωµ is a linear function. We can therefore write

Ωµ = Ω(γµ) = Ω(γµ;x), (13.93)

which defines the linear function Ω(a) = Ω(a;x). The x dependence records the
fact that the field will in general be a function of position. This label is usually
suppressed. In later applications we will make strong use of the index-free form
Ω(a).

The behaviour we require is that under a local rotation, D should transform
in such a way that ψR is still a solution of the modified equation. So, with D

transforming to D′, we require that

D′ (ψR) = (Dψ)R (13.94)

for any R. We expect that D′ should have the same functional form as D, so we
also have

D′ψ = γµ
(
∂µψ + 1

2ψΩ′
µ

)
. (13.95)

Equation (13.94) therefore gives

D′ (ψR) = γµ
(
∂µψR + ψ∂µR + 1

2ψRΩ′
µ

)
= γµ

(
∂µψ + 1

2ψΩµ

)
R. (13.96)

From this we can read off that

∂µR + 1
2RΩ′

µ = 1
2ΩµR, (13.97)

which establishes the transformation law

Ω′
µ = R̃ΩµR − 2R̃∂µR. (13.98)

Now R is a rotor, so 2R̃∂µR is a member of the Lie algebra of the rotor group. It
follows that this term is a pure bivector, so Ωµ must also contain a bivector term
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if it is to cancel a term in 2R̃∂µR. We assume that this is the only term present
the Ωµ field. This is the minimal assumption, and is referred to as defining
minimal coupling.

The important point in this derivation is that we have used the form of the
term −2R̃∂µR to say what type of object Ωµ is. We are not asserting that Ωµ

is equal to −2R̃∂µR. On the contrary, as will become apparent later, if Ωµ was
given by the gradient of a rotor in this manner it would give rise to a vanishing
field strength and therefore be of no physical interest. This step, of taking a term
arising from a derivative (like −2R̃∂µR here), and generalizing it to a field not in
general derivable from a derivative, is the essence of the gauging process. The Ωµ

term in the covariant derivative is called a connection. In general, connections
take their values in the Lie algebra of the associated symmetry group. Many of
the symmetry groups we consider are rotor groups, so for these the connections
are bivector fields.

13.3.4 The minimally coupled Dirac equation

Returning to electromagnetism, we are concerned with the restricted class of
rotations that take place entirely in the γ2γ1 plane. In this case, writing R =
exp(Iσ3φ), we have

−2R̃∂µR = −2e−Iσ3φ∂µφeIσ3φIσ3 = −2γµ ·(∇φ)Iσ3. (13.99)

In generalizing to Ωµ, we see that this must take the form

Ωµ = −λγµ ·AIσ3 (13.100)

or, in frame-free notation,

Ω(a) = −λa·AIσ3. (13.101)

Here A is a spacetime vector field, and λ is some coupling constant. We now
reassemble our full, covariant Dirac equation to obtain

DψIγ3 = γµ
(
∂µψ − 1

2λψ γµ ·AIσ3

)
Iγ3 = mψ. (13.102)

This simplifies to give

∇ψIγ3 − 1
2λAψγ0 = mψ, (13.103)

and we see that the contraction between the γµ frame and the connection in
equation (13.102) assembles to give a vector multiplying ψ from the left. It is
clear that for an electron we require λ = 2e, so the minimally coupled Dirac
equation is

∇ψIσ3 − eAψ = mψγ0, (13.104)
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as studied in section 8.3. A local phase transformation of ψ now induces the
transformation

eA 
→ eA −∇φ, (13.105)

which we recognise as an electromagnetic change of gauge. By adding an in-
teraction term solely in A we are making the simplest possible modification to
the original equation, which is the essence of minimal coupling. We could, for
example, add further terms in F , or F 2 multiplying ψ, and the equation would
still be gauge-invariant. It appears, however, that this possibility is not required
for describing the fundamental forces. Why this should be so is unknown.

13.3.5 The gauge field strength

Now that we have introduced the gauge fields the next step is to construct the
observable (gauge-invariant) quantities associated with them. For electromag-
netism we know that these are the E and B fields, which form part of the field
strength tensor. This is found in general by commuting covariant derivatives.
We form

[Dµ,Dν ]ψ = Dµ

(
∂νψ + 1

2ψΩν

)
− Dν

(
∂µψ + 1

2ψΩµ

)
= 1

2ψ
(
∂µΩν − ∂νΩµ − Ωµ×Ων

)
. (13.106)

Despite the fact that we formed commutators of derivatives on ψ, all of the
derivatives of ψ have cancelled, and we are left with a single object

Fµν = F(γµ∧γν) = ∂µΩν − ∂νΩµ − Ωµ×Ων . (13.107)

This is a bivector-valued linear function of the bivector argument γµ∧γν . The
construction of this object guarantees that under a change of gauge

Fµν 
→ F′
µν = R̃FµνR. (13.108)

This transformation tells us that the field strength transforms covariantly under
changes of gauge.

Specialising to the case of electromagnetism, where Ωµ = −2eγµ ·AIσ3, we
find that the term multiplying ψ contains

(−2e)−1Fµν = ∂µ(γν ·AIσ3) − ∂ν(γµ ·AIσ3) − γµ ·Aγν ·AIσ3×Iσ3

= (γν∧γµ)·(∇∧A)Iσ3

= (γν∧γµ)·F Iσ3. (13.109)

This is a function that maps the bivector γν ∧γµ linearly onto a pure phase
term. For most applications of electromagnetism it is sensible to lose the map-
ping nature of the field strength and instead work directly with the bivector
F . For more complicated gauge fields this is not appropriate. In forming the
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commutator of covariant derivatives we have extracted the correct field strength,
F = ∇∧A, which encodes the physically measurable content of the electromag-
netic field. The electromagnetic field strength is invariant under a change of
gauge, as opposed to covariant. This is because the underlying gauge group,
U(1), is a commutative group, so the rotors cancel out in equation (13.108). The
picture is less simple for non-commutative Lie groups.

13.3.6 Electroweak symmetry

A full treatment of electroweak gauge theory requires the apparatus of quantum
field theory, which is beyond the scope of this book. Here we give a simplified
treatment, concentrating entirely on the fermionic sector for an electron and a
neutrino. The left-handed particles in this sector are assembled into a doublet

Le =
(
|νe〉
|el〉

)
(13.110)

and the right-handed particles consist of a singlet state |er〉. The kets denote
Dirac spinors, projected into their left-handed or right-handed states. The left-
hand doublet is acted on by SU(2) matrices, which transform the upper and
lower components into linear superpositions of |νe〉 and |el〉. To construct an
equivalent group action in spacetime algebra, we introduce the spinor ψl, where(

|νe〉
|el〉

)
↔ ψl = ψe

1
2 (1 − σ3) − ψνIσ2

1
2 (1 + σ3). (13.111)

Here ψe and ψν are the spacetime algebra equivalents of the |el〉 and |νe〉 spinors,
as defined by the map of equation (8.69). This map ensures that the action of
the generators of the SU(2) group become

σ̂kLe ↔ ψlσk, (13.112)

and hence

iLe ↔ −ψlI. (13.113)

So all transformations are now carried out on the right-hand side of ψl, and are
of the class discussed in section 13.3.2.

The kinetic term in the Lagrangian for the left-handed doublet is usually
written as

L̄ei 	DLe =
〈
ν̄e|i 	D|νe

〉
+
〈
ēl|i 	D|el

〉
, (13.114)

which has the multivector equivalent

Ll =
〈
∇ψν

1
2 (1 − σ3)Iγ3ψ̃ν + ∇ψe

1
2 (1 − σ3)Iγ3ψ̃e

〉
. (13.115)
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Now
1
2 (1 − σ3)Iγ3ψ̃e = − 1

2 (1 − σ3)Iγ0ψ̃l,

1
2 (1 − σ3)Iγ3ψ̃ν = Iσ2

1
2 (1 + σ3)Iγ0ψ̃l,

(13.116)

so

Ll = −〈∇
(
ψe

1
2 (1 − σ3) − ψνIσ2

1
2 (1 + σ3)

)
Iγ0ψ̃l〉

= −〈∇ψlIγ0ψ̃l〉. (13.117)

The left-handed fermionic sector of the electroweak Lagrangian is similar to the
Dirac Lagrangian, but with γ3 replaced by γ0. The internal symmetry group is
therefore defined by transformations of the form

ψ 
→ ψeM , (13.118)

where M is any even multivector that satisfies

exp(M)γ0 exp(M̃) = γ0. (13.119)

This picks out the set of bivectors that commute with γ0, and the pseudoscalar.
The former define an SU(2) group, and the latter is a U(1) phase term. The
Lagrangian therefore has the expected SU(2)×U(1) symmetry of electroweak
theory, encoded in a very natural way in the spacetime algebra.

The right-handed sector of the electroweak theory involves a singlet state

ψr = ψe
1
2 (1 + σ3). (13.120)

The kinetic term for this is

〈∇ψrIγ3ψ̃r〉 = −〈∇ψe
1
2 (γ0 + γ3)Iψ̃e〉. (13.121)

Mass terms are introduced via interaction with the Higgs field, which can be mod-
elled straightforwardly as an interaction between left-handed and right-handed
particles. A global SU(2) transformation is described by

ψl 
→ ψlR, (13.122)

where R is a rotor satisfying Rγ0R̃ = γ0. This is converted to a local symmetry
following the procedure of section 13.3.2, which tells us that the connection
consists of bivectors which commute with γ0. The U(1) connection is a multiple
of the pseudoscalar. The field strength is defined similarly, and one can proceed
to model spontaneous symmetry breaking using this scheme. At some point,
however, it is necessary to adopt a quantum field theory perspective, and replace
the wavefunctions described here by operators acting on the quantum vacuum.
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13.4 Gauge principles for gravitation

We have so far described electromagnetism and electroweak forces in terms of
gauge theories. We now turn our attention to gravity. Our aim is to model
gravitational interactions in terms of gauge fields defined in the spacetime al-
gebra. This initially appears to be a radical departure from general relativity,
but in fact the two approaches converge in a manner that sheds light on the
physical structure of the theory. Spacetime algebra is the geometric algebra of
flat spacetime, and the introduction of fields cannot alter this basic property.
What then are we to make of the standard arguments that spacetime is curved?
The answer is that all of these arguments involve light paths, or measuring rods,
or similar devices, and all of these processes are also modelled by fields. Since all
physical quantities correspond to fields, the absolute position and orientation of
particles or fields in our background spacetime is not measurable. It drops out
of all physical calculations. The only predictions that can be extracted are rel-
ative relations between fields. Ensuring that this property is true locally means
there is no conflict with any of the principles by which one is traditionally led to
general relativity, and naturally guides us in the direction of a gauge theory.

To illustrate these considerations, consider possible relations between quantum
fields. Suppose that ψ1(x) and ψ2(x) are spinor fields. A physical statement
could be a simple relation of equality:

ψ1(x) = ψ2(x). (13.123)

But all this statement says is that at a point where one field has a particular
value, then the second field has the same value. This statement is completely
independent of where we choose to place the fields in the spacetime algebra.
And, more importantly, it is totally independent of where we choose to locate
other values of the fields. We could equally well introduce two new fields

ψ′
1(x) = ψ1(x′), ψ′

2(x) = ψ2(x′), (13.124)

where x′ is an arbitrary function of position x. The statement ψ′
1(x) = ψ′

2(x)
contains precisely the same physical content as the original equation.

The same picture emerges if both fields are acted on by a spacetime rotor,
giving rise to new fields

ψ′
1 = Rψ1, ψ′

2 = Rψ2. (13.125)

Again, the statement ψ′
1 = ψ′

2 has the same physical content as the original
equation. Similar considerations apply to the observables formed from ψ, such
as the vector J = ψγ0ψ̃. Replacing ψ by ψ′ produces the new vector J ′ =
RJR̃. Invariance of the equations under this transformation ensures that the
absolute direction of vectors in the spacetime algebra is not measurable, only
the relative orientation of two physical vectors is measurable. We now have a
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clear mathematical statement of the invariance properties we want to establish.
The next task is to study the form of the gauge fields needed to enforce this
invariance.

13.4.1 Displacements

We write x′ = f(x) for an arbitrary (differentiable) map between spacetime
position vectors. The transformation we are interested in is where the field ψ(x)
is transformed to the new field

ψ′(x) = ψ(x′). (13.126)

The map f(x) should not be thought of as a map between manifolds, or as
moving points around. The function f(x) is just a rule for relating one position
vector to another within a single vector space. It is the fields that are trans-
formed in this space. We need a good name for this operation of moving fields
around. One possibility is translation, but this suggests a rigid map where all
fields are translated by the same amount. Mathematicians favour the term dif-
feomorphism, but this usually refers to a map between distinct manifolds. We
prefer to use the term displacement, which does suggest the concept of moving
a field around from one point to another in an arbitrary manner.

The next step is to consider the behaviour of the derivative of ψ. With the
displacement denoted by x′ = f(x), and the derivative defined by

f(a) = a·∇f(x), (13.127)

we know that the vector derivative satisfies

∇x = f̄(∇x′). (13.128)

So, for example, if ψ(x) is a spinor, and ψ′(x) = ψ(x′), we have

∇ψ′(x) = f̄(∇x′)ψ(x′). (13.129)

To formulate a version of the Dirac action that is invariant under arbitrary
displacements, we must introduce a gauge field that removes the effect of the
f̄ function. This field will then assemble with the vector derivative to form an
object which, under displacements, simply reevaluates to the derivative with
respect to the new position vector. We construct such an object by replacing ∇
with a new derivative h̄(∇), where

h̄(a) = h̄(a;x) (13.130)

is a position-dependent linear function of a. We again suppress this position
dependence where clarity permits.

Under displacements the gauge field h̄ must transform such that

h̄′(∇x′) = h̄(∇x) = h̄f̄(∇x′). (13.131)
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Explicitly, the transformation law for h̄ under displacements must be

h̄′(a;x) = h̄
(
f̄−1(a);x′), (13.132)

or, suppressing the position dependence,

h̄′(a) = h̄f̄−1(a). (13.133)

This must hold for any arbitrary vector a. This transformation law is different
to that encountered in the gauge theories discussed previously, as the gauge field
acts directly on ∇. The h̄ field is therefore not a connection in the conventional
Yang–Mills sense. It is clear, however, that the h̄ field embodies the idea of
ensuring that a symmetry is local, so can sensibly be called a gauge field. Since
h̄(a) is an arbitrary, position-dependent linear function of a, it has 4 × 4 = 16
degrees of freedom.

We can now systematically replace every occurrence of ∇ with h̄(∇), and all
our equations will be invariant under arbitrary displacements. In particular, the
Dirac Lagrangian density is now modified to read

L = det (h)−1
〈
h̄(∇)ψIγ3ψ̃ − mψψ̃

〉
. (13.134)

This now transforms covariantly under arbitrary displacements of the fields.
Similarly, we can consider the proper time or distance along a trajectory x(λ).
In the absence of gravitational fields this is

S =
∫

dλ

∣∣∣∣∂x

∂λ
· ∂x

∂λ

∣∣∣∣
1/2

. (13.135)

Under a displacement the path transforms to f(x(λ)), so the tangent vector
transforms to

∂λf
(
x(λ)

)
= f(∂λx). (13.136)

We can therefore construct a gauge-invariant interval by setting

S =
∫

dλ
∣∣h−1(x′)·h−1(x′)

∣∣1/2
, (13.137)

where

x′ =
∂x(λ)

∂λ
. (13.138)

This distance is now invariant under displacements, so is a physically-observable
quantity.

We now see that tangent vectors pick up a factor of h−1 and cotangent vectors
a factor of h̄. Spinors are not acted on by the h function. Next we establish
contact with more familiar constructions of general relativity. Suppose that xµ

denote an arbitrary coordinate system, with frame vectors denoted by

eµ =
∂x

∂xµ
, eµ = ∇xµ. (13.139)
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In terms of this coordinate system, equation (13.137) involves the term

h−1(x′)·h−1(x′) =
∂xµ

∂λ

∂xµ

∂λ
h−1(eµ)·h−1(eν). (13.140)

If we define the vectors

gµ = h−1(eµ), gµ = h̄(eµ). (13.141)

then we can write the preceding term as

h−1(x′)·h−1(x′) =
∂xµ

∂λ

∂xµ

∂λ
gµ ·gν . (13.142)

Equation (13.137) is therefore equivalent to the line interval in general relativity
if we set the metric equal to

gµν = gµ ·gν = h−1(eµ)·h−1(eν). (13.143)

The gauge field h is therefore a form of square root of the metric, which allows us
to replace the metric inner product with the inner product in the spacetime alge-
bra. In this sense, h is closely related to the concept of a spacetime orthonormal
tetrad or vierbein. A vierbein is obtained from the h field by defining

eµ
i = gµ ·γi,

eµ
i = gµ ·γi,

(13.144)

where both i and µ run from 0 to 4. The advantage of working directly with
the h field is that it frees us from any coordinate frame. Coordinate frames are
best introduced at a later date, when the geometry of a given problem usually
dictates the appropriate coordinate system.

Now that we have recovered the metric, the obvious question is what has
happened to the original flat space? It has not gone away, as all fields take their
values over this space. In fact, there are now three distinct spaces of objects we
can discuss. We refer to these as the tangent, cotangent and covariant spaces.
Tangent vectors are of the form eµ. Inner products between these are not gauge-
invariant, and hence not physically meaningful. Similarly, cotangent vectors are
of the form of eµ, and the inner product of cotangent vectors is also an unphysical
quantity. The inner product between tangent and cotangent vectors does produce
a gauge-invariant quantity, so can correspond to a physical observable. Tangent
and cotangent vectors can be interchanged via the metric, which maps one space
into the other. In frame-free form, we can write

a∗ = h̄−1h−1(a) = g(a). (13.145)

The tangent and cotangent spaces, and the metric map between them, are the
traditional elements of general relativity. Our third space, of covariant objects,
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∂λx

∇φ

A
h

h−1

h̄

h̄−1

g g−1

Figure 13.1 Gauge fields for gravitation. There are three vector spaces
involved, consisting of tangent vectors ∂λx, cotangent vectors ∇φ and co-
variant fields A. The h field maps between these. The metric tensor maps
between tangent and cotangent vectors, so is given by g = h̄−1h−1. Gauge-
invariant quantities are formed from the scalar product of a tangent and
cotangent vector, or from a pair of covariant vectors.

is unique to the gauge theory formulation. This space consists of objects whose
transformation law under displacements is

φ′(x) = φ(x′). (13.146)

This defines what it means to transform covariantly under displacements. These
include velocity vectors of the form h−1(∂λx), gradients of the form h̄(∇)φ, and
spinor fields. Inner products between covariant vectors produce covariant scalars,
which can be physically observable.

The various fields and spaces involved are depicted in figure 13.1. The advan-
tage of the gauge theory viewpoint, coupled with the application of spacetime
algebra, is that we can now take full advantage of the space of covariant objects
when analysing the gravitational field equations. This turns out to have many
advantages, both conceptually and computationally. The possibilities afforded
by this space have been overlooked in most treatments of gauge theory gravity.
One immediate question posed by figure 13.1 is whether the insistence on the
existence of a map from a curved spacetime onto a flat one has any topologi-
cal consequences. The answer is yes, though the restrictions are not as severe
as one might expect. Many apparently topological constructions, such as cos-
mic strings and closed universe models, are easily handled in the gauge theory
framework. Others, such as wormholes connecting multiple universes, do not
fit so easily because they require a modification of the initial assumption that
the background space is topologically flat. Models incorporating these effects
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can be constructed, though their motivation is less clear from the gauge theory
perspective, as aspects of the theory have to be put in by hand initially.

13.4.2 Rotations

Now that we have discovered the metric tensor within the gauge approach we
could immediately write down the familiar equations of general relativity. But we
seek a theory formulated entirely in terms of covariant vectors, and this requires
the existence of a second gauge field. As well as invariance under displacements,
we require that our wave equation be invariant under the transformation

ψ 
→ ψ′ = Rψ, (13.147)

where R is an arbitrary, position-dependent spacetime rotor. We are now back
in the territory of section 13.3.3, with the difference that the rotor multiplies ψ

from the left, instead of the right. To convert ∂µ into a covariant derivative, we
add a bivector connection Ωµ and define

Dµψ = ∂µψ + 1
2Ωµψ. (13.148)

The connection Ωµ is a position-dependent bivector, subject to the transforma-
tion law

Ωµ 
→ Ω′(a) = RΩµR̃ − 2∂µRR̃. (13.149)

Since R is an arbitrary rotor there is no constraint on the blades that Ωµ can
contain, so Ωµ has 6 × 4 = 24 degrees of freedom.

With the rotation gauge field included, the fully covariant Dirac action now
reads, with the electromagnetic term included,

S =
∫

d4xdet (h)−1
〈
h̄(γµ)(∂µψ + 1

2Ωµψ)Iγ3ψ̃ − eh̄(A)ψγ0ψ̃ − mψψ̃
〉

.

(13.150)
The value of this action should be unchanged under local displacements and rota-
tions. To establish this we need to complete the set of transformation properties
for the gravitational gauge fields. First, we need to define how Ωµ transforms
under displacements. For this it is easier to use the notation Ω(a;x) for the lin-
ear argument and position dependence of the connection. Since Ω(a) picks up a
term in a·∇RR̃ under local rotations, we see that the appropriate transformation
law under displacements is

Ω′(a;x) = Ω(f(a);x′). (13.151)

The connection in the action of equation (13.150) is contracted to form the object

h̄(γµ)Ωµ = h̄(∂a)Ω(a). (13.152)
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So under a displacement this transforms to

h̄′(∂a)Ω′(a) = h̄(̄f−1(∂a);x′)Ω(f(a);x′) = h̄(∂a;x′)Ω(a;x′), (13.153)

which is precisely the behaviour we require.
Similarly, we can establish the behaviour of the h field under rotations from the

kinetic term in the covariant Dirac action. Under a local rotation this transforms
to 〈

h̄′(γµ)(∂µψ′ + 1
2Ω′

µψ′)Iγ3ψ̃
′
〉

=
〈
R̃h̄′(γµ)R(∂µψ + 1

2Ωµψ)Iγ3ψ̃
〉

. (13.154)

So under rotations we must have

h̄(a) 
→ h̄′(a) = Rh̄(a)R̃. (13.155)

The same transformation law is obeyed by vectors of the form h−1(a), where a is a
tangent vector. This guarantees that inner products between tangent and cotan-
gent vectors are gauge-invariant, as required. The action of equation (13.150)
now contains all of the local symmetries we require. The coupling of the electro-
magnetic vector potential A follows from the fact that A generalises the gradient
of a scalar, so is a cotangent vector. This is acted on by h̄ to establish a covariant
vector.

13.4.3 The Dirac equation in a gravitational background

We have so far established invariance at the level of the Dirac action, which led
us to the action of equation (13.150). We now vary this action with respect to ψ,
treating all other fields as external, to obtain the full, minimally-coupled Dirac
equation. After reversing, variation with respect to ψ produces the equation

h̄(∇)ψIγ3 + 1
2 h̄(γµ)ΩµψIγ3 + 1

2Ωµh̄(γµ)ψIγ3

− 2eh̄(A)ψγ0 − 2mψ = − ∂

∂xµ

(
det (h)−1h̄(γµ)ψIγ3

)
det (h). (13.156)

This simplifies to

h̄(γµ)(∂µψ + 1
2Ωµψ)Iγ3 − eh̄(A)ψγ0 = mψ + 1

2 tψIγ3, (13.157)

where the vector t is defined by

t = det (h)∂µ

(
det (h)−1h̄(γµ)

)
+ Ωµ ·h̄(γµ). (13.158)

Here we encounter an initial surprise. The minimally-coupled Dirac action only
produces the expected Dirac equation if the vector t is zero. We will establish
the circumstances when this holds once we have discovered the full gravitational
field equations. With t assumed to equal zero, we obtain the expected equation,
which we write as

DψIγ3 − eAψγ0 = mψ. (13.159)
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Here we introduce the notation

Dψ = h̄(γµ)Dµψ = h̄(γµ)(∂µψ + 1
2Ωµψ) (13.160)

and

h̄(A) = A. (13.161)

In this latter definition we begin to introduce the useful notation of writing fully
covariant multivectors in calligraphic font.

13.4.4 Covariant derivatives for observables

Having established the form of the gravitational covariant derivative for a spinor,
it is a simple matter to establish the form of the derivatives of the observables
formed from a spinor. In general, these observables have the form

M = ψΓψ̃, (13.162)

where Γ is a constant multivector formed from combinations of γ0, γ3 and Iσ3.
The observable M inherits its transformation properties from the spinor ψ, so
under displacements M transforms as

M(x) 
→ M′(x) = M(x′) (13.163)

and under rotations M transforms as

M 
→ M′ = RMR̃. (13.164)

Multivectors with these transformation properties are said to be (fully) covariant.
Scalars formed from inner products of these quantities account for the physical
observables in the theory.

If we now form the partial derivative of M we obtain

∂µM = (∂µψ)Γψ̃ + ψΓ(∂µψ)∼. (13.165)

There is no need to restrict to orthonormal coordinates, so we can take ∂µ as the
derivative with respect to an arbitrary coordinate system, with coordinate frame
{eµ}. We immediately see how to construct a covariant derivative for M. We
simply replace spinor directional derivatives with their covariant versions and
form

(Dµψ)Γψ̃ + ψΓ(Dµψ)∼ = ∂µ(ψΓψ̃) + 1
2ΩµψΓψ̃ − 1

2ψΓψ̃Ωµ

= ∂µ(ψΓψ̃) + Ωµ×(ψΓψ̃), (13.166)

where

Ωµ = Ω(eµ). (13.167)
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We therefore define the covariant derivative Dµ by

DµM = ∂µM + Ωµ×M. (13.168)

This is the form appropriate for acting on covariant multivectors, including ob-
servables formed from spinors. The commutator with the bivector Ωµ has two
important properties. The first is that it is grade-preserving, so the full Dµ

operator preserves grade. The second is that

Ωµ×(AB) = (Ωµ×A)B + A(Ωµ×B), (13.169)

which holds for any multivectors A and B. This ensures that Da is a derivation.
That is, it satisfies Leibniz’s rule

Dµ(AB) = (DµA)B + A(DµB). (13.170)

These properties of preserving grade and satisfying Leibniz’s rule are necessary
for Dµ to be a suitable generalisation of a directional derivative.

We can assemble a full, covariant version of the vector derivative by writing

D = h̄(eµ)Dµ = gµDµ, (13.171)

where gµ = h̄(eµ). This acts on covariant multivectors to raise and lower the
grade by one. We can also write

DM = D·M + D∧M, (13.172)

where M is a homogeneous-grade multivector, and

D·M = gµ ·(DµM),

D∧M = gµ∧(DµM).
(13.173)

It is also sometimes convenient to write the directional covariant derivative as
a·D, where

a·DM = a·gµDµM. (13.174)

We are now beginning to assemble a very powerful, compact notation for the
main operators in gauge theory gravitation.

13.5 The gravitational field equations

The price we pay for ensuring that the Dirac action is invariant under local
rotations is the introduction of two gauge fields: the vector-valued function h(a)
and the bivector-valued Ω(a). These in total have 40 degrees of freedom. Our
next task is to construct suitable equations for these gauge fields. As with
the Dirac equation, our ultimate goal is to formulate the equations in terms
of covariant objects, where the physical content of the theory is clearest. The
alternative approach is to work entirely in terms of the metric gµν . This is
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invariant under rotations, so all reference to the rotation gauge is removed. The
end result is a set of second-order equations that are notoriously difficult to solve.
The gauge theory approach, with its focus on gauge-covariant objects, provides
a number of new solution strategies, both for analytical and numerical work.

Our method for constructing covariant field equations is to find a covariant
Lagrangian and vary this. The resulting equations are then guaranteed to be
covariant. Our first task, then, is to find covariant forms of the field strengths
for the gravitational gauge fields. From these we can construct covariant scalar
quantities, which can act as a Lagrangian density.

13.5.1 The rotation-gauge field strength

The field strength for the Ω(a) connection is found in the standard way by
considering commutators of covariant derivatives. We define

[Dµ,Dν ]ψ = 1
2Rµνψ, (13.175)

so that

Rµν = ∂µΩν − ∂νΩµ + Ωµ×Ων . (13.176)

A frame-free notation is introduced by first writing

Rµν = R(eµ∧eν), (13.177)

where the {eµ} vectors are the coordinate frame defined by the xµ. We can
therefore write

R(a∧b) = a·∇Ω(b) − b·∇Ω(a) + Ω(a)×Ω(b). (13.178)

Whenever we adopt this notation we assume that the vector arguments a and
b are constant. Since the right-hand side is antisymmetric on a and b, the field
strength depends only on the bivector a∧b. This linear action on bivector blades
is extended to general bivectors by defining

R(a∧b + c∧d) = R(a∧b) + R(c∧d). (13.179)

This means that we can write the field strength as

R(B) = R(B;x), (13.180)

which is a position-dependent, linear function of the bivector B. The field
strength is a general bivector, as there are no restrictions on the form of Ω(a).
This means that R(a∧b) has 36 degrees of freedom, as opposed to the rather
simpler six of electromagnetism.

Unlike the electromagnetic case of equation (13.109), the commutator term
Ω(a)×Ω(b) has not cancelled out. This has an important consequence for the
field equations — they are no longer linear. If we add together two configurations
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of Ω(a), the field strength of the resultant Ω(a) is not the same as that from the
superposition of the original field strengths. This makes the gravitational field
equations much more difficult to solve than those of electromagnetism.

The definition of R(B) in terms of commutators makes it easy to establish its
transformation properties under rotation gauge transformations. We see that

[D′
µ,D′

ν , ]ψ′ = 1
2R′(eµ∧eν)Rψ = R[Dµ,Dν ]ψ = 1

2RR(eµ∧eν)ψ, (13.181)

from which we can read off that

R′(B) = RR(B)R̃. (13.182)

Unlike electromagnetism, the field strength now transforms under gauge trans-
formations, albeit in a straightforward way.

Under displacements, Ω(a) transforms as defined in equation (13.153). It
follows that the field strength transforms to

R′(eµ∧eν) = ∂µΩ′(eν) − ∂νΩ′(eµ) + Ω′(eν)×Ω′(eµ)

= f(eµ)·∇̇x′Ω̇
(
f(eν);x′)− f(eν)·∇̇x′Ω̇

(
f(eµ);x′)+ Ω′(eµ)×Ω′(eν)

+ Ω
(
∂µf(eν) − ∂ν f(eµ);x′)

= R
(
f(eµ∧eν);x′)+ Ω

(
∂µf(eν) − ∂ν f(eµ);x′). (13.183)

But we know that

∂µf(eν) − ∂ν f(eµ) = ∂µ∂νf(x) − ∂ν∂µf(x) = 0, (13.184)

so the field strength has the simple displacement transformation law

R(B) 
→ R′(B) = R
(
f(B);x′). (13.185)

We see that R′(B) picks up a term in f(B) under displacements, so is not fully
covariant. To form a covariant tensor we insert a term in h(a) into R(B) and
define the covariant field strength

R(B) = R(h(B)
)
. (13.186)

The factor of h(B) in this definition alters the transformation properties un-
der rotations. Since h̄ transforms according to equation (13.155), the adjoint
transforms as

h(a) 
→ h′(a) = ∂b〈aRh̄(b)R̃〉 = h(R̃aR). (13.187)

The transformation properties of R(B) are therefore summarised by:

displacements: R′(B, x) = R(B, x′),
rotations: R′(B) = RR(R̃BR)R̃.

(13.188)

These are precisely the properties we require, and they define a covariant tensor.
The rotation law may look complicated, but it is quite natural. For example,
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suppose that R(B) simply amounts to the instruction ‘dilate all fields by the
factor α’. This is a physical statement, so ought to be true in all gauges. The
original statement corresponds to

R(B) = αB. (13.189)

The transformed field is then

R′(B) = RR(R̃BR)R̃ = R(αR̃BR)R̃ = αB, (13.190)

so does contain to the same physical information. The function R(B) plays
the same role in the gauge theory approach as the curvature tensor in general
relativity, so we refer to R(B) as the Riemann tensor. We continue to employ
the notational device of writing covariant tensors in calligraphic symbols to help
keep track of which objects are gauge-invariant.

13.5.2 The displacement-gauge field strength

The displacement gauge field couples to the vector derivative to form the object
h̄(∇). This coupling is different to that of the connection for the rotation gauge
field, and we cannot use the commutator of covariant derivatives to obtain the
field strength. Indeed, the precise definition and meaning of the field strength
for the displacement gauge are unclear. Here we motivate a definition that has
the desired properties and is physically plausible.

The main property we require of a field strength is that it should vanish if the
field is obtained by a pure gauge transformation. If we start with the identity
and apply a displacement, the induced h field is given by

h̄(a) = f̄−1(a). (13.191)

One of the properties satisfied by a pure displacement is that

∇∧ f̄(a) = 0. (13.192)

So h will define a pure gauge transformation if it satisfies

∇∧h̄−1(a) = 0, (13.193)

where we temporarily ignore the rotation gauge. The left-hand side is our can-
didate object for the field strength. The task now is to make it covariant.

We know that the vector derivative ∇ picks up a factor of h̄ to convert it to
covariant form. Since h̄−1 transforms in the same way as ∇, we can define a
displacement-gauge covariant object H(a) as

H(a) = −h̄
(
∇∧h̄−1(a)

)
= h̄(∇̇)∧ ˙̄hh̄−1(a). (13.194)

This is a bivector-valued function of its vector argument. The final step is to
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convert the derivative to one that is covariant under rotations. This is straight-
forward since h̄ transforms as a vector under rotations. We therefore define

H(a) = h̄(∂b)∧
(
b·∇̇ ˙̄hh̄−1(a) + Ω(b)·a

)
, (13.195)

or, in terms of a coordinate frame,

H(gµ) = gα∧(Dαgµ) = D∧gµ, (13.196)

where we have applied that result that ∇∧eµ = 0.
The tensor H(a) is covariant under displacements and rotations, so transforms

covariantly as

displacements: H′(a, x) = H(a, x′),
rotations: H′(a) = RH(R̃aR)R̃.

(13.197)

As we will soon see, the object we have defined is in fact the torsion tensor, a
bivector-valued function of a vector with 6 × 4 = 24 degrees of freedom. This
is the appropriate number for the field strength of the displacement gauge, as a
displacement is specified by four degrees of freedom. In the simplest formulation
of the field equations, the torsion is equated with the spin of the matter. It
is therefore a pure contact term, and usually extremely small. One can justify
this on dimensional grounds. The two field strengths we have defined, H(a)
and R(B), differ in dimensions by a factor of length. This is because Ω(a) has
dimensions of (length)−1, whereas h̄(a) is dimensionless. The only fundamental
length scale that could relate these is the Planck length, lP , which is tiny. The
natural scale for S(a) is therefore lP times R(B), making it negligible compared
to the Riemann tensor.

13.5.3 The gravitational action

We have now defined two covariant tensors from the gravitational gauge fields
— the Riemann and torsion tensors. We next require a scalar term to act as the
Lagrangian density for gravitation. There are a number of quadratic scalars we
can derive from the gauge fields, but only one scalar is linear in the field strength.
This is important, as one can again argue on dimensional grounds that higher
order terms should be reduced by factors of the Planck length.

We first define the contractions of the Riemann tensor. The first is the Ricci
tensor :

R(b) = ∂a ·R(a∧b). (13.198)

By construction, this is a tensor. The Ricci tensor can be contracted further to
defined the Ricci scalar

R = ∂a ·R(a). (13.199)

We use the same symbol to denote the Riemann tensor, Ricci tensor and Ricci
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scalar, and distinguish between these by their argument. The Ricci scalar is a
covariant scalar field, so is invariant under rotations and transforms covariantly
under displacements. The Ricci scalar is the first scalar observable we have
constructed from the gravitational fields, and is the simplest candidate for the
Lagrangian density. We therefore suppose that the overall action integral is of
the form

S =
∫

|d4x|det (h)−1( 1
2R + Λ − κLm), (13.200)

where Lm describes the matter content and κ = 8πG. We have also included the
cosmological constant Λ, though for most applications we set this to zero. The
independent dynamical variables are h̄(a) and Ω(a), and we assume that Lm con-
tains no second-order derivatives, so that h̄(a) and Ω(a) appear undifferentiated
in the matter Lagrangian.

The h̄ field is undifferentiated in the entire action, as we have not included
any terms in H(a). The Euler–Lagrange equation for h̄ is simply

∂h̄(a)

(
det (h)−1(R/2 + Λ − κLm)

)
= 0. (13.201)

Employing the results of section 11.1.2 we find that

∂h̄(a)det (h)−1 = −det (h)−1h−1(a) (13.202)

and

∂h̄(a)R = ∂h̄(a)

〈
h̄(∂c∧∂b)R(b∧c)

〉
= 2h̄(∂b)·R(b∧a). (13.203)

It follows that

∂h̄(a)

(
Rdet (h)−1

)
= 2G

(
h−1(a)

)
det (h)−1, (13.204)

where G is the Einstein tensor,

G(a) = R(a) − 1
2aR. (13.205)

We now define the functional matter energy-momentum tensor T (a) by

det (h)∂h̄(a)(Lmdet (h)−1) = T
(
h−1(a)

)
. (13.206)

We therefore arrive at the first of our field equations,

G(a) − Λa = κT (a). (13.207)

This is the gauge theory statement of Einstein’s equation. The source term
in the Einstein equations in the functional energy-momentum tensor, not the
canonical one. The form of this is discussed once we have found the remaining
field equations for the rotation gauge field.
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The Euler–Lagrange field equation from Ω(a) is, after multiplying through by
det (h),

∂R
∂Ω(a)

− det (h)
∂

∂xµ

(
∂R

∂(∂µΩ(a))
det (h)−1

)
= 2κ

∂Lm

∂Ω(a)
, (13.208)

where we have employed the assumption that Ω(a) does not contain any cou-
pling to matter through its derivatives, and have temporarily reverted to an
orthonormal coordinate system. The right-hand side defines the matter spin
tensor

S(a) =
∂Lm

∂Ω(a)
. (13.209)

This has the covariant form

S(a) = S
(
h̄−1(a)

)
, (13.210)

which is a covariant tensor. For the left-hand side we use the results

∂Ω(a)

〈
h̄(∂d∧∂c)Ω(c)×Ω(d)

〉
= 2Ω(b)×h̄(∂b∧a)

and
∂

∂(∂µΩ(a))
〈
h̄(∂d∧∂c)

(
c·∇Ω(d) − d·∇Ω(c)

)〉
= 2h̄(a∧γµ). (13.211)

Combining these results, equation (13.208) becomes

h̄(∇̇)∧ ˙̄h(a) + det (h)∂µ

(
h̄(γµ)det (h)−1

)
∧h̄(a)

+ Ω(b)×h̄(∂b∧a) = κS(a). (13.212)

Recalling the definitions of H(a) and t, from equations (13.195) and (13.158)
respectively, the second field equation has the covariant form

H(a) + t∧a = κS(a). (13.213)

So, as stated, H is governed by the matter spin density.
The second field equation (13.213) simplifies further once we form the con-

traction of the torsion tensor H(a). This is

∂a ·H(a) = Dµh̄(γµ) − h̄(∇̇) h−1(γµ)· ˙̄h(γµ). (13.214)

But we can now use

h−1(γµ)·
(
∂ν h̄(γµ)

)
=
〈(

∂ν h̄(γ0)
)
∧h̄(γ1∧γ2∧γ3)I−1det (h)−1

〉
+ · · ·

= det (h)−1∂νdet (h), (13.215)

to write

∂a ·H(a) = det (h)Dµ

(
det (h)−1h̄(γµ)

)
= t. (13.216)

480

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.015
https:/www.cambridge.org/core
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So the vector t which appeared in the Dirac equation is the contraction of the
torsion tensor. On contracting equation (13.213) we find that

−2t = κ∂a ·S(a), (13.217)

which directly relates t to the matter spin density. The second field equation
can now be written as

H(a) = κS(a) + 1
2κ
(
∂b ·S(b)

)
∧a. (13.218)

This equation directly relates the torsion to the matter spin density.

13.5.4 The matter content

To illustrate the structure of the source terms we return to the covariant Maxwell
and Dirac Lagrangian densities. First consider free-field electromagnetism. Un-
der displacements, the vector potential A transforms as a cotangent vector (1-
form):

A(x) 
→ A′(x) = f̄
(
A(x′)

)
, (13.219)

and the field strength F transforms as a 2-form:

F 
→ F ′(x) = ∇∧A′(x) = f̄
(
F (x′)

)
. (13.220)

The covariant field strength is therefore defined by

F = h̄(F ) = h̄(∇∧A), (13.221)

and the covariant Lagrangian density for the electromagnetic field is

Lem = 1
2F ·F . (13.222)

The functional energy-momentum tensor is defined by

Tem

(
h−1(a)

)
= det (h)∂h̄(a)

(
1
2F ·Fdet (h)−1

)
= h̄(a·F )·F − h−1(a). (13.223)

So we obtain

Tem(a) = (a·F)·F − a = −1
2FaF . (13.224)

This is precisely the form we would expect for the covariant generalisation of
the electromagnetic field strength. Unlike the canonical definition, there is no
issue about the tensor being electromagnetic gauge-invariant, and the tensor is
automatically symmetric. Furthermore, there is no coupling to Ω(a), so the
electromagnetic spin density is zero. We will discover in section 13.6 that, if
the spin tensor is zero, the functional energy-momentum tensor must also be
symmetric.

As an example of a field with non-vanishing spin density we next consider the
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Dirac theory. With the electromagnetic coupling included, the covariant action is
defined by equation (13.150). The functional energy-momentum tensor is simply

TD(a) =
〈
a·gµDµψIγ3ψ̃

〉
1
− ea·Aψγ0ψ̃. (13.225)

This is manifestly a covariant tensor, though it is not necessarily symmetric.
The spin density is

SD(a) = 1
2 h̄(a)·

(
ψIγ3ψ̃

)
(13.226)

or, covariantly,

SD(a) = 1
2a·
(
ψIγ3ψ̃

)
= 1

2a·S, (13.227)

where S is the spin trivector. In the limit where gravitational interactions are
turned off, the functional definitions agree with the canonical energy-momentum
and angular momentum tensors.

The form of the Dirac spin has an important consequence. If we form the
contraction we find that

2∂a ·S(a) = ∂a ·(a·S) = 0, (13.228)

so the torsion vector t vanishes. This is reassuring, as it implies that the
minimally-coupled Dirac action produces the minimally-coupled Dirac equation
on variation. Equation (13.228) is satisfied by scalar, Dirac and Yang–Mills
fields. An exception is provided by a vector field that is often introduced to
ensure local dilation invariance. There are good reasons for introducing such a
field, though any interactions it might generate are likely to be on the scale of
quantum gravity and are not discussed here.

As a further example of a source field for gravitation, we consider the case
of an ideal fluid. This is the simplest form of matter energy-momentum tensor
one can consider, and generates an important class of models. The action for an
ideal fluid was introduced in section 12.4.2, and the only modification required to
convert to a covariant action is multiplication of the energy density by det (h)−1:

S =
∫

d4x
(
−det (h)−1ε + J ·(∇λ) − µJ ·∇η

)
. (13.229)

The Lagrange multiplier terms are both unaffected by the presence of a gravita-
tional field. The covariant current density is

J = det (h)h−1(J) = ρv, (13.230)

where v2 = 1 (see section 13.5.6). The energy density ε therefore depends on
the h field through its dependence on ρ. We find that

∂h̄(a)ρ
2 = 2ρ2

(
h−1(a) − h−1(a)·v v

)
, (13.231)
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so the functional stress-energy tensor is

T (a) = −ρ(a − a·v v)
∂ε

∂ρ
+ aε. (13.232)

Recalling the definition of the pressure from equation (12.158), we are left with

T (a) = −(a − a·v v)(ε + P ) + aε

= (ε + P )a·v v − Pa. (13.233)

This is precisely the form we expect, with v now a covariant vector satisfying the
constraint v2 = 1. The actual form of v is gauge-dependent, a fact we can exploit
to our advantage in applications by choosing a gauge where v has a simple form.

13.5.5 The torsion-free equations and general relativity

For many applications the matter spin density is negligible. It is a quantum
effect, and the macroscopic spin of an object is usually extremely small as all of
the individual constituents cancel out. In the case where the spin can be ignored
the second field equation becomes

H(a) = 0. (13.234)

If we replace a by a general cotangent vector A, this equation can be written

D∧h̄(A) = h̄(∇∧A), (13.235)

which is extremely useful in practice. This equation says that antisymmetrised
partial and covariant derivatives produce the same result. We will now establish
that the spinless gauge field equations are (locally) equivalent to those of general
relativity. Many of the relevant equations for Riemannian geometry were derived
in section 6.5.5.

To begin, we define the connection by

Dµgν = Γα
µνgα, (13.236)

so that

Γλ
µν = gλ ·(Dµgν). (13.237)

It follows that the directional covariant derivative of a vector A = Aµgµ has
components

DµA = Dµ(Aαgα)

= (∂µAα)gα + AαΓβ
µαgβ

= (∂µAα + Γα
µβAβ)gα, (13.238)

which recovers the general relativistic expression.
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If we recall from equation (13.143) that the metric is given by gµν = gµ·gν , we
can now write

∂µgνλ = (Dµgν)·gλ + gν ·(Dµgλ), (13.239)

so that

∂µgνλ = Γα
µνgαλ + Γα

µλgαν . (13.240)

This is the metric compatibility condition for the connection. The second im-
portant condition on the connection, for pure general relativity, is antisymmetry.
This follows from the torsion-free condition, since

0 = (gµ∧gν)·(D∧gα) = gµ(Dνgα) − gν(Dµgα)

= gα ·(Dµgν −Dνgµ). (13.241)

We can therefore read off that

Dµgν −Dνgµ = 0. (13.242)

It follows that, in the absence of torsion,

Γα
µν − Γα

νµ = 0. (13.243)

This equation and equation (13.240) together define the Christoffel connection.
The equations can be inverted to recover the connection in terms of derivatives
of the metric. Rather than reproduce the standard derivation at this point, we
will instead demonstrate how to invert equation (13.234) to find Ω(a) in terms
of the h field.

Returning to the definition of the H(a) and H(a) tensors of equations (13.194)
and (13.195), the absence of torsion tells us that

−H(a) = h̄(∂b)∧
(
Ω(b)·a

)
. (13.244)

At this point it is useful to introduce the displacement-gauge-covariant connec-
tion

ω(a) = Ω
(
h(a)

)
. (13.245)

Under displacements this transforms covariantly,

ω′(a;x) = ω(a;x′). (13.246)

Under rotations the transformation law for ω(a) is somewhat more complicated
than that for Ω(a), so it is usually preferable to deal with the latter when dis-
cussing rotation-gauge transformations. Equation (13.244) now becomes

∂b∧
(
ω(b)·a

)
= −H(a), (13.247)

which gives ω(a) in terms of h and its derivatives. To solve this we first compute

∂a∧∂b∧
(
ω(b)·a

)
= 2∂b∧ω(b) = −∂b∧H(b). (13.248)
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Now, taking the inner product with a again, we obtain

ω(a) − ∂b∧(a·ω(b)) = −1
2a·
(
∂b∧H(b)

)
. (13.249)

We can therefore write

ω(a) = H(a) − 1
2a·
(
∂b∧H(b)

)
, (13.250)

which enables us to compute ω(a) directly. In the presence of spin an additional
term built from the spin tensor is added to the right-hand side. One can now
convert the solution for ω(a) into a set of Christoffel coefficients, if desired. One
disadvantage of the latter is that they mix up gauge terms with terms induced by
a choice of curvilinear coordinates. From the manifold viewpoint this is sensible,
but it is less natural in the gauge theory context.

Next we turn to the form of the Riemann tensor in general relativity. In terms
of the connection, this is

Rµνρ
σ = ∂µΓσ

νρ − ∂νΓσ
µρ + Γσ

µαΓα
νρ − Γσ

ναΓα
µρ

= ∂µ

(
gσ ·(Dνgρ)

)
− ∂ν

(
gσ ·(Dµgρ)

)
− (Dµgσ)·(Dνgρ) + (Dνgσ)·(Dµgρ)

= gσ ·(DµDνgρ −DνDµgρ), (13.251)

from which we can read off that

Rµνρ
σ = R(gµ∧gν)·(gρ∧gσ). (13.252)

This converts directly between the gauge theory and tensor formulations of grav-
ity. One can also check that the contractions defined earlier are all equivalent to
their general relativistic counterparts, so the gauge theory equation (13.207), in
the torsion-free case, has the same content as the Einstein equations. The main
differences between the two theories are topological in nature, and one can argue
that such considerations are beyond the scope of the (local) theory of general
relativity anyway.

13.5.6 Currents and Killing vectors

The gauge theory we have constructed is founded on an action principle in a flat
spacetime. It follows that Noether’s theorem still holds, and that symmetries
of the action result in a conserved vector current J . Every such vector has a
corresponding covariant equivalent. To find this we first write

∇·J = I∇∧(IJ) = 0, (13.253)

so, assuming no torsion is present, we have

h̄
(
(∇∧(IJ)

)
= D∧h̄(IJ) = 0. (13.254)
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We can therefore write

IJ = h̄(IJ) = Ih−1(J)det (h), (13.255)

which defines the covariant current J in terms of J . The covariant vector J
then satisfies

D·J = 0. (13.256)

There is a vector J conjugate to each continuous symmetry of the action. If we
attempt to find conserved vectors conjugate to translations and rotations, how-
ever, we do not discover any new information. In both cases the conjugate tensor
turns out to be zero once the field equations are employed. This is due to the
manner of the coupling of the h field. Variation with respect to h can be viewed as
defining the total energy-momentum tensor, and this is zero because there is no
derivative term for the h field in the action. It is traditional, of course, to single
out (minus) the gravitational contribution to the total energy-momentum ten-
sor (the Einstein tensor), and then equate this to the matter energy-momentum
tensor.

A covariantly-conserved vector J gives rise to a conserved scalar because it
can always be converted back to a non-covariant vector J satisfying ∇·J = 0. The
same is not true of covariant conservation of a tensor, such as G(a). Tensors only
give rise to useful conserved quantities in the presence of additional symmetries of
the Lagrangian. This is the case when the h field is independent of the derivative
along a global vector field. In this case one can construct a coordinate system
such that the metric gµν is independent of one of the coordinates. If we call this
x0, we have

∂

∂x0
gµν = gµ ·(g0 ·Dgν) + gν ·(g0 ·Dgµ) = 0. (13.257)

But, for a coordinate frame in the absence of torsion, equation (13.242) holds
and we have

gµ ·(gν ·DK) + gν ·(gµ ·DK) = 0, (13.258)

where K = g0 is the covariant Killing vector. In coordinate-free form we can
write

a·(b·DK) + b·(a·DK) = 0 (13.259)

for any two vector fields a and b. This can be used as an alternative definition
for a Killing vector. Contracting with ∂a ·∂b immediately tells us that K is
divergenceless.

13.5.7 Point particle motion

General relativity typically models observers as point particles following geodesic
paths, as defined by the geodesic equation. But the gauge approach has dealt
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solely with the properties of classical and quantum fields. To complete the proof
of the equivalence of the gauge approach and general relativity, we must recover
the geodesic equation from the minimally-coupled Dirac equation. In coordinate
form, the geodesic equation is

v̇µ + vαvβΓµ
αβ = 0, (13.260)

where vµ = ẋµ and the overdots denote the derivative with respect to proper
time. This is defined such that

gµνvµvν = 1. (13.261)

To convert to covariant form we introduce the vector

v = vµgµ = h−1(ẋ), v2 = 1. (13.262)

This is a covariant vector, though for aesthetic reasons we do not write this in a
calligraphic font. The derivative with respect to proper time is

∂τ = ẋµ∂µ = v ·h̄(∇). (13.263)

The geodesic equation (13.260) can be now be written

∂τv − vµ∂τgµ + vαvβ(Dαgβ) = v̇ + ω(v)·v = 0. (13.264)

The gauge theory form of the the geodesic equation is therefore

v ·Dv = v̇ + ω(v)·v = 0. (13.265)

This equation is also recovered by finding the paths that minimise the proper
time interval

S =
∫

dλ |h−1(x′)·h−1(x′)|1/2. (13.266)

Geodesics are classified into timelike, lightlike or spacelike according to the value
of v2, which can be +1, 0 or −1 respectively. Point particles with mass follow
timelike geodesics.

The process by which classical paths are recovered from Dirac theory is dis-
cussed in section 12.2.1. The essential term in the action is the kinetic one, which
we manipulate in the same way to write

det (h)−1〈DψIγ3ψ̃〉 = det (h)−1〈JDψIσ3ψ
−1〉, (13.267)

where J = ψγ0ψ̃. Equation (13.255) relates the covariant current J to the
divergenceless current J . The classical limit is formed by concentrating the den-
sity onto a single streamline of J and ignoring terms in the action perpendicular
to the flow. The action therefore contains the term

det (h)−1
〈
J ·gµ DµψIσ3ψ

−1
〉

=
〈
(ψ′ + 1

2Ω(x′)ψ)Iσ3ψ
−1
〉
. (13.268)
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Separating out the rotor dependence, as before, and converting to proper time
derivatives, the equations of motion are

v ·DS + 2p∧v = 0 (13.269)

and

v ·D p = 0. (13.270)

Here v = h−1(x′) = Rγ0R̃ and S = RIσ3R̃. Classical point-particle motion is
recovered by setting the spin to zero, so that p and v are aligned, and fixing
p·v = m. In this case we recover precisely the geodesic equation.

This derivation is unusual, but it is important for two reasons. The geodesic
equation tells us that point particles follow the same paths regardless of their
mass and so implies the equivalence of gravitational and inertial mass. This is the
weak equivalence principle, a fundamental ingredient in general relativity. From
the gauge theory perspective, the weak equivalence principle is derived from the
classical limit of the Dirac equation. The only principle invoked in constructing
the covariant Dirac equation was minimal coupling, so at one level this has the
consequence of enforcing the weak equivalence principle. One can also argue
that minimal coupling is the essence of the full equivalence principle, which tells
us how physics should appear locally to a freely-falling observer. The second
important feature of this derivation is that it points out the limitations of the
weak equivalence principle. Both the wave nature of matter and the existence
of quantum spin ensure that the geodesic equation is an approximation, and
there are many quantum effects in gravitational backgrounds (such as black hole
absorption) where the particle mass is important.

If a Killing vector is present, equation (13.259) tells us that

v ·(v ·DK) = 0. (13.271)

So, for a particle satisfying the geodesic equation, we find that

∂τ (v ·K) = v ·D(v ·K) = K·(v ·Dv) + v ·(v ·DK) = 0. (13.272)

It follows that the quantity v ·K is conserved along the worldline of a freely-
falling particle. For stationary matter configurations, this can be used to define
the conserved energy of the particle.

13.5.8 Electromagnetism in a gravitational background

The electromagnetic vector potential A ensures that the Dirac equation is co-
variant under local phase transformations. In equation (13.222) we found that
the covariant action integral for the electromagnetic field in a gravitational back-
ground is given by

S =
∫

|d4x|(det h)−1 1
2F ·F , (13.273)
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where

F = h̄(F ). (13.274)

The field strength F is covariant under local translations and rotations, as well
as being phase-invariant.

We can include a source term by adding an A·J term, where J is a covariant
vector. For example, when coupling to a fermion J is given by the Dirac current
ψγ0ψ̃. The full action integral is therefore

S =
∫

|d4x|(det h)−1 ( 1
2F ·F + A·J ). (13.275)

To find the field equations for electromagnetism we vary this integral with respect
to the underlying dynamical variable A, with h̄ and J treated as external fields.
The result is the equation

∇·
(
hh̄(∇∧A)det (h)−1

)
= J, (13.276)

where

J = det (h)−1h(J ). (13.277)

Equation (13.276) combines with the identity ∇∧F = 0 to form the full set
of Maxwell equations in a gravitational background. Some insight into these
equations is provided by performing a spacetime split and writing

E + cIB = F,

D + IH/c = ε0hh̄(F )det (h)−1,
(13.278)

where we have temporarily included the factors of c and ε0. In terms of these
variables Maxwell’s equations can be written in the familiar forms

∇·B = 0, ∇·D = ρ,

∇∧E + I
∂B

∂t
= 0,

∂D

∂t
+ ∇·(IH) = −J ,

(13.279)

where Jγ0 = ρ + J . These forms of the equations illustrate how the det (h)−1hh̄

is a generalized permittivity/permeability tensor, defining the properties of the
space through which the electromagnetic field propagates. For example, the
bending of light by the sun can be easily understood in terms of the properties
of the dielectric defined by the h̄ field exterior to it.

So far, however, we have failed to achieve a covariant form of the Maxwell
equations. We have, furthermore, failed to unite the separate equations into a
single equation. To find a covariant equation, we simplify matters by ignoring
torsion effects, so that we can write

D∧F = h̄(∇∧F ) = 0. (13.280)
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Next, we use a double-duality transformation to write the left-hand side of equa-
tion (13.276) as

∇·
(
h(F)det (h)−1

)
= I∇∧(Ih(F)det (h)−1)

= I∇∧(h̄−1(IF))

= I h̄−1
(
D∧(IF)

)
. (13.281)

Equation (13.276) now becomes

D·F = J , (13.282)

and equations (13.280) and (13.282) combine into the single covariant equation

DF = J . (13.283)

This achieves our objective. Equation (13.283) is manifestly covariant and gen-
eralises the free-field Maxwell equations to a gravitational background in an ob-
vious and natural manner. In the presence of torsion an additional term appears
in the covariant expression of the Maxwell equations. But in such circumstances
the spin fields generating the torsion are likely to interact strongly with the
electromagnetic field and swamp most interesting gravitational effects.

13.6 The structure of the Riemann tensor

The Riemann tensor R(B) contains a remarkable amount of algebraic structure,
much of which is hidden in the tensor calculus approach. Again, we assume that
there is no torsion present, so that the second field equation reduces to (13.234).
Writing A = h̄(A) we have

D∧A = h̄(∇∧A), (13.284)

so

D∧(D∧A) = h̄(∇∧∇∧A) = 0. (13.285)

It follows that

gµ∧
(
Dµ

(
gν∧(DνA)

))
= gµ∧gν∧

(
DµDνA

)
= 1

2gµ∧gν∧
(
[Dµ,Dν ]A

)
= gµ∧gν∧(Rµν×A). (13.286)

So, for any multivector M,

∂a∧∂b∧(R(a∧b)×M) = 0, (13.287)

which is a covariant equation.
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13.6 THE STRUCTURE OF THE RIEMANN TENSOR

To analyse equation (13.287) further we set M equal to the vector c, and
protract with ∂c to form

∂c∧∂a∧∂b∧
(
R(a∧b)×c

)
= −2∂a∧∂b∧R(a∧b) = 0. (13.288)

Now forming the inner product with c we obtain

2∂a∧R(a∧c) + ∂a∧∂b∧
(
R(a∧b)×c

)
= 0, (13.289)

so that we are are left with the compact identity

∂a∧R(a∧b) = 0. (13.290)

This summarises all of the symmetries of R(B) in the case of zero torsion.
Equation (13.290) says that the trivector ∂a ∧R(a∧ b) vanishes for all values of
the vector b, so gives a set of 4 × 4 = 16 equations. These reduce the number
of independent degrees of freedom in R(B) from 36 to 20, the expected number
for general relativity. Contracting equation (13.290) we obtain

∂b ·
(
∂a∧R(a∧b)

)
= ∂a∧R(a) = 0, (13.291)

which shows that the Ricci tensor R(a) is symmetric. The same is therefore
true of the Einstein tensor. In the absence of any spin-torsion interactions,
the matter energy-momentum tensor must also be symmetric, as is the case
for electromagnetism and the relativistic fluid. The covariant Riemann tensor
satisfies the further useful identities,

∂c∧
(
a·R(c∧b)

)
= R(a∧b),

(B ·∂a)·R(a∧b) = −∂a B ·R(a∧b).
(13.292)

It follows that

∂b∧
(
(B ·∂a)·R(a∧b)

)
= −2R(B) = −∂b∧∂a〈BR(a∧b)〉. (13.293)

The Riemann tensor is therefore also symmetric,

B1 ·R(B2) = B2 ·R(B1). (13.294)

That is, R(B) = R̄(B).

13.6.1 The Weyl tensor

The structure of the Riemann tensor is more clearly seen by separating out the
matter content, as contained in the Ricci tensor. Since the contraction of R(a∧b)
results in the Ricci tensor R(a), we expect that R(a∧b) will contain a term in
R(a)∧b. This must be matched with a term in a∧R(b), since it is only the sum
of these that is a function of a∧b. Contracting this sum we obtain

∂a ·
(
R(a)∧b + a∧R(b)

)
= bR−R(b) + 4R(b) −R(b)

= 2R(b) + bR, (13.295)
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and it follows that

∂a ·
(

1
2

(
R(a)∧b + a∧R(b)

)
− 1

6a∧bR
)

= R(b). (13.296)

We can therefore write

R(a∧b) = W(a∧b) + 1
2

(
R(a)∧b + a∧R(b)

)
− 1

6a∧bR, (13.297)

where W(B) is the Weyl tensor.
From its definition the Weyl tensor must satisfy

∂a ·W(a∧b) = 0. (13.298)

As the Ricci tensor is symmetric, we also have

∂a∧
(

1
2 (R(a)∧b + a∧R(b)) − 1

6a∧bR
)

= 0, (13.299)

so the Weyl tensor also satisfies

∂a∧W(a) = 0. (13.300)

Equations (13.298) and (13.300) combine into the single equation

∂aW(a∧b) = 0. (13.301)

This compact equation is unique to the geometric algebra formulation, as it
involves the geometric product. To study the consequences of equation (13.301)
it is useful to introduce the {γµ} frame and write the four equations for b equalling
each of the γµ vectors as

σ1W(σ1) + σ2W(σ2) + σ3W(σ3) = 0,

σ1W(σ1) − Iσ2W(Iσ2) − Iσ3W(Iσ3) = 0,

−Iσ1W(Iσ1) + σ2W(σ2) − Iσ3W(Iσ3) = 0,

−Iσ1W(Iσ1) − Iσ2W(Iσ2) + σ3W(σ3) = 0.

(13.302)

Summing the final three equations, and employing the first, produces

IσkW(Iσk) = 0. (13.303)

Substituting this into each of the final three equations produces

W(Iσk) = IW(σk), (13.304)

and it follows that the Weyl tensor satisfies

W(IB) = IW(B). (13.305)

This says that the Weyl tensor is self-dual. In the two-spinor formalism of
Penrose and Rindler the duality of the Weyl tensor is expressed in terms of a
complex formulation. The spacetime algebra shows that this complex structure
arises geometrically through the properties of the pseudoscalar.
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13.6 THE STRUCTURE OF THE RIEMANN TENSOR

Given the self-duality of the Weyl tensor, the remaining content of equa-
tion (13.302) is summarised by

σkW(σk) = 0. (13.306)

This equation says that, viewed as a three-dimensional complex linear function,
W(B) is symmetric and traceless. This gives W(B) five complex, or ten real
degrees of freedom. The gauge-invariant information is held in the complex
eigenvalues of W(B), since these are invariant under rotations. As these must
sum to zero, only two are independent. This leaves a set of four real intrinsic
scalar quantities.

Overall, R(B) has 20 degrees of freedom, six of which are contained in the
freedom to perform arbitrary local rotations. Of the remaining 14 physical de-
grees of freedom, four are contained in the two complex eigenvalues of W(B),
and a further four in the real eigenvalues of the matter stress-energy tensor.
The six remaining physical degrees of freedom determine the rotation between
the frame that diagonalises G(a) and the frame that diagonalises W(B). This
identification of the physical degrees of freedom contained in R(B) is physically
very revealing and extremely useful in guiding solution strategies.

13.6.2 The Bianchi identities

Further information about the Riemann tensor is contained in the Bianchi iden-
tities. These follow immediately from the Jacobi identity in the form

[Dα, [Dβ ,Dγ ]]A + cyclic permutations = 0. (13.307)

It follows that

DαRβγ + cyclic permutations = 0, (13.308)

which we need to express as a fully covariant relation. We start by forming the
adjoint relation,

∂a∧∂b∧∂c〈
(
a·∇R(b∧c) + Ω(a)×R(b∧c)

)
B〉 = 0, (13.309)

which simplifies to

∇∧R̄(B) − ∂a∧R̄
(
Ω(a) × B

)
= 0, (13.310)

where B is a constant bivector. To make further progress we again assume that
the torsion vanishes. The Riemann tensor is then symmetric, so

R̄(B) = h̄−1Rh(B) = h̄−1R(B). (13.311)

We can therefore write

∇∧
(
h̄−1R(B)

)
− ∂a∧h̄−1R

(
Ω(a) × B

)
= 0. (13.312)
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Now acting on this equation with h̄ and using equation (13.235), we establish
the covariant result

D∧R(B) − ∂a∧R(ω(a)×B) = 0. (13.313)

This result takes a more natural form when B becomes an arbitrary function of
position, and we write the Bianchi identity as

∂a∧
(
a·DR(B) −R(a·DB)

)
= 0. (13.314)

We can extend the overdot notation of section 11.1 in the natural manner to
write equation (13.314) as

Ḋ∧Ṙ(B) = 0. (13.315)

This is a highly compact, elegant expression of the Bianchi identity, though it is
often easier to use the more explicit form of equation (13.314).

The contracted Bianchi identity is obtained from

(∂a∧∂b)·
(
Ḋ∧Ṙ(a∧b)

)
= ∂a ·

(
Ṙ(a∧Ḋ) + ḊṘ(a)

)
= 2Ṙ(Ḋ) −DR, (13.316)

from which we find

Ġ(Ḋ) = 0. (13.317)

The adjoint form of this equation is sometimes more useful:

Ḋ·Ġ(a) = D·G(a) − ∂b ·G(b·D a) = 0. (13.318)

This is the covariant expression of conservation of the Einstein tensor. It follows
that the total matter energy-momentum tensor must satisfy the same relation.
With the gravitational interaction turned off, the free-field (or flat-space) energy-
momentum tensor must be symmetric and divergence-free. This is the case for
the functional electromagnetic and fluid energy-momentum tensors. This is not
true of the Dirac theory, where the presence of spin alters many of the preceding
results and distorts much of the elegant structure of pure general relativity.

The covariant conservation equation (13.318) does not give rise to conserved
vector currents, and hence conserved scalars, unless a further symmetry is present
in the gravitational fields. In this case one can construct a Killing vector K
satisfying equation (13.259). This is sufficient to prove that

G(∂a)·(aDK) = 0, (13.319)

which holds because G(a) is a symmetric tensor. It follows that

D·
(
G(K)

)
= Ḋ·Ġ(K) − ∂a ·G(a·DK) = 0, (13.320)

which yields a covariantly conserved vector. This can be converted to a spacetime
current and hence to a conserved scalar quantity.
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13.7 NOTES

13.7 Notes

Lagrangian field theory is discussed in many textbooks, particularly those that
go on to treat quantum field theory. The texts by Itzykson & Zuber (1980) and
Bjorken & Drell (1964) are again recommended, as are the book by Cheng &
Li (1984) and the set of lecture notes by Coleman (1985). The history of gauge
theories in the twentieth century is described in the set of collected papers edited
by Taylor (2001). The use of the multivector derivative in analysing field La-
grangians was introduced in the paper by Lasenby, Doran & Gull (1993a), and
further refinements are contained in the thesis by Doran (1994).

The discovery that gravity could be treated as a gauge theory was made ini-
tially by Utiyama (1956) and Kibble (1961). An attempt at a quantum treatment
along the lines suggested by Kibble was made by Feynman and is contained in
the Feynman Lectures on Gravitation (Feynman, Morningo & Wagner, 1995).
The application of spacetime algebra in the context of classical general relativity
was promoted by Hestenes in the book Space-Time Algebra (1966) and the pa-
per ‘Curvature calculations with spacetime algebra’ (1986). Many other authors
have followed this route and a considerable literature now exists on applications
of Clifford algebra in general relativity. Rather than attempt to list all of these,
and run the risk of offending anyone we miss out, we recommend searching the
main pre-print archives on the keyword ‘Clifford’.

The particular combination of the gauge treatment of gravity and the space-
time algebra developed here was first presented in full in the paper ‘Gravity,
gauge theories and geometric algebra’, by Lasenby, Doran & Gull (1998). This
contains an extensive list of references and we refer the reader there for further
material. The form of the field equations in the presence of torsion is discussed
in Doran et al.(1998). Readers of these papers, and the preceding chapter, will
notice that the notation and conventions for this subject have not yet settled
down. We believe that this chapter represents an advance over previous work,
but doubtless there is still room for improvement. While it has not been em-
ployed in this chapter, we do recommend the underbar/overbar notation for
linear functions in hand-written work. This helps keep track of the form of
various objects, and avoids the problem of using different fonts to distinguish
objects. Unfortunately, this notation tends to look too cluttered when typeset,
which is why underbars are not employed in this book.

13.8 Exercises

13.1 The physical energy-momentum tensor for free-field electromagnetism is
defined by

Tem(a) = − 1
2FaF.
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Prove that each of Tem(x), Tem(a), Tem(xax) and Tem(B ·x) is con-
served. How many independent conserved constants can one construct
from these? How does this relate to the dimension of the spacetime
conformal group?

13.2 Prove that, in a space of dimension n,

∇
(

1 + xa

(1 + 2x·a + a2x2)n/2

)
= 0,

where a is an arbitrary vector.
13.3 The field ψ satisfies the minimally-coupled Dirac equation. Prove that

∇·(ψγ1ψ̃) = 2eA·(ψγ2ψ̃),

∇·(ψγ2ψ̃) = −2eA·(ψγ1ψ̃).

Can you derive these relations from a transformation applied to the
Dirac Lagrangian?

13.4 The coupled Maxwell–Dirac Lagrangian is defined by

L = 〈∇ψIγ3ψ̃ − eAψγ0ψ̃ − mψψ̃〉.

Find the canonical energy-momentum tensor. Prove that L is unchanged
in form by the transformations

ψ(x) 
→ Rψ(x′), A(x) 
→ RA(x′)R̃,

where x′ = R̃xR and R is a constant rotor. Find the conserved tensor
conjugate to this transformation.

13.5 The gravitational field strength is defined in terms of the bivector con-
nection Ωµ by

Rµν = ∂µΩν − ∂νΩµ + Ωµ×Ων .

Verify that this vanishes if

Ωµ = −2∂µRR̃,

where R is a spacetime rotor.
13.6 Prove that, for non-vanishing spin, the ω(a) field is given by

ω(a) = H(a) − 1
2
a·(∂b∧H(b)) + κS(a) − 3

2
κa·
(
∂b∧S(b)

)
.

13.7 Prove that, in the case of zero torsion, timelike paths which minimise
the proper time

S =
∫

dλ
(
h−1(x′)·h−1(x′)

)1/2

satisfy the geodesic equation v ·D v = 0, where v = h−1(ẋ) and v2 = 1.
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14

Gravitation

In this chapter we explore the content of the gravitational field equations derived
in section 13.5. In covariant notation these equations are

G(a) − Λa = κT (a),

H(a) = κS(a) + 1
2κ
(
∂b ·S(b)

)
∧a,

(14.1)

where κ = 8πG, Λ is the cosmological constant, G(a) and H(a) denote the
Einstein and torsion tensors, and the matter sources are determined by the
total energy-momentum tensor T (a) and the spin tensor S(a). Locally, the field
equations define an Einstein–Cartan theory of gravitation.

We start this chapter with a discussion of the various strategies we can adopt
for solving the field equations. In particular, we focus on a new technique that
is unique to the gauge theory approach. Of course, the physical content of the
equations does not depend on the method of solution. But the field equations
have proved so resistant to analysis that it is important to have a wide range
of analytical approaches at our disposal. Most of the applications of interest do
not involve macroscopic spin, so the torsion is set to zero. The only exception is
when we consider self-consistent cosmological models for a single spinor field in
a gravitational background.

As a first application of our solution method we study spherically-symmetric,
time-dependent systems. This setup is sufficiently general to use for studying
non-rotating stars and black holes, and also cosmology. We study the properties
of both classical and quantum matter in these backgrounds, looking in detail
at scattering and absorption processes around a black hole. We then turn to
static cylindrical systems. These are of limited astrophysical interest, but they
do demonstrate some important features of our solution method. In particu-
lar we find that, for certain matter distributions, the gravitational fields admit
closed timelike curves. These matter distributions can give rise to violations of
causality, which are therefore not ruled out by the theory without further as-
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GRAVITATION

sumptions. We end this chapter with a discussion of axially-symmetric fields and
the Kerr solution. We give a novel derivation of the Kerr solution, which exposes
a remarkable algebraic structure hidden in other approaches. We also describe
a version of the Kerr solution that illustrates many of its physical features in a
straightforward manner.

14.1 Solving the field equations

The traditional approach to solving the gravitational field equations in general
relativity is to start with the metric gµν . In equation (13.143) we showed that
the metric is recovered from the h(a) gauge field by setting

gµν = gµ ·gν = h−1(eµ)·h−1(eν), (14.2)

where the {eµ} comprise a coordinate frame. The metric gµν is invariant under
rotation-gauge transformations, so working in terms of the metric removes this
gauge freedom from the outset. The result is that the field equations become a
set of non-linear, second-order differential equations for the terms in gµν . Any
metric is potentially a solution of the field equations — one where the matter
energy-momentum tensor is determined by the corresponding Einstein tensor.
But this is seldom useful, as what is required is a solution for a given matter
distribution. This is an extremely difficult problem.

A related shortcoming of the metric approach is that it is extremely difficult
to set up a consistent perturbative scheme. The problem is that the metric is
gauge-dependent, so it is not apparent which quantities can be treated as small.
This can only be defined consistently in terms of covariant scalars, as these are
the only gauge-invariant quantities. Clearly, then, we should aim to solve the
equations directly in terms of these quantities. Such a method is described here,
and applied to a range of problems in this chapter.

We start by focusing on objects that transform covariantly under displace-
ments. For ease of reference we call these intrinsic objects. Unlike the metric
formulation, the class of intrinsic objects in the gauge treatment extends beyond
scalars to include general multivectors and functions. For example, each of h̄(∇),
ω(a) and R(B) are intrinsic objects. The task is to formulate the field equations
directly in terms of these objects. We assume that the spin is negligible, so that
the second field equation in (14.1) states that the torsion is zero. The method we
describe here can therefore be directly applied to problems in general relativity.

The torsion equation relates derivatives of h̄(a) to the ω(a) field, where ω(a)
is defined in equation (13.245). The torsion equation can be written as

h̄(∇̇)∧ ˙̄h(c) = −∂d∧
(
ω(d)·h̄(c)

)
, (14.3)
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14.1 SOLVING THE FIELD EQUATIONS

which we contract with a∧b to form

〈b∧a h̄(∇̇)∧ ˙̄h(c)〉 = −〈b∧a ∂d∧
(
ω(d)·h̄(c)

)
〉

=
(
a·ω(b) − b·ω(a)

)
·h̄(c). (14.4)

The essential operator on the left-hand side is the directional derivative a·h̄(∇).
This turns out to be the key operator in our approach, and we write this as

La = a·h̄(∇). (14.5)

The use of La for this operator should not be confused with the quantum-
mechanical angular momentum operators, though their properties are analysed
in a similar way. In terms of La the torsion equation becomes(

L̇aḣ(b) − L̇bḣ(a)
)
·c =

(
a·ω(b) − b·ω(a)

)
·h̄(c), (14.6)

where, as usual, the overdots determine the scope of a differential operator.
The information contained in the torsion equation is summarised neatly in

terms of the commutator bracket of the La operators. We find that the commu-
tator of La and Lb is

[La, Lb] =
(
Lah(b) − Lbh(a)

)
·∇

=
(
L̇aḣ(b) − L̇bḣ(a)

)
·∇ + (Lab − Lba)·h̄(∇)

=
(
a·ω(b) − b·ω(a) + Lab − Lba

)
·h̄(∇). (14.7)

We can therefore write

[La, Lb] = Lc, (14.8)

where

c = a·ω(b) − b·ω(a) + Lab − Lba = a·D b − b·D a. (14.9)

This bracket structure summarises the intrinsic content of the torsion equation
in a very convenient manner. If spin is present, the right-hand side of equa-
tion (14.9) is modified in a straightforward way to include spin-dependent terms.

The key to our strategy is that we delay any explicit solution for ω(a) until
after further gauge fixing has been performed. Instead, we let ω(a) take on a
suitably general form, consistent with the form of the h̄ function. This is often
best achieved with the aid of a symbolic algebra package, though it is possible, if
tedious, to perform the calculations by hand. Once a general form for ω(a) has
been found, the relationship between h̄(a) and ω(a) is then encoded intrinsically
in the commutation relations of the La.

The next object to form is the Riemann tensor R(B). This is constructed
in terms of abstract first-order derivatives of the ω(a) and additional quadratic
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terms. We see this by writing

R(a∧b) = L̇aΩ̇
(
h(a)

)
− L̇bΩ̇

(
h(a)

)
+ ω(a)×ω(b)

= Laω(b) − Lbω(a) + ω(a)×ω(b) − Ω
(
Lah(b) − Lbh(a)

)
, (14.10)

so that we have

R(a∧b) = Laω(b) − Lbω(a) + ω(a)×ω(b) − ω(c), (14.11)

where c is given by equation (14.9). Equation (14.11) enables R(B) to be cal-
culated entirely in terms of intrinsic quantities. Once the general form of the
Riemann tensor is found, we can start to employ the rotation-gauge freedom to
convert R(B) to a suitably simple expression. This gauge fixing is crucial in
order to arrive at a set of equations that are not underconstrained. The gauge
fixing is now performed directly at the level of the covariant variables. This gives
the method great power, as one can motivate gauge choices on sensible physical
grounds, rather than blind guesswork at the level of the metric.

With R(B) suitably fixed, we arrive at a set of relations between first-order
abstract derivatives of the ω(a), quadratic terms in ω(a) and matter terms. The
next step is to impose the Bianchi identities, which ensure overall consistency of
the equations with the bracket structure. Once all this is achieved, one arrives
at a fully intrinsic set of equations. Solving these equations usually involves
searching for natural integrating factors. The final step is to make an explicit
position gauge choice of the h function. The natural way to do this is often to
ensure that the form of h̄(a) is such that the integrating factors are expressed
simply in terms of the chosen coordinates. This description is quite abstract, but
in the following sections we apply this scheme to a range of physical problems.
These should illustrate how the scheme is applied in practice. We start with the
simplest case of spherically-symmetric, torsion-free systems.

14.2 Spherically-symmetric systems

To solve the field equations for spherically-symmetric systems, we first introduce
the standard polar coordinates (t, r, θ, φ). In terms of the fixed {γµ} frame we
write

t = x·γ0, cos(θ) =
x·γ3

r
,

r =
√

(x∧γ0)2, tan(φ) =
x·γ2

x·γ1
.

(14.12)
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14.2 SPHERICALLY-SYMMETRIC SYSTEMS

The associated coordinate frame is

et = γ0,

er = sin(θ)
(
cos(φ) γ1 + sin(φ) γ2

)
+ cos(θ) γ3,

eθ = r cos(θ)
(
cos(φ) γ1 + sin(φ) γ2

)
− r sin(θ) γ3,

eφ = r sin(θ)
(
− sin(φ) γ1 + cos(φ) γ2

)
,

(14.13)

and we will also make use of the unit vectors θ̂ and φ̂ defined by

θ̂ =
1
r
eθ, φ̂ =

r

sin(θ)
eφ. (14.14)

From these we define the unit bivectors

σr = eret, σθ = θ̂et, σφ = φ̂et. (14.15)

For applications in gravity there is little reason to write these spatial bivectors
in bold face, so we break the convention adopted earlier in this book and leave
the unit bivectors in ordinary face. We work throughout in natural units c =
--h = G = 1, so that κ = 8π, and in the first instance we set the cosmological

constant to zero.

14.2.1 The spherical equations

Our first step towards a solution is to decide a suitable form for the h̄ function
consistent with spherical symmetry. The form we use is

h̄(et) = f1e
t + f2e

r,

h̄(er) = g1e
r + g2e

t,

h̄(eθ) = αeθ,

h̄(eφ) = αeφ,

(14.16)

where f1, f2, g1, g2 and α are all functions of t and r only. The only rotation-
gauge freedom in this system is the freedom to perform a boost in the σr di-
rection. This freedom will be employed later to simplify the equations. Our
remaining position-gauge freedom lies in the freedom to reparameterise t and r,
which does not affect the general form of h̄(a). A natural parameterisation will
emerge once the physical variables have been identified.

To find a general form ω(a) consistent with the h̄ function of equation (14.16),
we substitute the latter into equation (13.250) and look at the general algebraic
form of ω(a). Where the coefficients in ω(a) contain derivatives of terms from
h̄(a) new symbols are introduced. Undifferentiated terms from h̄(a) appearing
in ω(a) arise from frame derivatives and are left in explicitly. The result is that
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σr σθ σφ

et ·D 0 G Iσφ −GIσθ

er ·D 0 F Iσφ −FIσθ

θ̂ ·D T σθ − S Iσφ −T σr S Iσr

φ̂·D T σφ + S Iσθ −S Iσr −T σr

Table 14.1 Covariant derivatives of the polar-frame unit timelike bivec-
tors.

we can write

ω(et) = Geret,

ω(er) = Feret,

ω(θ̂) = Sθ̂et + (T − α/r)er θ̂,

ω(φ̂) = Sφ̂et + (T − α/r)erφ̂,

(14.17)

where G, F , S and T are functions of t and r only. The important feature of
these functions is that they transform covariantly under displacements of r and t.

To define a suitable bracket structure we first introduce the operators

Lt = et ·h̄(∇), Lθ̂ = θ̂ ·h̄(∇),

Lr = er ·h̄(∇), Lφ̂ = φ̂·h̄(∇).
(14.18)

Equation (14.8), together with our form for ω(a), yields the relations

[Lt, Lr] = GLt − FLr, [Lr, Lθ̂] = −TLθ̂,

[Lt, Lθ̂] = −SLθ̂, [Lr, Lφ̂] = −TLφ̂,

[Lt, Lφ̂] = −SLφ̂, [Lθ̂, Lφ̂] = 0.

(14.19)

A set of bracket relations such as these is the first step in writing the field equa-
tions in an entirely intrinsic form. The use of orthonormal vectors in expressing
these relations brings out the structure most clearly.

Next we seek an intrinsic form of the Riemann tensor. This calculation is
simplified by making use of the results in table 14.1. The bracket relations
enable us to calculate the derivatives of α/r by writing

Lt(α/r) = LtLθ̂θ = [Lt, Lθ̂]θ = −Sα/r,

Lr(α/r) = LrLθ̂θ = [Lr, Lθ̂]θ = −Tα/r.
(14.20)

Application of equation (14.11) is now straightforward, and leads to the Riemann
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tensor

R(σr) = (LrG − LtF + G2 − F 2)σr,

R(σθ) = (−LtS + GT − S2)σθ + (LtT + ST − SG)Iσφ,

R(σφ) = (−LtS + GT − S2)σφ − (LtT + ST − SG)Iσθ,

R(Iσφ) = (LrT + T 2 − FS)Iσφ − (LrS + ST − FT )σθ,

R(Iσθ) = (LrT + T 2 − FS)Iσθ + (LrS + ST − FT )σφ,

R(Iσr) = (−S2 + T 2 − (α/r)2)Iσr.

(14.21)

We must next decide on the form of matter energy-momentum tensor that the
gravitational fields couple to. We assume that the matter is modelled by an ideal
fluid, as discussed in section 13.5.4, so we can write

T (a) = (ρ + p)a·v v − pa, (14.22)

where ρ is the energy density, p is the pressure and v is the covariant fluid velocity
(v2 = 1). Radial symmetry means that v can only lie in the et and er directions,
so v must take the form

v = cosh(χ) et + sinh(χ) er. (14.23)

But, in restricting the h̄ function to the form of equation (14.16), we retained
the gauge freedom to perform arbitrary radial boosts. This freedom can now be
employed to set v = et, so that the matter energy-momentum tensor becomes

T (a) = (ρ + p)a·et et − pa. (14.24)

There is no physical content in the choice v = et as all physical relations must
be independent of gauge choices. The choice simply fixes the rotation gauge in
such a way that the energy-momentum tensor takes on the simplest form. This
removes all rotation-gauge freedom — an essential step in the solution method,
since all non-physical degrees of freedom must be removed before one can achieve
a complete set of physical equations.

In section 13.6.1 we saw how to decompose the Riemann tensor into a source
term and the Weyl tensor. The source term can be written

R(a∧b) −W(a∧b) =
4π

3
(
3a∧T (b) + 3T (a)∧b − 2T a∧b

)
, (14.25)

where T = ∂a ·T (a) is the trace of the matter energy-momentum tensor. With
T (a) given by equation (14.24), R(B) is restricted to the form

R(B) = W(B) +
4π

3
(
3(ρ + p)B ·et et − 2ρB

)
. (14.26)

Comparing this with equation (14.21) we see that the Weyl tensor must have
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the general form

W(σr) = α1σr, W(Iσr) = α4Iσr,

W(σθ) = α2σθ + β1Iσφ, W(Iσθ) = α3Iσθ + β2σφ, (14.27)

W(σφ) = α2σφ − β1Iσθ, W(Iσφ) = α3Iσφ − β2σθ.

Here each of the αi represents a combination of intrinsic objects.
The torsionless gravitational field equations ensure that the Weyl tensor is self-

dual and symmetric. The former implies that α1 = α4, α2 = α3 and β1 = −β2,
and the latter implies that β1 = β2. It follows that β1 = β2 = 0. Finally, W(B)
must be traceless, which requires that α1 + 2α2 = 0. Taken together, these
conditions reduce W(B) to the form

W(B) =
α1

4
(B + 3σrBσr). (14.28)

This is of Petrov type D. From the form of R(Iσr) we can see that

α1 =
8πρ

3
− S2 + T 2 − α2

r2
. (14.29)

If we now define β by

4β = −S2 + T 2 − α2

r2
, (14.30)

then the full Riemann tensor can be written as

R(B) =
(

β +
2π

3
ρ

)(
B + 3σrBσr

)
+

4π

3
(
3(ρ + p)B ·etet − 2ρB

)
. (14.31)

We compare this with equation (14.21) to obtain the following set of equations:

LtS = 2β + GT − S2 − 4πp,

LtT = S(G − T ),

LrS = T (F − S),

LrT = −2β + FS − T 2 − 4πρ,

LrG − LtF = F 2 − G2 + 4β + 4π(ρ + p).

(14.32)

We are now close to our goal of a complete set of intrinsic equations. The re-
maining step is to enforce the Bianchi identities. The only identity that contains
new information in our present setup is the contracted Bianchi identity defined in
section 13.6.2, which guarantees covariant conservation of the energy-momentum
tensor. For an ideal fluid this results in the pair of equations

D·(ρv) + pD·v = 0,

(ρ + p)(v ·Dv)∧v − (Dp)∧v = 0.
(14.33)
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The quantity (v·Dv)∧v is the covariant acceleration bivector, so the second equa-
tion relates the acceleration to the pressure gradient. For the case of spherically-
symmetric fields, these equations reduce to

Ltρ = −(F + 2S)(ρ + p),

Lrp = −G(ρ + p).
(14.34)

The latter of these identifies G as the radial acceleration. The full Bianchi iden-
tities now turn out to be satisfied as a consequence of the contracted identities
and the bracket relation

[Lt, Lr] = GLt − FLr. (14.35)

This completes our derivation of the intrinsic equations. The full set is defined
by equations (14.20), (14.32), the contracted identities (14.34) and the bracket
structure of equation (14.35). The equation structure is closed, as the bracket
relation (14.35) is consistent with the known derivatives. The derivation of such
a set of equations is the basic aim of our method. The equations deal solely
with objects that transform covariantly under displacements, and many of these
quantities have direct physical significance.

14.2.2 Solving the spherical equations

To solve the intrinsic equation structure we first form the derivatives of β to
obtain

Ltβ + 3Sβ = 2πSp,

Lrβ + 3Tβ = −2πTρ.
(14.36)

These results suggest that we should look for an integrating factor for the Lt +S

and Lr + T operators. Such a function, X say, should have the properties that

LtX = SX, LrX = TX. (14.37)

A function with these properties can exist only if the derivatives are consistent
with the bracket relation of equation (14.35). This is checked by forming

[Lt, Lr]X = Lt(TX) − Lr(SX)

= X(LtT − LrS)

= X(SG − FT )

= GLtX − FLrX, (14.38)

which confirms that the properties of X are consistent with the bracket structure.
In fact, we can see from equation (14.20) that r/α has the desired properties.
Integrating factors of this type often arise as natural, intrinsically-defined coor-
dinates, and the form of the solution is usually simplest when expressed directly
in terms of these. Since the position-gauge freedom in the r direction has not yet

505

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.016
https:/www.cambridge.org/core


GRAVITATION

been fixed, it is natural to set α = 1, so that r plays the role of the integrating
factor directly. We will confirm shortly that this gauge choice ensures that r is
a physically meaningful quantity.

With the radial scale fixed by setting α = 1, we can now make some further
simplifications. From the form of the h̄ function in equation (14.16), together
with equation (14.37), we see that

g1 = Lrr = Tr,

g2 = Ltr = Sr.
(14.39)

This replaces two functions in the bivector connection in favour of terms in h̄(a).
We also define

M = −2r3β =
r

2
(
g2

2 − g1
2 + 1

)
, (14.40)

which satisfies
LtM = −4πr2g2p,

LrM = 4πr2g1ρ.
(14.41)

The latter suggests that M plays the role of an intrinsic mass.
So far we have defined the natural distance scale, but have not yet found a

natural time coordinate. Such a coordinate is required to complete the solution,
so we now look for additional criteria to motivate this choice. We are currently
free to perform an arbitrary r and t-dependent displacement along the et direc-
tion. This gives us complete freedom in the choice of f2 function. If we now
invert equation (14.41) to find the coordinate derivatives of M we obtain

∂M

∂t
=

−4πg1g2r
2(ρ + p)

f1g1 − f2g2
,

∂M

∂r
=

4πr2(f1g1ρ + f2g2p)
f1g1 − f2g2

.

(14.42)

The second equation reduces to a simple classical relation if we choose f2 = 0,
as we then obtain

∂rM = 4πr2ρ. (14.43)

This says that, at constant time t, M(r, t) is determined by the amount of mass-
energy in a sphere of radius r.

With f2 set to zero we can now use the bracket structure to solve for f1. We
have

Lt = f1∂t + g2∂r, Lr = g1∂r, (14.44)

so the bracket relation of equation (14.35) implies that

Lrf1 = −Gf1. (14.45)
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It follows that

f1 = ε(t) exp
(
−
∫ r G(s)

g1(s)
ds

)
. (14.46)

The function ε(t) can be absorbed by a further t-dependent rescaling along et,
which will not reintroduce a term in f2. In the f2 = 0 gauge we can therefore
reduce to a system in which

f1 = exp
(
−
∫ r G(s)

g1(s)
ds

)
. (14.47)

The physical explanation for why the f2 = 0 gauge is a very natural one to
work in emerges when we set the pressure to zero. In this case equation (14.34)
forces G to be zero, and equation (14.47) then sets f1 = 1. A (free-falling)
particle comoving with the fluid has covariant velocity v = et, so the trajectory
of this particle is defined by

ṫet + ṙer = h(et) = et + g2 er, (14.48)

where the dots denote differentiation with respect to the proper time. Since
ṫ = 1 the time coordinate t matches the proper time of all observers comoving
with the fluid. In this sense, the time coordinate that has emerged behaves like a
global Newtonian time on which all observers can agree (provided all clocks are
correlated initially). By employing the various gauge choices outlined above, and
casting the dynamics in terms of the t coordinate, we are ensuring that (when
p = 0) the physics is formulated from the viewpoint of freely-falling observers.
We then expect that the gravitational equations should take on a clear, physical
form, which is indeed the case.

As a further illustration of this point, it is clear from (14.48) that g2 represents
a radial velocity for the particle. In the absence of pressure, the rate of change
of mass is given by

∂tM = −4πr2g2ρ. (14.49)

This equation equates the work with the rate of flow of energy density. Similarly,
equation (14.40), written in the form

(g2)2

2
− M

r
=

1
2

(
(g1)2 − 1

)
, (14.50)

is also now familiar from Newtonian physics — it is a Bernoulli equation for
zero pressure and total (non-relativistic) energy (g1

2 − 1)/2. When pressure is
included, the purely Newtonian interpretation starts to break down, due mainly
to the fact that pressure can act as a source of gravitation. But it remains the
case that the gauge choices described here pick out what appears to be the most
natural set of equations for studying spherically-symmetric systems.

The system of equations we have now derived is summarised in table 14.2. We
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The h̄ field

h̄(et) = f1e
t

h̄(er) = g1e
r + g2e

t

h̄(eθ) = eθ

h̄(eφ) = eφ

The ω field

ω(et) = Geret

ω(er) = Feret

ω(θ̂) = g2/r θ̂et + (g1 − 1)/r er θ̂

ω(φ̂) = g2/r φ̂et + (g1 − 1)/r erφ̂

Directional derivatives
Lt = f1∂t + g2∂r

Lr = g1∂r

Equations for G and F
Ltg1 = Gg2

Lrg2 = Fg1

f1 = exp{
∫ r −G/g1 ds}

Definition of M M = 1
2
r(g2

2 − g1
2 + 1)

Remaining derivatives
Ltg2 = Gg1 − M/r2 − 4πrp
Lrg1 = Fg2 + M/r2 − 4πrρ

Matter derivatives

LtM = −4πr2g2p
LrM = 4πr2g1ρ
Ltρ = −(2g2/r + F )(ρ + p)
Lrp = −G(ρ + p)

Riemann tensor
R(B) = 4π

(
(ρ + p)B ·etet − 2ρ/3 B

)
− 1

2
(M/r3 − 4πρ/3)(B + 3σrBσr)

Energy-momentum tensor T (a) = (ρ + p)a·etet − pa

Table 14.2 Gravitational equations governing a radially-symmetric perfect
fluid. An equation of state and initial data ρ(r, t0) and g2(r, t0) determine
the future evolution of the system.

refer to this system as defining the Newtonian gauge, since so many equations
take on an almost Newtonian form. Of course, this should not distract from
the fact that we have solved the full, relativistic gravitational field equations.
The system of equations in table 14.2 underlies a wide range of phenomena
in relativistic astrophysics and cosmology. One aspect of these equations is
immediately apparent. Given an equation of state p = p(ρ), and initial data in
the form of the density ρ(r, t0) and the velocity g2(r, t0), the future evolution
of the system is fully determined. This is because ρ determines p and M on a
time slice, and the definition of M determines g1. The equations for Lrp, Lrg1
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and Lrg2 then determine the remaining information on the time slice. Finally,
the LtM and Ltg2 equations can be used to update the information to the next
time slice, and the process can start again. The equations can therefore be
implemented numerically as a simple set of first-order update equations. This is
important for a wide range of applications.

14.2.3 Static matter distributions

As a first application of the equations governing a spherically-symmetric system,
we consider a static matter distribution. This solution is appropriate for a non-
rotating spherical source. The density and pressure are now functions of r only.
The mass is given by

M(r) =
∫ r

0

4πs2ρ(s) ds (14.51)

and it follows that

LtM = 4πr2g2ρ = −4πr2g2p. (14.52)

For any physical matter distribution ρ and p must both be positive, in which
case equation (14.52) can only be satisfied if g2 vanishes. It follows that F = 0
as well, so for static, extended objects we have

g2 = F = 0. (14.53)

Since g2 is zero, g1 is given simply in terms of M(r) by

g1
2 = 1 − 2M(r)

r
. (14.54)

For this to hold we require that 2M(r) < r. This condition says that a horizon
has not formed anywhere in the object.

The remaining equation of use is that for Ltg2, which now gives

Gg1 =
M(r)

r2
+ 4πrp. (14.55)

Equations (14.54) and (14.55) combine with that for Lrp to produce the Oppen-
heimer–Volkov equation

∂p

∂r
= − (ρ + p)(M(r) + 4πr3p)

r(r − 2M(r))
. (14.56)

This is the force balance equation appropriate for a relativistic matter distribu-
tion. The line element generated by our solution is

ds2 =
1

(f1)2
dt2 − r

r − 2M(r)
dr2 − r2 dθ2 − r2 sin2(θ) dφ2, (14.57)

509

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.016
https:/www.cambridge.org/core


GRAVITATION

where f1 is given by equation (14.47). The solution extends straightforwardly to
the region outside the star. In this region M is constant, and

f1 = 1/g1 = (1 − 2M/r)−1/2. (14.58)

We therefore recover the Schwarzschild line element. This is the solution used
for some of the most famous tests of general relativity, including those for the
bending of light and the perihelion precession of Mercury. Clearly, the gauge
theory framework does not alter any of these results.

14.3 Schwarzschild black holes

Perhaps the most famous solution of the Einstein equations (apart from Lorent-
zian spacetime) is the Schwarzschild solution for a black hole. This solution
describes the gravitational fields surrounding a point source of matter, of total
gravitational mass M . One form of this solution is described by the line element
of equation (14.57) for the case of constant M . But this is ill defined at r = 2M

which, as we shall soon discover, defines an event horizon. This tells us that our
gauge choice has not yielded a satisfactory global solution, so we must return to
the field equations to discover what went wrong.

For a point source located at the origin we have ρ = p = 0 everywhere away
from the source. The matter equations therefore reduce to

LtM = LrM = 0, (14.59)

which tells us that the mass M is constant. The remaining equations simplify to

Ltg1 = Gg2,

Lrg2 = Fg1,

g1
2 − g2

2 = 1 − 2M/r.

(14.60)

No further equations yield new information, so we have an underdetermined
system of equations. Despite all of the gauge-fixing steps taken to arrive at the
set of equations summarised in table 14.2, for vacuum fields some additional
gauge fixing is still required. The reason for this is that, in the vacuum region,
the Riemann tensor reduces to

R(B) = − M

2r3
(B + 3σrBσr). (14.61)

This tensor is now invariant under boosts in the σr plane, whereas previously the
presence of the fluid velocity in the Riemann tensor vector broke this symmetry.
The appearance of this new symmetry in the matter-free case manifests itself as
a new freedom in the choice of the h̄ function.

Given this new freedom, we can look for a choice of g1 and g2 which simplifies
the equations. If we attempt to reproduce the Schwarzschild line element we have
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to set g2 = 0, but then we immediately run into difficulties with g1, which is not
defined for r < 2M . We must therefore look for an alternative gauge choice. A
suitable candidate, motivated by the pressure-free equations, is provided by the
simple choice

g1 = 1. (14.62)

It follows that

f1 = 1, g2 = −
√

2M/r (14.63)

and

G = 0, F = − M

g2r2
=
(

M

2r3

)1/2

. (14.64)

In this gauge the h̄ function has the remarkably simple form

h̄(a) = a −
√

2M/r a·er et. (14.65)

This only differs from the identity through a single term. The line element
obtained from this gauge choice is

ds2 = dt2 −
(

dr +
(

2M

r

)1/2

dt

)2

− r2(dθ2 + sin2(θ) dφ2), (14.66)

which is regular at the horizon (r = 2M) and covers all spacetime down to
r = 0. This form of the line element was first derived by Painlevé and Gullstrand,
not long after Schwarzschild’s original work was published. Despite the many
advantages of this form of the solution, it has not been routinely employed in
solving physical problems.

The h̄ field of equation (14.65) is the form of the Schwarzschild solution we will
use for studying the properties of spherically-symmetric black holes. Of course,
all physical predictions must be independent of gauge, but this only reinforces
the point that we should always endeavour to work in a gauge that simplifies the
analysis as far as possible. The results for the extension to the action of h̄ to an
arbitrary multivector A are useful in what follows. We find that

h̄(A) = A −
√

2M/r(A·er)∧et. (14.67)

It follows that det (h) = 1 and the inverse of the adjoint function, as defined by
equation (4.152), is given by

h−1(A) = A +
√

2M/r(A·et)∧er. (14.68)

It is straightforward to verify that this function recovers the line element of
equation (14.66).
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14.3.1 Point particle trajectories

The motion of a classical point particle in free fall is governed by the geodesic
equation

v ·Dv = v̇ + ω(v)·v = 0. (14.69)

The mass m of the particle is unimportant (provided m � M), and is set to
unity throughout this section. Since G = 0 in our chosen gauge, we immediately
see that

ω(et) = 0. (14.70)

It follows that v = et is a solution of the geodesic equation. The trajectory this
defines has

ẋ = h(v) = h(et) = et + uer, (14.71)

where

u = ṙ = −√
(2M/r). (14.72)

Particles, or observers, following the geodesic defined by v = et fall in radially
with velocity ṙ given by the familiar Newtonian formula. Furthermore, we see
that ṫ = 1, so the time coordinate t is precisely the time measured by these
infalling observers. This is, in part, why the gauge choice we have adopted turns
out to simplify many calculations.

Now consider a more general trajectory, with covariant velocity

v = ṫ et + (ṫ
√

2M/r + ṙ)er + θ̇eθ + φ̇eφ. (14.73)

Since the h̄ function is independent of t we have, from equation (13.272),

h−1(et)·v = (1 − 2M/r)ṫ − ṙ
√

2M/r = constant. (14.74)

So, for particles moving forwards in time (ṫ > 0 for r → ∞), we can write

(1 − 2M/r)ṫ = α + ṙ
√

2M/r, (14.75)

where the constant α satisfies α > 0. The radial equation is found from the
constraint that v2 = 1, which gives

ṙ2 = α2 −
(
1 − 2M/r

)(
1 + r2

(
θ̇2 + sin2(θ) φ̇2

))
. (14.76)

Spherical symmetry implies that the angular velocity J is also conserved, where

J2 = r4(θ̇2 + sin2(θ) φ̇2). (14.77)

The motion of a particle around a black hole is therefore determined by the
single radial equation

ṙ2 = α2 −
(
1 − 2M/r

)(
1 +

J2

r2

)
. (14.78)
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This equation is gauge-invariant, as it relates local quantities. The radial coor-
dinate r is defined locally by the magnitude of the Riemann tensor, and the dots
denote the derivative with respect to (local) proper time. This transition from
global to local variables is in keeping with the gauging process. The motion of
a particle in spacetime is obtained by integrating equations (14.78) and (14.75).
At the horizon we have ṙ = −α, so there is no pole in equation (14.75), and the
equations can be integrated down to the singularity.

Differentiating equation (14.78) we obtain

r̈ = −M

r2
+

J2

r3
− 3MJ2

r4
. (14.79)

The equivalent three-dimensional vector equation is

ẍ = −
(

M

r2
+

3MJ2

r4

)
x̂. (14.80)

This equation was analysed perturbatively in section 3.3.1. For stable orbits the
main new effect introduced by relativity is a small perturbation of the eccentricity
vector. The content of equation (14.78) can similarly be summarised in the radial
effective potential (per unit mass)

Veff = −M

r
+

J2

2r2

(
1 − 2M

r

)
. (14.81)

We then have

α2 − 1
2

=
ṙ2

2
+ Veff (14.82)

which identifies mα as the conserved relativistic energy of the particle. Bound
states have α < 1 and scattering states have α > 1.

The effective potential differs from the Newtonian expression in the factor
of (1 − 2M/r) multiplying the centrifugal term. This has little effect at large
distances, but dramatically alters the small-r behaviour. Inside r = 2M the
centrifugal term in the effective potential changes sign and becomes attractive.
There is no longer any term in the potential applying an effective outward force,
and the particle must inexorably move towards the central singularity. One can
see this clearly in equation (14.73). Inside the horizon the velocity ṙ must be
negative in order for v2 = 1 to remain satisfied. Once inside the horizon, no
particle can escape the singularity, no matter what force is applied to attempt
to counteract the gravitational pull. Eventually, the tidal forces (defined by the
Riemann tensor) become so large that all objects are pulled apart into their
constituent particles.
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14.3.2 Photon trajectories

A full treatment of the properties of electromagnetic waves in a gravitational
background involves solving the gravitationally-coupled Maxwell equations of
section 13.5.8. For a range of practical problems it is sufficient to ignore the
detailed properties of the electromagnetic field, and work in the geometric optics
limit. In this approach, photons are treated as massless (scalar) point particles.
These particles follow null trajectories with

k = h−1(ẋ), k2 = 0. (14.83)

The trajectories are still specified by the equation k ·Dk = 0. For radial infall
we must have

k = ν(et − er), (14.84)

where ν = k · et is the frequency measured by radially free-falling observers
(at rest at infinity). The photon trajectory is independent of the frequency, as
demanded by the equivalence principle. The path defined by k is given by

ẋ = h(k) = ν
(
et − (1 +

√
(2M/r))er

)
. (14.85)

It follows that
dr

dt
= −(1 +

√
(2M/r)). (14.86)

This integrates straightforwardly to give the photon path. We have therefore
found the path without employing the equation of motion. This is possible
because we restricted to motion in a single spacetime plane.

The equations of motion tell us how the frequency changes along the path. To
find this we need

ω(k) = −ν

(
M

2r3

)1/2

σr, (14.87)

from which we see that

ν̇ = ν2

(
M

2r3

)1/2

. (14.88)

This equation is more usefully expressed in terms of the derivative with respect
to r. We use

ṙ = −ν
(
1 +

√
(2M/r)

)
(14.89)

to arrive at
1
ν

dν

dr
=

M

r

1
2M +

√
(2Mr)

=
1
2r

1√
r/rS + 1

, (14.90)

where rS = 2M is the Schwarzschild radius. This equation can again be inte-
grated straightforwardly to tell us how frequency ν changes with radius. We see
that nothing untoward happens until r = 0 is reached.
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We can repeat the previous analysis for outgoing photons. For this case we
have

k = ν(et + er) (14.91)

and the path is

ẋ = h(v) = ν
(
et + (1 −√

(2M/r))er

)
. (14.92)

It follows that
dr

dt
= 1 −√

(2M/r). (14.93)

But now, when r < 2M the path is still inwards. Inside r = 2M , not even
light can escape. The surface r = 2M is called the event horizon. It marks the
boundary between two regions, one of which (the interior in this case) cannot
signal to the other. We also find that

1
ν

dν

dr
=

M

r

1
2M −√

(2Mr)
= − 1

2r

1√
r/rS − 1

, (14.94)

which is negative outside the horizon. So, as photons climb out of a gravitational
field, they are redshifted. This is one of the best-tested predictions of general
relativity. The redshift becomes increasingly large as the horizon is approached,
so photons emitted from near the horizon are strongly redshifted as they climb
out to infinity. The various features of radial motion in a black hole background
are shown in figure 14.1. One conclusion from this plot is that, as seen by external
observers, any object falling through the horizon appears to hover outside the
horizon and just fade out of existence as the redshift increases.

If any object collapses to within its event horizon, it must carry on collapsing
to form a central singularity. There is no possible force capable of preventing the
collapse. This is because matter is always constrained to follow timelike paths,
and if the entire future light-cone points inwards towards the singularity, no mat-
ter can escape. The object remaining at the end of this process is called a black
hole. All paths for infalling matter terminate on the singularity. There has been
much research into the properties of singularities, though their nature remains
enigmatic. In one sense, gravitational singularities are no more difficult to deal
with than singularities in the electromagnetic field due to point sources. They
can also be analysed in much the same way using integral equations. But this
(classical) treatment of singularities can only contain part of the story. Quantum
mechanically, black holes have an associated entropy, implying the existence of
a series of microstates consistent with the macroscopic properties of the hole.
It is widely believed that a more complete understanding of quantum gravity
should explain this phenomenon through a detailed quantum description of the
singularity.
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Figure 14.1 Matter and photon trajectories in a black hole background.
The solid lines are photon trajectories, and the horizon lies at r = 2.
Outside the horizon it is possible to send photons out to infinity, and hence
communicate with the rest of the universe. As the emitter approaches
the horizon, these photons are strongly redshifted and take a long time to
escape. Once inside the horizon, all photon paths end on the singularity.
The broken lines represent two possible trajectories for infalling matter.
Trajectory I is for a particle released from rest at r = 4. Trajectory II is
for a particle released from rest at r = ∞.

14.3.3 Stationary observers

It is instructive to see how physics appears from the point of view of stationary
observers in a Schwarzschild background. These observers have constant r, θ, φ,
so

ẋ = ṫet. (14.95)

It follows that

v = ṫ(et +
√

(2M/r)er). (14.96)

But we require that v2 = 1 for the path to be parameterised by the observer’s
proper time, so

ṫ2(1 − 2M/r) = 1, ṫ = (1 − 2M/r)−1/2. (14.97)
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14.3 SCHWARZSCHILD BLACK HOLES

This is a constant, since r is fixed for these observers. We can see immediately
that it is only possible to remain at rest outside the horizon. This is reasonable
given the preceding considerations, though the picture is not quite so clear if the
black hole is rotating. For this case there is a region outside the horizon within
which it is impossible to remain at rest (though it is still possible to escape).

The covariant acceleration bivector for a particle with velocity v is defined by

(v ·Dv)∧v = v̇v + ω(v)·v v. (14.98)

This gives the acceleration required to follow a given path. For stationary ob-
servers we have

(v ·Dv)∧v =
M

r2(1 − 2M/r)1/2
σr. (14.99)

So an observer with mass m needs to apply force of Mm/r2× (1−2M/r)−1/2 to
remain at rest. This is the Newtonian value multiplied by a relativistic correction
term. This correction becomes increasingly large as the horizon is approached,
as one would expect.

We can now look at physics from point of view of these observers, which can be
viewed as both being stationary and having constant acceleration. For example,
if a second observer has velocity γ0 (so is in free fall), the relative velocity the
two observers measure when their positions coincide is

v∧γ0

v ·γ0
=

√
(2M/r)σr. (14.100)

As we might expect, this is the Newtonian result. The only difference now lies
in the interpretation of who is accelerating. The stationary observer is the one
applying a force, so we now say that it is this observer that is accelerating. The
observer in free fall is applying zero force, so is not accelerating. That is, we no
longer view gravity as applying a force, as this would require a concept of what
the particle would have done if the gravitational field were not present. Such a
concept is not gauge-invariant, so is unphysical.

14.3.4 Absorption and scattering

The presence of the horizon implies that incident particles with total energy
E > mc2 can suffer two fates. Either they will be scattered by the gravitational
fields, or they will be absorbed onto the central singularity. The crucial quantity
that determines the fate of the particle is the angular velocity J . In figure 14.2 we
plot the effective potential of equation (14.81) for a range of angular velocities.
If J is too small there is nothing to prevent the particle hitting the singularity.
As J increases, the effective potential develops a barrier. If this barrier is greater
than the total (non-relativistic) energy, the particle is no longer absorbed, and
instead is scattered by the black hole.
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Figure 14.2 The gravitational effective potential. The potential for a unit
mass particle is defined by equation (14.81), and units are chosen so that
the horizon lies at r = 2. The plots are for J values of 0, 4, 8, 16 and
24. For small J nothing prevents the particle hitting the singularity. As
J increases a barrier of increasing height is formed. If the particle has
insufficient energy to surmount this barrier it is scattered.

For a given energy, we can determine the critical value of J that distinguishes
between absorption and scattering. This is most usefully encoded in terms of an
impact parameter b, as illustrated in figure 14.3. Asymptotically, the incoming
particle has angular velocity

J = bṙ(∞). (14.101)

But in this region the energy is determined entirely by ṙ, so the impact parameter
is given by

b2 =
J2

α2 − 1
, (14.102)

where α is the energy per unit mass of the incident particle, as defined in equa-
tion (14.75). For a fixed energy, the critical value of J therefore determines the
critical value of the impact parameter. From the point of view of absorption,
the black hole then appears as a disc of radius b, and the total absorption cross
section is defined by

σabs = πb2. (14.103)
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b

θ

pf

pi

Figure 14.3 The impact parameter. In the asymptotic incoming region,
the impact parameter b measures the distance between the incoming tra-
jectory and a parallel radial trajectory. For a black hole there is a critical
value of b inside which all geodesics terminate on the singularity. The
diagram also defines the scattering angle θ.

This will be a decreasing function of energy — the faster the particle is travelling,
the less likely it is to be absorbed.

The algebra needed to compute the absorption cross section is straightforward,
if a little tedious. First we write x = 1/r, so that the effective potential becomes

Veff = −Mx +
b2(α2 − 1)

2
x2(1 − 2Mx). (14.104)

The turning point is at

xc =
1

6M

(
1 +

(
1 − 12M2

(α2 − 1)b2

)1/2
)

. (14.105)

To find b the equation we need to solve is therefore

2Veff (xc) = α2 − 1. (14.106)

The solution then returns the absorption cross section

σabs =
πM2

2u4

(
8u4 + 20u2 − 1 + (1 + 8u2)3/2

)
, (14.107)

where we have expressed the result in terms of the velocity u:

u2 =
p2

E2
=

α2 − 1
α2

. (14.108)

The absorption cross section is plotted in figure 14.4. For small velocities we see
that

σabs 
→ 16πM2

u2
. (14.109)

As the incident velocity decreases, the absorption cross section increases, as is to
be expected. As the velocity increases the absorption cross section tends towards
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Figure 14.4 The classical absorption cross section. The cross section is a
function of the incident velocity u (in units of c). As the velocity approaches
the speed of light the cross section approaches the photon limit, as shown
by the straight line. The vertical axis is in units of (GM/c2)2.

the limiting result for a massless particle. For these the effective potential is
simply

Veff =
J2

2r2

(
1 − 2M

r

)
. (14.110)

The turning point occurs at r = 3M , at which the effective potential has the
value J2/54M2. Equating this with asymptotic energy J2/2b2 we see that for
photons b2 = 27M2, and the photon absorption cross section is

σabs = πb2 = 27πM2. (14.111)

This is the limiting value of equation (14.107) as u 
→ 1. In section 14.4.3 we
study how these features are modified by a more complete, quantum treatment
of the absorption process.

Scattering presents a more difficult problem. The differential scattering cross
section for a Newtonian 1/r potential is determined by the Rutherford formula

dσ

dΩ
=

M2

4u2 sin4(θ/2)
, (14.112)

where θ is the scattering angle and u is the velocity of the incident particle. This
formula relates the incident cross sectional area σ to the solid angle dΩ, where

dσ = 2πb db, dΩ = 2π sin(θ) dθ. (14.113)
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The Rutherford cross section formula is easily computed from the properties of
hyperbolic trajectories. The relativistic corrections to the Rutherford formula
are generated by the additional r−3 term in the potential. This term makes
the problem considerably more difficult to solve, and no simple analytic formula
exists for the classical scattering cross section. One problem is that it is now
possible for particles to spiral around the centre before escaping. We could
build up a perturbative picture of the scattering problem using the techniques
described in section 3.3.1, though the resulting expressions are usually extremely
complicated. A better approach to this problem is described in section 14.4.1,
where the cross section is calculated using perturbative quantum theory.

14.3.5 Electromagnetism in a black hole background

Further insight into the nature and effects of a black hole is obtained by con-
sidering the electromagnetic fields surrounding charges held at rest outside the
horizon. The relevant equations were obtained in section 13.5.8. We assume that
the charge is placed at a distance a > 2M along the z axis. The vector potential
can be written in terms of a single scalar potential V (r, θ) as

A = V (r, θ)

(
et +

√
2Mr

r − 2M
er

)
, (14.114)

so that

F = −∂V

∂r
eret −

1
r − 2M

∂V

∂θ
θ̂(et +

√
2M/rer) (14.115)

and

D = −∂V

∂r
eret −

1
r − 2M

∂V

∂θ
θ̂et. (14.116)

The Maxwell equations now reduce to the single partial differential equation

1
r2

∂

∂r

(
r2 ∂V

∂r

)
+

1
r(r − 2M)

1
sin(θ)

∂

∂θ

(
sin(θ)

∂V

∂θ

)
= −ρ, (14.117)

where ρ = qδ(x − a) is a δ-function at z = a. The solution (originally found by
Linet) is

V (r, θ) =
q

ar

(r − M)(a − M) − M2 cos2(θ)
d

+
qM

ar
, (14.118)

where

d =
(
r(r−2M)+(a−M)2−2(r−M)(a−M) cos(θ)+M2 cos2(θ)

)1/2
. (14.119)

When this result is substituted back into equation (14.115) we see that the
covariant field F is both finite and continuous at the horizon. It follows that we
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Figure 14.5 Streamlines of the electric field in a black hole background.
The horizon lies at r = 2 and the charge is placed on the z axis. In the
left-hand diagram the charge is held at z = 3, and in right-hand diagram
it is at z = 2.1.

have found a global solution to the electromagnetic field equations, appropriate
both inside and outside the horizon.

One way to illustrate the global properties of F is to plot the streamlines of
D. Equation (13.279) ensures that these streamlines begin and end on charges,
so for our case of a single isolated charge they should therefore spread out from
the charge and cover all space. Furthermore, since the distance scale r was
chosen to agree with the gravitationally-defined distance, the streamlines of D

convey genuine intrinsic information. The plots therefore encode gauge-invariant
information about the electromagnetic field. Figure 14.5 shows streamline plots
for charges held at different distances above the horizon. A polarisation charge
is clearly visible at the origin, and streamlines are attracted towards this but
never actually meet it. The effects of the polarisation charge can be felt outside
the horizon as a repulsive force acting back on the charge. That is, less force
is required to keep a charge at rest outside a black hole than is required for an
uncharged particle. The fact that the origin of this effect lies inside the horizon
reinforces the importance of constructing global solutions to the field equations.

14.3.6 Other gauges

Before proceeding it is useful to study the vacuum spherical equations in an
arbitrary gauge. We return to the spherical equations before the f2 = 0 gauge
choice was made, and again impose that M is constant. The equations that
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remain are

g1
2 − g2

2 = 1 − 2M/r (14.120)

and

∂rg1 = G, ∂rg2 = F, (14.121)

and all fields are functions of r only. The bracket relation of equation (14.35)
gives

g2∂rf2 − g1∂rf1 = Gf1 − Ff2, (14.122)

from which it follows that

∂r(f1g1 − f2g2) = ∂rdet (h) = 0. (14.123)

The determinant of h is constant, and the value of this constant depends on the
choice of gauge. Because the Riemann tensor falls off as r−3 we always choose
to work in a gauge where h̄ tends to the identity as r 
→ ∞. In this case we have
det (h) = 1, so we can write

f1g1 − f2g2 = 1. (14.124)

No other equations remain to fix the solution further. We therefore have two
free functions in the choice of h̄ function.

A useful alternative to the Newtonian gauge chosen in this section is to write
the solution in Kerr–Schild form. For this we set

g1 = 1 − M/r, g2 = −M/r,

f1 = 1 + M/r, f2 = M/r.
(14.125)

In this case the h̄ function takes on the compact form

h̄(a) = a +
M

r
a·e− e−, e− = et − er. (14.126)

This algebraic form has a number of convenient algebraic features. The first is
that the solution is of the form of the identity plus an interaction term, as is also
the case in the Newtonian gauge setup. The second is that this form of h̄(a) is
a symmetric function. Finally, e− is a null vector that satisfies h̄(e−) = e−. All
of these features can be employed to simplify calculations.

The line element generated by our general form of h̄ function is

ds2 =(1 − 2M/r) dt2 + 2(f1g2 − f2g1) dt dr − (f1
2 − f2

2) dr2

− r2(dθ2 + sin2(θ) dφ2). (14.127)

This in effect contains one arbitrary function, because the constraint on the
determinant fixes one of the two unknown coefficients. The remaining unspecified
degree of freedom lies in the rotation gauge, which does not affect the metric. We
can draw an important conclusion about the metric by considering its behaviour
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at the horizon. There we must have g1 = ±g2, and we know that f1g1−f2g2 = 1
globally. It follows that

f1g2 − f2g1 = ±1 at r = 2M, (14.128)

so the off-diagonal term must be either +1 or −1 at the horizon. The presence
of the horizon must break time reversal symmetry. This is to be expected. For
a black hole (corresponding to the negative solution), the horizon is the place
where particles can fall in, but cannot escape. The opposite value at the horizon
(corresponding to a positive value of g2 in the Newtonian gauge) defines an
object from which particles can escape, but no particle can cross the horizon.
This is called a white hole, though it is unclear whether such a solution defines
a physically relevant object.

14.4 Quantum mechanics in a black hole background

The gauge theory formulation of gravity is motivated by constructing gauge
fields to ensure that the Dirac equation is covariant under local rotations and
displacements. We now study the effects of the black hole gauge fields on a
Dirac fermion. Assuming that no electromagnetic couplings are present, the
minimally-coupled equation takes the familiar form

DψIσ3 = mψγ0. (14.129)

The simplicity of the h̄ field in the Newtonian gauge suggests that this will be
the simplest gauge to work in. As always, we must ensure that the all physical
predictions are gauge-invariant. With the gravitational fields as described in
equations (14.64) and (14.65), the Dirac equation becomes

∇ψIσ3 −
(

2M

r

)1/2

γ0

(
∂

∂r
ψ +

3
4r

ψ

)
Iσ3 = mψγ0. (14.130)

If we pre-multiply by γ0 and employ the i symbol to represent right-sided mul-
tiplication by Iσ3, then equation (14.130) becomes

i∂tψ = −i∇ψ + i

(
2M

r

)1/2 1
r3/4

∂

∂r

(
r3/4ψ

)
+ mψ̄, (14.131)

where ψ̄ = γ0ψγ0. We see that the Newtonian gauge has enabled us to write the
Dirac equation in a very straightforward Hamiltonian form. One reason for this
simplicity is that the spatial sections defined by the time coordinate t are flat.

The interaction Hamiltonian in equation (14.131), with all constants included,
is

ĤI(ψ) = i--h
(

2GM

r

)1/2(
∂

∂r
+

3
4r

)
ψ. (14.132)
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This single term incorporates all gravitational effects exerted by a black hole
on a Dirac fermion. A number of observations can be made immediately. The
first is that the interaction Hamiltonian does not depend on the mass of the
particle, which is how the equivalence principle is embodied in the Dirac equa-
tion. The second point is that ĤI does not depend on the speed of light. The
non-relativistic approximation is therefore straightforward, following the tech-
nique of section 8.3.3. To lowest order in c−1 we obtain the Schrödinger equation
with interaction determined by ĤI . For stationary states this equation is

−
--h2

2m
∇2ψ + i--h

(
2GM

r

)1/2 1
r3/4

∂

∂r

(
r3/4ψ

)
= Eψ, (14.133)

where ψ now denotes the Schrödinger wave function. This equation is simplified
by introducing the phase-transformed variable

Ψ = ψ exp
(
−i(8r/aG)1/2

)
, (14.134)

where

aG =
--h2

GMm2
. (14.135)

The distance aG is the gravitational analogue of the Bohr radius for the hydrogen
atom. The new variable Ψ satisfies the simple equation

−
--h2

2m
∇2Ψ − Mm

r
Ψ = EΨ. (14.136)

This is precisely the equation we would expect if we used the Newtonian grav-
itational potential. The solutions for Ψ are therefore Coulomb wavefunctions.
The non-relativistic limit enables us to make two immediate predictions. The
first is that a spectrum of bound states should exist, with similar properties to
that of the hydrogen atom. The second is that, in the non-relativistic limit, the
scattering cross section should be determined by the Rutherford formula. This
latter prediction is confirmed in the following section.

The interaction Hamiltonian ĤI hides a significant feature, which is that it is
not Hermitian due to the presence of the singularity. To see this we form the
difference between ĤI and its adjoint. With φ and ψ both Dirac spinors we find
that ∫

d3x 〈φ†ĤI(ψ)〉q =
√

2M

∫
dΩ

∫ ∞

0

dr 〈r3/4φ†∂r(r3/4ψ)Iσ3〉q

=
∫

d3x 〈(ĤI(φ)†ψ〉q +
√

2M

∫
dΩ
[
r3/2〈φ†ψIσ3〉q

]∞
0

, (14.137)

where we follow the convention of section 8.1.2. We will see shortly that all
wavefunctions approach the origin as r−3/4. The boundary term at the origin
therefore does not vanish, and the Hamiltonian is not Hermitian. It follows
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that any normalisable stationary state must have an imaginary component to
its energy. This is sensible. For all states the covariant current vector is always
timelike. Inside the horizon this vector must point inwards, towards the singu-
larity, so current density is inevitably swept onto the singularity. This implies
that bound states must necessarily decay, so we expect the energy to have an
imaginary component.

14.4.1 Scattering

The Dirac equation (14.131) is ideally suited to a perturbative scattering calcu-
lation employing the methods of section 8.5. We seek an iterative solution to the
Green’s function equation(

i∇̂2 − B̂(x2) − m
)
SG(x2, x1) = δ4(x2 − x1), (14.138)

where

B(x) = iγ̂0

(
2M

r

)1/2(
∂

∂r
+

3
4r

)
. (14.139)

As usual, the hats denote operators which act on spinors, and in this section we
retain the familiar i symbol to denote the complex structure.

The iterative solution to equation (14.138) is given by

SG(xf , xi) = SF (xf , xi) +
∫

d4x1 SF (xf , x1)B(x1)SF (x1, xi)

+
∫∫

d4x1 d4x2 SF (xf , x1)B(x1)SF (x1, x2)B(x2)SF (x2, xi) + · · · , (14.140)

where SF (x2, x1) is the free-field, position-space Feynman propagator. The in-
teraction term B(x) is independent of time so energy is conserved throughout
the interaction. Converting to momentum space we find that the scattering
multivector Tfi, as defined in equation (8.229), is given by

Tfi = (p̂f + m)

(
B(pf ,pi) +

∫
d3k

(2π)3
B(pf ,k)

k̂ + m

k2 − m2 + iε
B(k,pi) + · · ·

)
.

(14.141)
Here B(p2,p1) denotes the spatial Fourier transform of the interaction term,

B(p2,p1) = (2M)1/2iγ̂0

∫
d3x e−ip2·x 1

r1/2

(
∂

∂r
+

3
4r

)
eip1·x, (14.142)

where bold symbols refer to spatial components only. To evaluate this we first
write

B(p2,p1) = (2M)1/2iγ̂0

(
3
4
f(p1 − p2) +

∂f(λp1 − p2)
∂λ

∣∣∣∣
λ=1

)
, (14.143)
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14.4 QUANTUM MECHANICS IN A BLACK HOLE BACKGROUND

where

f(p) =
∫

d3x
eip·x

r3/2
=
(

2π

|p|

)3/2

. (14.144)

We therefore find that the momentum-space interaction is governed by the vertex
factor

B(p2,p1) = 3π3/2i(M)1/2 p2
2 − p1

2

|p2 − p1|7/2
γ̂0. (14.145)

This factor has the unusual feature of vanishing if the ingoing and outgoing
particles are on-shell, because energy is conserved throughout the process. It
follows that the lowest order contribution to the scattering cross section vanishes.
This is to be expected, as the vertex factor goes as

√
M , and we expect the

amplitude to go as M to recover the Rutherford formula in the low velocity
limit.

Working to the lowest non-zero order in M the scattering multivector becomes

Tfi = −9π3M(p̂f + m)γ̂0I1γ̂0, (14.146)

where

I1 =
∫

d3k

(2π)3
pf

2 − k2

|pf − k|7/2

k̂ + m

k2 − m2 + iε

k2 − pi
2

|k − pi|7/2
. (14.147)

Here we have explicitly included a factor of iε to ensure that any poles in the
complex plane are navigated in the correct manner. However, we have

k2 − m2 = E2 − k2 − m2 = p2 − k2, (14.148)

where E is the particle energy and p2 = pi
2 = pf

2. The pole in the propagator
is therefore cancelled by the vertex factors, so there is no need for the factor of
iε in the denominator. The integral we need to evaluate is therefore

I1 =
∫

d3k

(2π)3
k2 − p2

|pf − k|7/2|k − pi|7/2
(k̂ + m), (14.149)

and the result of this integral is

I1 =
1

9π2q2

(
2m + 3(p̂f + p̂i) − 4Eγ̂0

)
, (14.150)

where q = pf − pi. The scattering multivector is now given by

Tfi = −4πM

q2

(
E(2E + q) + p2 + pfpi

)
. (14.151)

This should be contrasted with the equivalent expression for Coulomb scattering,
given in equation (8.237). We see immediately that the coupling term goes
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with the particle energy, rather than its mass. This is because the interaction
Hamiltonian is independent of m. The unpolarised cross section is given by

dσ

dΩ
=

|Tfi|2
16π2

=
2M2

q4

(
m2(E2 − pf ·pi) + (2E2 − m2)2 + 4E2pf ·pi

)
. (14.152)

If we now let v = |p|/E denote the particle velocity, and θ the scattering angle,
we arrive at the simple expression

dσ

dΩ
=

M2

4v4 sin4(θ/2)

(
1 + 2v2 − 3v2 sin2(θ/2) + v4 − v4 sin2(θ/2)

)
. (14.153)

As demanded by the equivalence principle, this formula depends only on the
incident velocity, and not on the particle mass. This confirms that the equiv-
alence principle is directly encoded in the Dirac equation as a consequence of
minimal coupling. The final cross section formula is gauge-invariant. We can
perform analogues of this calculation in a range of different gauges, and the same
result is obtained in all cases. Furthermore, all terms in the result have local,
gauge-invariant definitions. The mass M can be defined in terms of tidal forces,
and the velocity v is that measured locally by observers in radial free fall from
rest at infinity. The angle θ is the angle between asymptotic in and out states,
measured locally in the asymptotic regime.

The cross section of equation (14.153) confirms that the low velocity limit
recovers the Rutherford formula. The massless limit m 
→ 0 is also well defined,
and is obtained by setting v = 1. This produces the simple formula

dσ

dΩ
=

M2 cos2(θ/2)
sin4(θ/2)

. (14.154)

The small angle limit to this gives a cross section going as (4M)2/θ4. This re-
covers the classical formula for the bending of light by a massive source. While
the calculation here has assumed a point mass source, the small angle limit is
appropriate for any localised source of gravitational mass M . The massless limit
contains a surprise in the backward direction, however. Simulations of scattering
based on massless particles following null geodesics reveal a large ‘glory’ scat-
tering in the backward direction. This is absent from the quantum treatment,
and is a diffraction effect for massless spin-1/2 particles that is not evident at
the classical level. The scheme described here can be modified to the case of a
scalar field, and produces the differential cross section

dσ

dΩ
=

M2

4v4 sin4(θ/2)
(1 + v2)2. (14.155)

Again, we see that the equivalence principle is obeyed, and the various small angle
and low velocity approximations are retained. The classical cross section contains
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14.4 QUANTUM MECHANICS IN A BLACK HOLE BACKGROUND

further structure, attributable to multiple orbits. In the quantum framework
these effects should be present in the higher-order terms.

14.4.2 Stationary states and angular separation

The Dirac equation in the Newtonian gauge is immediately separable in space
and time, and admits stationary state solutions of the form

ψ(x) = ψ(x) exp(−EtIσ3). (14.156)

If the state is normalisable then E contains an imaginary component determined
by

Im(E) = −
√

2M

2N
lim
r→0

r3/2

∫
dΩ 〈ψ†ψ〉, (14.157)

where N is the normalisation constant

N =
∫

d3x 〈ψ†ψ〉. (14.158)

As expected, the sign of the imaginary component of E corresponds to a decaying
wavefunction. This behaviour is independent of the sign of the real part of E, so
both positive and negative energy states must decay. For scattering states we do
not demand that ψ is normalisable, and can look for solutions where the energy
is real, with E > m.

With the time dependence separated out, equation (14.131) reduces to

∇ψ − (2M/r)1/2r−3/4∂r

(
r3/4ψ

)
= iEψ − imψ̄. (14.159)

To solve this equation we follow the standard procedure for a central potential
and separate out the angular dependence. This is achieved using the spherical
monogenics, described in section 8.4.1. We assume that the wavefunction takes
the standard form of

ψ(x, κ) =

{
ψm

l u(r) + σrψ
m
l v(r)Iσ3 κ = l + 1,

σrψ
m
l u(r)σ3 + ψm

l Iv(r) κ = −(l + 1),
(14.160)

where κ is a non-zero integer and u(r) and v(r) are complex functions of r only.
On substituting this wavefunction into the Dirac equation (14.159) we obtain
the pair of coupled radial equations(

1 −(2M/r)1/2

−(2M/r)1/2 1

)(
u′

1

u′
2

)
= A

(
u1

u2

)
, (14.161)

where

A =
(

κ/r i(E + m) − (2M/r)1/2(4r)−1

i(E − m) − (2M/r)1/2(4r)−1 −κ/r

)
,

(14.162)
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u1 and u2 are the reduced functions defined by

u1 = ru, u2 = irv (14.163)

and the primes denote differentiation with respect to r. The form of this equation
should be contrasted with the hydrogen atom of section 8.4.3.

To analyse equation (14.161) we first rewrite it in the equivalent form

(
1 − 2M/r

)(u′
1

u′
2

)
=
(

1 (2M/r)1/2

(2M/r)1/2 1

)
A

(
u1

u2

)
. (14.164)

This makes it clear that the equations have regular singular points at the origin
and horizon (r = 2M), as well as an irregular singular point at r = ∞. Unfor-
tunately, the special function theory required to deal with such equations has
not been developed. Hypergeometric functions are appropriate for differential
equations with three regular singular points, or one regular and one irregular
singular point. An attempt to generalise hypergeometric functions results in
Heun’s equation, but most techniques for handling this involve series solutions
and numerical integration, so these are the techniques that must be applied here.
The presence of the three singular points implies that any power series will have
a limited radius of convergence, so typically these can only be used to define
initial data for numerical integration routines.

A Frobenius series about the origin shows that both u1 and u2 approach the
origin as r1/4. It follows that the wavefunction goes as r−3/4 near the origin,
as was stated earlier. For normalisable states this behaviour ensures that the
energy contains an imaginary decay factor. Next we construct a series about the
horizon by writing

u1 = ηs
∞∑

k=0

akηk, u2 = ηs
∞∑

k=0

bkηk, (14.165)

where η = r−2M . On substituting this series into equation (14.164), and setting
η = 0, we obtain

s

2M

(
a0

b0

)
=
(

1 1
1 1

)(
κ/(2M) i(E + m) − (8M)−1

i(E − m) − (8M)−1 −κ/(2M)

)(
a0

b0

)
.

(14.166)
The two values of the index s for which this has non-zero solutions are

s = 0 and s = − 1
2 + 4iME. (14.167)

The s = 0 solution corresponds to an analytic power series with a well-defined
wavefunction at the horizon. Such solutions are certainly physical. The second
root gives rise to a wavefunction that is singular at the horizon, and as such is
physically inadmissible. As a consequence, it is not possible to construct a com-
plete set of outgoing modes at infinity and in any scattering process some of the
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14.4 QUANTUM MECHANICS IN A BLACK HOLE BACKGROUND

wavefunction is lost. This is the quantum-mechanical description of absorption
by a black hole.

Before proceeding, we should confirm that the two indicial roots at the horizon
are gauge-invariant, and not an artifact of our various gauge choices. This is
important because the singular index can be used to determine the Hawking
temperature of the black hole. The method we use to confirm gauge invariance
is quite general and can be applied to a range of situations. We start by keeping
the gauge unspecified so that, after separating out the angular dependence, the
Dirac equation reduces to(

Lr Lt

Lt Lr

)(
u1

u2

)
=
(

κ/r − G/2 im − F/2
−im − F/2 −κ/r − G/2

)(
u1

u2

)
. (14.168)

We can still assume that the time dependence is of the form exp(−iEt), so that
equation (14.168) becomes(

g1 g2

g2 g1

)(
u′

1

u′
2

)
= B

(
u1

u2

)
, (14.169)

where

B =
(

κ/r − G/2 + if2E i(m + f1E) − F/2
−i(m − f1E) − F/2 −κ/r − G/2 + if2E

)
. (14.170)

The form of time dependence is gauge-invariant, since the time coordinate is
defined by the requirement that the Riemann tensor is stationary. Given a time
coordinate t, a general displacement consistent with this requirement takes the
form

t 
→ t′ = t + α(r), (14.171)

where α is a differentiable function of r. This ensures that stationary states all
go as exp(−iEt), regardless of the choice of time coordinate.

Now, since g1
2 − g2

2 = 1− 2M/r holds for vacuum solutions in all gauges, we
obtain (

1 − 2M/r
)(u′

1

u′
2

)
=
(

g1 −g2

−g2 g1

)
B

(
u1

u2

)
. (14.172)

We again look for a power series solution of the form of equation (14.165), and
setting η = 0 produces the indicial equation

det
[(

g1 −g2

−g2 g1

)
B − s

r
I

]
r=2M

= 0, (14.173)

where I is the identity matrix. For vacuum fields we know that

g1G − g2F = 1
2∂r(g1

2 − g2
2) = M/r2, (14.174)
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which is gauge-invariant. It follows that the solutions to the indicial equation
are

s = 0 and s = − 1
2 + 4iME(g1f2 − g2f1). (14.175)

But, as discussed in section 14.3.6, at the horizon we have

(g1f2 − g2f1) = ±1, (14.176)

with the positive sign corresponding to the black hole case. The indices of the
Dirac equation are therefore gauge-invariant. Similar arguments can be applied
to scalar and higher-spin fields.

14.4.3 Quantum absorption

We are now in a position to give a full, quantum-mechanical description of ab-
sorption by a black hole. At the horizon the solutions of the Dirac equation
separate into two branches, one regular and one singular. The singular branch is
unphysical and cannot be excited by finite incoming waves. The regular branch
is finite at the horizon, with an inward-pointing current. This gives rise to ab-
sorption. To understand this process in detail we need to study the asymptotic
form of the regular solutions and determine their split into incoming and out-
going modes. We can then construct an arbitrary incoming mode (typically a
plane wave) and study the amount of scattered radiation. Any radiation that is
not scattered is absorbed.

In absorption and scattering problems we are interested in states with real
energy E, E > m. For such states the spatial current J is conserved, and for
angular eigenstates we obtain the conserved Wronskian W :

W = g1(u1u
†
2 + u†

1u2) + g2(u1u
†
1 + u2u

†
2). (14.177)

This measures the total outward flux over a surface of radius r, and we have
written W in an arbitrary gauge. At the horizon we see that

W = −g1|u1 − u2|2, (14.178)

and so the flux is inwards for all regular solutions. This is to be expected, as the
current must point inwards at the horizon.

For explicit calculations we return to the Newtonian gauge. The radial equa-
tion (14.164) is straightforward to integrate numerically. We start with a power
series expansion around the horizon of the regular solution. This allows us to find
values of u1 and u2 a small distance either side of the horizon. These values are
then used to initiate numerical integration of the equations, both inwards and
outwards. To visualise the solutions it is convenient to plot the radial density
function P (r):

P (r) = |u1|2 + |u2|2. (14.179)
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Figure 14.6 The radial density for scattered states. The plots show P (r)
as a function of radius. The horizon lies at r = 2, and the product mM is
set to 0.01 in units of m2

p, where mp is the Planck mass. The modes are
scaled so that the Wronskian is −1, and only the regular solution is plotted.
The top two diagrams are for κ = 1, with E = 10mc2 (left) and E = 20mc2

(right). The bottom two diagrams are for κ = 2, with E = 10mc2 (left)
and E = 20mc2 (right).

In physical terms P (r) is r2 times the timelike component of the Dirac current,
as measured by observers in radial free fall from rest at infinity. It is only in
the Newtonian gauge that this definition gives rise to the simple formula of
equation (14.179).

In figure 14.6 we plot P (r) for a range of energies and angula momenta. The
plots are for scattering states, so the wavefunctions are unnormalised. For the
sake of comparison the magnitude of each mode is fixed by setting the Wronskian
to −1. The gravitational coupling is controlled by the dimensionless quantity

GMm
--hc

=
Mm

m2
p

, (14.180)

where mp is the Planck mass. In figure 14.6 we have used a dimensionless
coupling of 0.01. The chosen energies of 10mc2 and 20mc2 imply that the modes
are highly relativistic, and also ensure that the associated wavelengths are larger
than the horizon size. To understand the asymptotic features of the plots we
return to equation (14.161) and solve for the behaviour at large r. We find that
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the solutions behave asymptotically as

u1 =β exp i

(
pr +

M

p
(m2 + 2p2) ln(pr)

)
e2iE(2Mr)1/2

+ α exp−i

(
pr +

M

p
(m2 + 2p2) ln(pr)

)
e2iE(2Mr)1/2

(14.181)

and

u2 =
pβ

E + m
exp i

(
pr +

M

p
(m2 + 2p2) ln(pr)

)
e2iE(2Mr)1/2

− pα

E + m
exp−i

(
pr +

M

p
(m2 + 2p2) ln(pr)

)
e2iE(2Mr)1/2

, (14.182)

where p2 = E2 − m2. The Wronskian is therefore equal to

W = − 2p

E + m
(|α|2 − |β|2), (14.183)

and the radial probability P (r) is given asymptotically by

|u1|2 + |u2|2 =
4m

E + m
|α| |β| cos

(
2pr +

2M(m2 + 2p2)
p

ln(pr) + φ0

)

+
2E

E + m

(
|α|2 + |β|2

)
. (14.184)

The oscillations predicted by this formula are clearly visible in figure 14.6. The
magnitudes of α and β determine the relative amounts of scattered and absorbed
radiation present for a given mode. With the Wronskian held constant, all modes
have a constant flux through the horizon onto the singularity. In the large
r region |α| determines the amount of ingoing radiation, and |β| the amount
of outgoing radiation. As |α| increases, a smaller fraction of the radiation is
absorbed and more is scattered. One effect that is clear in figure 14.6 is that as
the angular momentum increases, for fixed energy, |α| also increases. That is,
less radiation is absorbed for fixed energy as the angular momentum increases.
This is precisely the behaviour we expect from classical considerations.

Given that each mode is normalised such that W = −1, then total absorption
cross section is given by

σabs =
π

2p(E − m)

∑
κ�=0

|κ|
|ακ|2

, (14.185)

where ακ is the value of α for each angular eigenmode. The values of ακ are deter-
mined numerically by integrating the radial equations out to a suitable distance
from the horizon and matching to the asymptotic forms of equations (14.181)
and (14.182). Typically, we need to sum over a range of κ values before the sum
settles down to its final result. The result of this sum, for a massive fermion,
is plotted in figure 14.7. For energies close to the rest energy the absorption
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Figure 14.7 The quantum absorption cross section. The plot shows the
total absorption cross section as a function of the incident energy. The
dimensionless coupling Mm/m2

p is 0.1, and the energy is plotted in units
of the rest energy mc2. The horizontal line is the photon limit.

cross section follows the classical prediction. But at higher energies a series of
oscillations are present as the wavelength becomes comparable with the horizon
size. These oscillations take place around the photon limit of 27π, and are also
present for massless particles. The precise form of these oscillations depends on
the mass of the particle, so represents a quantum-mechanical violation of the
equivalence principle.

14.5 Cosmology

The radial equations we have developed so far are easily adapted to the case of
homogeneous, isotropic matter distributions. Such distributions provide a good
model for the large scale distribution of matter in the observable universe. Be-
fore studying the field equations for such cosmological matter distributions, we
must first introduce the cosmological constant. This was originally introduced
by Einstein to allow the construction of static cosmological solutions, and for
many years had been thought to be an unnecessary additional feature of general
relativity. But experimental evidence, both from the cosmic microwave back-
ground and from distant supernovae, now favours models which do include a
cosmological constant. There are also hints from quantum gravity that a cosmo-
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logical constant should arise as a form of vacuum energy, though this is not well
understood.

We start with the radial equations, as summarised in table 14.2. Inclusion
of the cosmological constant Λ only modifies a handful of these equations. The
mass function M becomes

M = 1
2r
(
g2

2 − g1
2 + 1 − Λr2/3), (14.186)

and the derivatives of the g1 and g2 fields become

Ltg2 = Gg1 − M/r2 + rΛ/3 − 4πrp,

Lrg1 = Fg2 + M/r2 − rΛ/3 − 4πrρ.
(14.187)

The Riemann tensor is altered to

R(B) =4π(ρ + p)B ·et et −
1
3
(8πρ + Λ)B

−
(

M

2r3
− 2π

3
ρ

)
(B + 3σrBσr) (14.188)

and we continue to assume that the matter distribution takes the form of an
ideal fluid.

For cosmological models the matter distribution is assumed to be spatially
homogeneous and isotropic, so that ρ and p are functions of time only. The mass
function M is then given by

M(r, t) =
4π

3
r3ρ, (14.189)

so the Riemann tensor also depends only on time. The equation for Lrp tells us
that G vanishes, and hence that

f1 = 1. (14.190)

The time coordinate t therefore measures the proper time for observers at rest
with respect to the cosmological background. The derivatives of M and ρ simi-
larly tell us that

F =
g2

r
(14.191)

and

ρ̇ = −3g2

r
(ρ + p). (14.192)

For these to be consistent with the relation Lrg2 = Fg1 we must have

F = H(t), g2(r, t) = rH(t), (14.193)

where H(t) is a function of time only. The Ltg2 equation now reduces to a simple
equation for H(t):

Ḣ + H2 − Λ
3

= −4π

3
(ρ + 3p). (14.194)
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The h̄ field
h̄(a) = a + a·er

(
(g1 − 1)er + H(t)ret

)
g1

2 = 1 − kr2 exp
(
−2
∫ t

H(t′) dt′
)

The ω field ω(a) = H(t)a∧et − (g1 − 1)/r a∧(eret)et

Riemann tensor R(B) = 4π(ρ + p)B ·et et − (8πρ + Λ)/3 B

The density 8πρ = 3H(t)2 − Λ + 3k exp
(
−2
∫ t

H(t′) dt′
)

Dynamical equations
Ḣ + H2 − Λ/3 = −(4π/3) (ρ + 3p)
ρ̇ = −3H(t)(ρ + p)

Table 14.3 Equations governing a homogeneous, isotropic perfect fluid.
The covariant vector et defines the rest frame of the universe. This is de-
termined experimentally from the cosmic microwave background radiation.
No other direction is contained in R(B), and all physical fields are functions
of time only.

Finally, we are left with a pair of equations for g1,

Ltg1 = 0,

Lrg1 = (g1
2 − 1)/r.

(14.195)

The second equation tells us that g1 is of the form

g1
2 = 1 + r2φ(t). (14.196)

The equation for Ltg1 then tells us that φ(t) satisfies

φ̇ = −2H(t)φ. (14.197)

It follows that g1 is given by

g1
2 = 1 − kr2 exp

(
−2
∫ t

H(t′) dt′
)

, (14.198)

where k is an arbitrary constant of integration which turns out to define the
spatial geometry. The full set of equations describing a homogeneous perfect
fluid are summarised in table 14.3.

14.5.1 Comparison with standard approach

The derivation of the cosmological equations presented here, as a special case of
a spherical solution, differs from most presentations. To recover a more familiar
set of equations we first introduce the distance function S defined by

H(t) =
Ṡ(t)
S(t)

. (14.199)
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With this substitution we find g1 is now simply

g1
2 = 1 − kr2/S2. (14.200)

Similarly, the Ḣ and density equations become

S̈

S
− Λ

3
= −4π

3
(ρ + 3p),

Ṡ2 + k

S2
− Λ

3
=

8π

3
ρ.

(14.201)

These are the Friedmann equations of cosmology. Our derivation has focused
attention on the Hubble function H(t), rather than the distance scale S(t). This
is natural, as H(t) is a directly measurable (gauge-invariant) quantity, whereas
S(t) is only defined up to an arbitrary scaling.

The Friedmann equations are usually derived by starting with a diagonal line
element. This is obtained from the radial setup by the displacement defined by

f(x) = x·etet + Sx∧etet. (14.202)

Under this displacement, h̄(a) transforms to

h̄′(a) = a·etet +
1
S

(
(1 − kr2)1/2a·ere

r + a∧σr σr

)
, (14.203)

and the line element this defines is

ds2 = dt2 − S2

1 − kr2
dr2 − S2r2

(
dθ2 + sin2(θ) dφ2

)
. (14.204)

In this gauge we can see clearly that S controls the distance scale, and k controls
the spatial geometry. We can always choose the scale such that k is either zero
or ±1. A k of zero corresponds to a spatially flat universe, which is favoured
on theoretical grounds and is consistent with observations. The non-zero values
correspond to an open universe (k < 0, defining hyperbolic geometry) or a closed
universe (k > 0, defining spherical geometries). These three spatial geometries
are the only spatially homogeneous and isotropic models we can consider. These
geometries are discussed in more detail in chapter 10. Which model is appropri-
ate for the universe on its largest scales is determined by the present values of the
density and Hubble function. Most experiments find that the universe is close to
the critical density (k = 0), but no experiment can ever conclusively prove that
k is zero. Any slight deviation in the density away from the critical value implies
that k is non-zero. The fact that the universe is so close to its critical density
has led theoreticians to propose a range of models which force the universe to
have k = 0. The most popular of these is provided by inflationary cosmology, in
which the universe passes through a stage of rapid inflation, so that all spatial
sections are expanded dramatically and become essentially flat.
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14.5 COSMOLOGY

14.5.2 Density perturbations and cluster formation

We will not discuss the detailed solutions of the cosmological equations in this
book. This is a large subject and is covered in detail in a range of modern
textbooks. Here we discuss an application where the derivation from the radial
equations is particularly helpful. The problem of interest is the growth of a
perturbation in a cosmological background. The perturbation is assumed to be
spherically-symmetric, and the coordinate system is centred on the perturbation.
To simplify matters further, we ignore the cosmological constant and set the
pressure to zero. We are therefore dealing with a simple model of a pressureless
fluid collapsing under the influence of its own gravity.

Returning to the radial equations in table 14.2, we see that for zero pressure we
have G = 0 and f1 = 1. The matter therefore follows geodesics, and t measures
the proper time for observers comoving with the matter. The mass satisfies

LtM = 0, (14.205)

which says that the mass M enclosed within radius r is conserved along the
fluid streamlines. The operator Lt is clearly the comoving derivative along the
fluid streamlines. The function g1 is also conserved along a streamline, and the
equations integrate straightforwardly to determine the streamlines (geodesics).
The form of the geodesic depends on the value of g1, and there are three cases
to consider:

1. g1
2 < 1. This case includes closed cosmologies, and the matter streamlines

are defined by

r =
M

1 − g1
2
(1 − cos(η)),

t − ti =
M

(1 − g1
2)3/2

(
η − sin(η) − ηi + sin(ηi)

) (14.206)

where η parameterises the curve, and ηi is determined from the initial value of
r at time ti. The velocity g2 is given by

g2 =
M

r(1 − g1
2)1/2

sin(η) (14.207)

and ηi is fixed in the range 0 < ηi < 2π by determining whether the initial
velocity is inwards or outwards. Setting ηi = π corresponds to starting from
rest, and provides a simple model for black hole formation.

2. g1
2 = 1. This case include flat cosmologies, and the equations integrate di-

rectly to give

t − ti =
2(r3/2 − r

3/2
i )

3(2M)1/2
. (14.208)
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The velocity is chosen outwards to avoid a singularity forming instantaneously.

3. g1
2 > 1. This case includes open cosmologies. The streamlines are parame-

terised by

r =
M

g1
2 − 1

(cosh(η) − 1),

t − ti =
M

(g1
2 − 1)3/2

(sinh(η) − η − sinh(ηi) + ηi)
(14.209)

and the velocity is given by

g2 =
M

r(g1
2 − 1)1/2

sinh(η). (14.210)

For this case it is also necessary to start with an initial outward velocity, in order
to avoid streamline crossing.

By working globally in the Newtonian gauge we keep simple control over the
initial conditions. For these we wish to set up a small perturbation in a finite
region, such that outside the perturbation the system evolves as a homogeneous
cosmology. This will be the case provided the average density in the perturbation
matches the external universe. Suppose that the perturbation initially has width
ri and the external cosmology has initial values ρi and Hi for the density and
Hubble function respectively. We introduce the dimensionless variables

x =
r

ri
, v(x) =

g2(r, ti) − rHi

riHi
, f(x) =

ρ(r, ti) − ρi

ρi
. (14.211)

The functions f(x) and v(x) are related by

x2f(x) = − d

dx
(x2v(x)), (14.212)

with both f(x) and v(x) vanishing at the boundary (x = 1). Equation (14.212)
ensures that the model is correctly compensated, so that the perturbation has
no effect on the external cosmology. (Equation (14.212) also ensures that no
decaying modes are present in the perturbation left over from the linear regime.)
To fix f(x) and v(x) we choose a parameter n, which controls the polynomial
degree of the functions, and also fix the value of the velocity gradient at the
origin. The function v(x) is then a polynomial of degree 2n + 1, formed as
follows. At the centre we set v = 0, and the first derivative is determined by
the velocity gradient. The remaining derivatives up to order n are set to zero.
Similarly, at the boundary v is chosen such that g2 matches the exterior value of
rHi up to the first n derivatives. The result is a simple function controlling the
perturbation, and for each initial value of r the fluid streamlines can be plotted
easily. An example of these streamlines is shown in figure 14.8.

If the system is allowed to evolve for a suitable amount of time, it provides
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Figure 14.8 Matter streamlines for an n = 3 model. The perturbation has
initial width 1, with Hi = 1 and ρi = 3/8π. The velocity gradient at the
centre of the perturbation is 0.95. The central region is therefore moving
inwards relative to the Hubble flow, so recollapses to a singularity after a
finite time. All units are arbitrary.

a good model of a cluster of galaxies sitting inside a cosmological background.
One can then study photon paths in this model, to look for lensing effects, or
temperature perturbations in the cosmic microwave background. One weakness
with these models is that no pressure is included, so the cluster has no means of
supporting itself. This implies that a singularity forms after a finite term (deter-
mined by the central density and velocity gradient). The model then describes
a black hole, sitting in an expanding universe.

14.5.3 The Dirac equation in a cosmological background

A good illustration of the full gravitational equations, with torsion included, is
provided by the case of a Dirac field coupled self-consistently to gravity. The
equations governing this system are

H(a) = 4π(ψIγ3ψ̃)·a,

G(a) − Λa = 8π〈a·D ψIγ3ψ̃〉1,
DψIγ3 = mψ.

(14.213)
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This system of equations is highly non-linear and extremely difficult to analyse
in all but the simplest of situations. Here we are interested in cosmological
solutions, for which all fields are functions of time only. We also restrict our
discussion to the spatially flat case (k = 0), so that we can write

h̄(a) = a + rH(t)a·er et. (14.214)

The ω function is given by

ω(a) = H(t)a∧et + 1
2κa·S, (14.215)

where κ = 8π and S denotes the spin trivector:

S = 1
2ψIγ3ψ̃. (14.216)

After a little work, the Einstein tensor evaluates to

G(a) = 2Ḣa∧et et + 3H2a − 1
2κa·(D·S) + 1

2κ2a·S S − 3
4κ2S2a, (14.217)

and the matter energy-momentum tensor is

T (a) = 〈a·etψ̇Iγ3ψ̃ + Ha∧et S + 1
2κa·S S〉1. (14.218)

Finally, the Dirac equation is now

(et∂t + 3
2Het + 3

4κS)ψIγ3 = mψ, (14.219)

which has the unusual feature of being nonlinear, due to the presence of the spin
term.

We will construct the simplest solution to this system by setting the spinor ψ

equal to a magnitude and phase only:

ψ = ρ(t)1/2e−Iσ3χ(t). (14.220)

The Dirac equation therefore reduces to the pair of equations

ρ̇ = −3ρH,

χ̇ = 3πρ + m.
(14.221)

The Einstein equation yields the final pair of equations

3H2 − 12π2ρ2 − 8πmρ − Λ = 0,

2Ḣ + 3H2 + 12π2ρ2 − Λ = 0.
(14.222)

The second of these follows from the first and the equation for ρ̇. These equations
are solved by

ρ =
β2

6π sinh(βt)
(
m sinh(βt) + β cosh(βt)

) , (14.223)

where

β =
√

3Λ
2

. (14.224)
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The initial singularity is chosen to correspond to t = 0. The Hubble function is
similarly given by

H(t) =
β2 + 2β sinh2(βt) + 2mβ sinh(βt) cosh(βt)

3 sinh(βt)
(
m sinh(βt) + β cosh(βt)

) . (14.225)

The limit Λ 
→ 0 is easily taken and gives rather simpler behaviour in the absence
of a cosmological constant:

ρ(t) =
1

6πt(1 + mt)
, H(t) =

1 + 2mt

3t(1 + mt)
. (14.226)

Antiparticle solutions can also be found, though these can have unusual proper-
ties. At large times the Hubble function tends to a constant value of (Λ/3)1/2.
This behaviour is typical of Λ cosmologies and leads to the surprising prediction
that the universe will keep accelerating. The presence of a non-zero spin vector
implies that these models break isotropy, but this fact is hidden from the line
element, which remains isotropic. The spin direction is only seen by particles
with non-zero spin, which interact directly with the torsion tensor.

14.6 Cylindrical systems

We now turn our attention to a different class of exact solutions — those ex-
hibiting cylindrical symmetry. Such solutions can provide models for stringlike
configurations, and some of the solutions are also appropriate for gravity in (2+1)
dimensions. We first introduce cylindrical polar coordinates (t, ρ, φ, z), where

ρ =
(
(x1)2 + (x2)2

)1/2
, tan(φ) =

x2

x1
(14.227)

and xµ = γµ ·x. We use the symbol ρ for the cylindrical distance to avoid
confusion with the radial coordinate r used throughout this chapter. When we
come to describe the matter, the energy density is denoted ε in this section. The
coordinate frame defined by cylindrical polar coordinate is

et = γ0, eφ = ρ(− sin(φ) γ1 + cos(φ) γ2),

eρ = cos(φ) γ1 + sin(φ) γ2, ez = γ3,
(14.228)

and we continue to write φ̂ for the unit vector eφ/ρ. As a bivector basis we use
the set {σρ, σφ, σ3}, where

σρ = eρet, σφ = φ̂et, σ3 = ezet. (14.229)

We are interested in stationary fields that exhibit cylindrical symmetry. For
these we can write a general h̄ function as

h̄(et) = f1e
t + ρf2e

φ, h̄(eρ) = g1e
ρ,

h̄(eφ) = ρh1e
φ + h2e

t, h̄(ez) = ez,
(14.230)
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where all of the arbitrary functions depend on ρ only. A suitable ω field consistent
with this h̄ field is given by

ωt = ω(et) = −Tσρ + (K + h2)Iσ3,

ωρ = ω(eρ) = K̄σφ,

ωφ̂ = ω(φ̂) = Kσρ + (h1 − G)Iσ3,

ωz = ω(ez) = 0.

(14.231)

Again, the new scalar functions appearing here (T , K, K̄, G) are functions of
ρ alone. Since all expressions involving Lz must vanish, there are only three
non-vanishing commutation relations to construct. These are

[Lρ, Lt] = TLt + (K + K̄)Lφ̂,

[Lρ, Lφ̂] = −(K − K̄)Lt − GLφ̂,

[Lt, Lφ̂] = 0.

(14.232)

Since neither Lt nor Lφ̂ contains derivatives with respect to ρ, the bracket rela-
tions immediately yield

Lρf1 = Tf1 + (K + K̄)f2,

Lρf2 = −Gf2 − (K − K̄)f1,

Lρh1 = −Gh1 − (K − K̄)h2,

Lρh2 = Th2 + (K + K̄)h1.

(14.233)

The cylindrical derivative Lρ is given by Lρ = g1(ρ)∂ρ. We can always make the
position gauge choice g1 = 1, though this is not always the simplest gauge to
work with.

The Riemann tensor takes the general form

R(σρ) = α1σρ + βIσ3,

R(Iσ3) = α2Iσ3 − βσρ,

R(σφ) = α3σφ,

(14.234)

where the scalar functions are defined by

α1 = −LρT + T 2 − K(K + 2K̄),

α2 = LρG + G2 − K(K − 2K̄),

α3 = K2 − GT,

β = LρK + G(K + K̄) − T (K − K̄).

(14.235)
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The same functions appear in the Einstein tensor,

G(et) = −α2et − βφ̂,

G(eρ) = −α3eρ,

G(φ̂) = −α1φ̂ + βet,

G(ez) = −(α1 + α2 + α3)ez.

(14.236)

It is a feature of gravity in (2 + 1) dimensions that all of the information in the
Riemann tensor is also contained in the Einstein tensor. That is, there is no Weyl
tensor in three dimensions. It also turns out that no additional new information
is obtained from the Bianchi identities, which are satisfied automatically from
the equations we have already constructed.

The h̄ function of equation (14.230) contains a single rotational gauge freedom,
which is the freedom to boost in the σφ plane. If we make the physical assump-
tion that the matter energy-momentum tensor has a future-pointing timelike
eigenvector, the gauge freedom can be used to set this eigenvector to the et di-
rection. Once this is done all the rotational gauge freedom in the problem has
been removed, and we are left with a complete set of field equations. These are

−LρG − G2 + K(K − 2K̄) = 8πε,

K2 − GT = 8πPρ,

−LρT + T 2 − K(K + 2K̄) = 8πPφ,

LρK + G(K + K̄) − T (K − K̄) = 0,

(14.237)

where ε is the matter density, and Pρ and Pφ are the radial and azimuthal
pressures respectively. The coefficient of G(ez) is determined algebraically by the
other three coefficients, and the same must therefore be true of the matter energy-
momentum tensor. It follows that the z-component of the Einstein equations
contains no new information. Of course, if we were working in a genuine (2 + 1)
system, the ez equation would not be present.

14.6.1 Vacuum solutions

In the vacuum region all of the scalars {α1, α2, α3, β} are zero, so we are still
free to perform an ρ-dependent boost in the σφ direction. This freedom can be
employed to set K̄ to zero. It is also useful in this region to work in a gauge
where g1 = 1. In this case the vacuum region is described by the simple pair of
equations

∂ρG + G2 − GT = 0,

∂ρT − T 2 + GT = 0,
(14.238)
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with K determined by K2 = GT . On subtracting these equations and integrating
we see that

G − T = 1/(ρ + ρ0), (14.239)

where ρ0 is an arbitrary constant of integration. Similarly, adding the equations
and integrating yields

G + T = c/(ρ + ρ0), (14.240)

where c is a second constant of integration.
The restriction that GT = K2 > 0 means that c2 > 1, and we can set

c = ± cosh(2α). (14.241)

There are two distinct vacuum configurations, depending on which sign is chosen
for c. In either case, the constant α can be gauged to zero with a further constant
boost in the σφ direction (which does not reintroduce a K̄ term). The two
vacuum sectors are therefore characterised by the solutions

type I: G =
1

ρ + ρ0
, T = K = K̄ = 0,

type II: T = − 1
ρ + ρ0

, G = K = K̄ = 0.

(14.242)

All other vacuum solutions can be reached from this pair by ρ-dependent boosts
in the σφ direction. No globally-defined gauge transformation exists between
these solution classes. For both solutions the Riemann tensor vanishes, since
there is no Weyl tensor for three-dimensional systems. It is therefore possible
locally to gauge transform all of these fields to zero, but this is not possible
globally. In this sense the solutions represent two distinct topological structures.

14.6.2 Physical properties of matter solutions

The key physical properties associated with matter solutions are the acceleration,
vorticity, shear and angular momentum of the string. Given that we have chosen
a gauge where the timelike eigenvector of the energy-momentum tensor is et, the
acceleration vector w is defined by

w = et ·D et = −Teρ. (14.243)

This measures the extent to which particles comoving with the matter (with
velocity et) depart from geodesic motion. The vorticity bivector � is defined by

� = D∧et + w∧et = −(K − K̄)Iσ3. (14.244)

The definition ensures that � satisfies et ·� = 0. To define the shear tensor we
require the linear function H that projects vectors into the 3-space orthogonal
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to et,

H(a) = a − a·et et. (14.245)

In terms of this function the shear tensor σ(a) is defined by

σ(a) = 1
2

(
H(a)·Det + H(∂b)(b·Det)·a

)
− 1

3H(a)D·et

= − 1
2 (K + K̄)(a·eρ φ̂ + a·φ̂ eρ). (14.246)

This is a symmetric, traceless linear function. We see that acceleration is con-
trolled by T , the vorticity by (K − K̄) and the shear by (K + K̄). In the matter
region all of these scalar quantities are physically measurable functions. The
same is true of the fourth function, G, which can be determined from the radial
pressure.

The remaining physical property of relevance is the angular momentum con-
tained in the fields. The vector gφ is a Killing vector for cylindrical solutions, so
the vector T (gφ) is covariantly conserved. It follows that

∇·
(
h(T (gφ))det (h)−1

)
= 0. (14.247)

The total conserved angular momentum per unit length in the et frame is there-
fore given by the expression

JS =
∫ ρs

0

d2x gt ·T (gφ)det (h)−1, (14.248)

where ρs is the string radius. In the g1 = 1 gauge this expression evaluates to
give

JS = −2π

∫ ρs

0

dρ (ε + Pφ)f1f2(f1h1 − f2h2)−2, (14.249)

which shows that a non-zero f2 is required for angular momentum to be present.

14.6.3 Cosmic strings

Cosmic strings are an example of topological defects that can occur as a remnant
of symmetry breaking processes in the early universe. They have zero radial and
azimuthal pressures. It follows that there is a negative pressure along the length
of the string — they are under tension. The energy-momentum tensor is

T (a) = 1
2ε(a − Iσ3 a Iσ3). (14.250)

From the Einstein equations we see that α1 = α3 = β = 0, and the Riemann
tensor therefore has the compact form

R(B) = 8πε〈BIσ3〉Iσ3. (14.251)

Tidal forces are only exerted in the Iσ3 plane and are controlled by the density.
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The Einstein equations tell us that T = K = K̄ = 0, so all that remains is the
single equation

LρG + G2 = −8πε. (14.252)

The full solution is then recovered by integrating the bracket equations (14.233).
These imply that both f1 and h2 are constant. A global rotation can therefore
be performed to transform to a gauge where f1 = 1 and h2 = 0. The remaining
equations are

Lρh1 = −Gh1, Lρf2 = −Gf2. (14.253)

It follows that f2 = λh1, where λ is an arbitrary constant. But ρh1 must tend
to 1 as ρ 
→ 0 so that h̄(a) is well defined on the axis. It follows that h1, and
hence f2, must diverge as ρ−1. For f2 this would imply that h̄(et) is singular on
the axis, which is not permitted. It follows that the constant λ must be zero, so
the string has no angular momentum. This agrees with the fact that the shear
and vorticity are both zero. Pressure is necessary for strings to have any angular
momentum.

We have now restricted h̄(a) to the simple form

h̄(a) = a + (g1 − 1)a·eρ eρ + (ρh1 − 1)a·eφ eφ, (14.254)

and the remaining equations are

Lρh1 = −Gh1, LρG = −8πε − G2, (14.255)

with Lρ = g1∂ρ. To complete the solution we must make a gauge choice for g1.
An obvious choice is to set g1 = 1, so that ρ measures the proper radial distance
from the string. A slightly simpler alternative is to choose a gauge such that
h̄(eφ) = eφ. This requires that

h1 = 1/ρ (14.256)

and it follows that

G = g1/ρ. (14.257)

The equations now integrate to give

g1
2 = 1 −

∫ ρ

0

16πsε(s) ds, (14.258)

where the constant of integration is chosen so that h̄(a) is well defined on the
axis. On defining

M(ρ) =
∫ ρ

0

2πsε(s) ds, (14.259)

the solution can be summarised neatly by

h̄(a) = a +
(
(1 − 8M(ρ))1/2 − 1

)
a·eρ eρ. (14.260)
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The choice of density function is arbitrary, provided 8M(ρ) < 1. In the vacuum
region outside the string we have T = K = K̄ = 0, so the vacuum region is
described by a solution in the gauge class of type I. This can be described in
terms of a flat spacetime, with a wedge of spacetime removed and the edges
identified. This topological picture of a string defect can be used to provide a
qualitative understanding of many of the string’s properties.

14.6.4 Rigidly rotating strings

The simplest models that include pressure are those for a two-dimensional ideal
fluid, with Pρ = Pφ = P . The two natural physical models to consider are those
where the fluid is vorticity-free (K̄ = K) or shear-free (K̄ = −K). The latter
case corresponds to a rigidly rotating string, and is the situation we analyse here.
The equations governing this setup are (in the g1 = 1 radial gauge)

∂ρK − 2KT = 0,

∂ρG + G2 = −8πε + 3K2,

∂ρT − T 2 = −8πP + K2,

K2 − GT = 8πP.

(14.261)

These can be solved once the density distribution has been specified. A choice
of density that produces a straightforward solution is

8πε = 3K2 + λ2, (14.262)

where λ is an arbitrary positive constant. This ansatz ensures that the density
is always positive. The equations for G and T can be solved immediately to give

G =
λ cos(λρ)
sin(λρ)

, T =
λ sin(λρ)

cos(λρ) + A
, (14.263)

where A is a constant satisfying A < −1.
We next solve for K to obtain

K =
B

(A + cos(λρ))2
, (14.264)

where B is a further constant. The density and pressure can now be recovered
from equations (14.261). The boundary of the string occurs where the pressure
vanishes, and this must be reached before ρ = π/λ. Finally, we return to equa-
tions (14.233) to find a suitable form for the h̄ function. First we see that f1/h2

is a constant, so that a gauge transformation can be performed to set h2 = 0.
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The remaining functions are easily found by integration:

f1 =
1 + A

cos(λρ) + A
,

h1 =
λ

sin(λρ)
,

f2 =
−B(f1

2 − 1)
λ(A + 1) sin(λρ)

.

(14.265)

For f1 the arbitrary time-scale factor has been used to set f1 = 1 on the axis. It
is simple to verify that this solution is well defined on the axis of the string. For
completeness, the corresponding line element is

ds2 =

(
cos(λρ) + A

)2
(1 + A)2

dt2 +
2B

λ2(A + 1)3
(
1 − cos(λρ)

)(
2A + 1 + cos(λρ)

)
dt dφ

− sin2(λρ)
λ2

(
1 −

B2
(
1 − cos(λρ)

)2(2A + 1 + cos(λρ)
)2

λ2 sin2(λρ)(1 + A)4
(
A + cos(λρ)

)2
)

dφ2 − dρ2 − dz2.

(14.266)

The exterior vacuum fields can be found simply by returning to the vacuum
equations, and solving these in the case where K + K̄ = 0. The general form of
vacuum fields outside a rigidly rotating string is then given by

G =
−α2

(ρ + ρ0)
(
(ρ + ρ0)2 − α2

) ,
T = − ρ + ρ0

(ρ + ρ0)2 − α2
,

K =
α

(ρ + ρ0)2 − α2
,

(14.267)

where ρ0 and α are constants to be determined by the fields at the boundary.
This solution falls into the second class of vacuum solutions, as defined by equa-
tion (14.242). The h̄ function is determined by

f1 = −(1 + A)(α/B)1/2
(
(ρ + ρ0)2 − α2

)−1/2
,

h1 = (α/B)1/2λ2

(
(ρ + ρ0)2 − α2

)1/2

(ρ + ρ0)
, (14.268)

f2 =
α

f1(ρ + ρ0)
(
f2
1 − 1

)
.

These fields have an unusual property. At large distances, f1 falls off as ρ−1,
whereas f2 tends to a constant value. Beyond the point where the magnitude
of f2 overtakes that of f1, a closed circular path orbiting the string becomes
timelike. This solution admits closed timelike curves, even out at infinity. Such
solutions are often thought of as unphysical, due to the bizarre acausal effects
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they would allow. But there is nothing outrageous in the matter distribution
used to generate the solution, and it is difficult to pin down a precise statement
of what constitutes a ‘physically acceptable’ matter distribution.

14.7 Axially-symmetric systems

As a further application of the gauge theory treatment of gravity, we now turn
to the equations governing a stationary axisymmetric system. Such fields are
produced by rotating stars, galaxies and black holes, and as such are of consid-
erable importance in astrophysics. The prototype axisymmetric configuration is
described by the Kerr solution, which uniquely describes the fields produced by
an uncharged rotating black hole. The more complicated problem of finding the
fields outside a rotating massive object such as a star or planet has yet to be
fully solved. Here we discuss two forms of the Kerr solution. The first continues
the solution strategy adopted in the cylindrical setup, and can be generalised to
include matter fields. The second form generalises the Newtonian gauge for the
Schwarzschild solution, and has a number of significant features.

14.7.1 Intrinsic form of the axisymmetric equations

We employ a standard spherical-polar coordinate system to describe axisymmet-
ric fields, and the notation is precisely as defined at the start of section 14.2. A
suitable form of the h̄ function consistent with axial symmetry is

h̄(et) = f1e
t + f4e

φ,

h̄(er) = g1e
r + g3e

θ,

h̄(eθ) = i1e
θ + i3e

r,

h̄(eφ) = h1e
φ + h2e

t,

(14.269)

where all of the variables {f1, . . . , i3} are scalar functions of r and θ. The labelling
convention for the {fi, . . . , ii} is chosen to allow for a more general parameteri-
sation appropriate for time-dependent systems. We have ignored the possibility
of any coupling between the et and er, so strictly speaking are looking for the
fields outside an extended source with no horizon present. On solving the vac-
uum field equations we will construct a form of the Kerr solution, which will
turn out to be ill defined at the horizon. As with the Schwarzschild solution, the
singular nature of the fields is a consequence of a bad gauge choice, rather than
an intrinsic property of the fields. In section 14.7.3 we give a form of the Kerr
solution which avoids this problem.

A suitably general form of ω function consistent with the h̄ field of equa-
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tion (14.269) is given by

ω(et) = −(T + IJ)eret − (S + IK)θ̂et + h2Iσ3,

ω(er) = (S′ + IK ′)er θ̂ − i3er θ̂,

ω(θ̂) = (G′ + IJ ′)er θ̂ − (i1/r)er θ̂,

ω(φ̂) = (H + IK)θ̂φ̂ + (G + IJ)erφ̂ + h1/(r sin(θ)) Iσ3.

(14.270)

The variables written in capitals are also functions of r and θ, except for the
pseudoscalar I. The reason for the labelling scheme will become clearer when
the final set of equations is derived. There are 40 independent scalar variables
in gravity, so it is difficult to construct a labelling scheme that does not con-
flict with existing conventions somewhere. A significant feature of our scheme
is that a complex structure naturally emerges, generated by the pseudoscalar I.
It is a well-known feature of the Kerr solution that it is underpinned by a com-
plex analytic structure. The origin of this lies in the natural complex structure
of spacetime bivectors. Throughout this section we use complex to refer to a
combination of scalar and pseudoscalar quantities.

The bracket structure defined by our choice of the ω function is

[Lt, Lr] = −TLt − (K + K ′)Lφ̂, [Lr, Lθ̂] = −S′Lr − G′Lθ̂,

[Lt, Lθ̂] = −SLt + (J − J ′)Lφ̂, [Lr, Lφ̂] = −(K − K ′)Lt − GLφ̂, (14.271)

[Lt, Lφ̂] = 0, [Lθ̂, Lφ̂] = (J + J ′)Lt − HLφ̂.

The Riemann tensor generated by these fields is complicated and, rather than
giving its full algebraic expression, it is simpler to consider the general form.
This can be written as

R(σr) = α1σr + β1σθ, R(Iσr) = α4Iσr + β4Iσθ,

R(σθ) = α2σθ + β2σr, R(Iσθ) = α5Iσθ + β5Iσr, (14.272)

R(σφ) = α3σφ, R(Iσφ) = α6Iσφ,

where each of the αi and βi is a complex combination. If we now specialise to
the case of vacuum solutions, so that the Riemann tensor is determined solely
by the Weyl tensor, the duality relation W(IB) = IW(B) immediately sets

α1 = α4, α2 = α5, α3 = α6, β1 = β4 β2 = β5. (14.273)

In addition, for a vacuum solution R(B) must be symmetric and traceless. The
most general form of tensor consistent with this requirement is

R(σr) = α1σr + βσθ,

R(σθ) = α2σθ + βσr,

R(σφ) = −(α1 + α2)σφ,

(14.274)
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with αi and β complex combinations.
Next we consider the rotational gauge freedom in our choice of axisymmetric

fields. We are free to perform a rotation in the Iσφ plane, and a boost in the σφ

direction. These can be summarised in the single rotor R:

R = exp(wIσφ/2), (14.275)

where the scalar + pseudoscalar quantity w is an arbitrary function of (r, θ). This
gauge freedom can be employed to diagonalise the Riemann tensor by setting
β = 0. This removes all of the gauge freedom present, and enables us to write

R(σr) = α1σr, R(σθ) = α2σθ, R(σφ) = −(α1 + α2)σφ. (14.276)

The form of the Riemann tensor for the Schwarzschild solution is algebraically
special, in that two of its eigenvalues are degenerate. This is referred to as having
Petrov type D. There is no reason to expect the same to be true for axisymmetric
fields, and the field outside a general rotating star is almost certainly not of
type D. But it turns out that, if a horizon is present, the solution must be of
type D. As we are interested here in deriving the Kerr solution, we therefore
impose the additional condition that the Riemann tensor is degenerate, with the
general algebraic form

R(B) =
α

2
(B + 3σrBσr), (14.277)

with α a scalar + pseudoscalar quantity. This final restriction on the form of
R(B) is not a gauge choice — it is a restriction on the form of solution we can
construct.

Comparing the general form of equation (14.277) with the explicit Riemann
tensor constructed from the ω field, we establish that

α = (G + IJ)(T + IJ) + (S + IK)(H + IK). (14.278)

The remaining identities reduce to a series of equations, an example of which is

Lr(G + IJ) =(S′ + IK ′ − S − IK)(H + IK) − I(K − K ′)(S + IK)

− (G + T + IJ)(G + IJ). (14.279)

In all there are ten equations of this type. They all relate intrinsic derivatives of
the variables in the ω field to quadratic combinations of the same variables. By
forming suitable combinations of these equations we find that

Lrα = −3α(G + IJ), Lθ̂α = −3α(S + IK), (14.280)

so the intrinsic derivatives of α are quite simple.
Next we must consider the Bianchi identities. These contain higher order

consistency relations between the h̄ and ω fields. For the Schwarzschild and
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cylindrical cases these contained no new information, but this is not the case for
the axisymmetric setup. If we consider the equation

DR(σr) − ∂aR(a·Dσr) = 0 (14.281)

we obtain the pair of equations

Lrα = −3
2
α(G + IJ + G′ + IJ ′),

Lθ̂α = −3
2
α(S + IK + S′ + IK ′),

(14.282)

Comparing these with equation (14.280), we see that

G′ + IJ ′ = G + IJ, S′ + IK ′ = S + IK. (14.283)

This simplification for type D fields explains our choice of notation of primed
and unprimed variables.

With four of the variables now solved for, the remaining equations simplify to

Lr(G + IJ) = −(G + IJ)2 − T (G + IJ),

Lr(T + IJ) = (S + IK)2 −
(
2(G + IJ) − T

)
(T + IJ)

− 2S(H + IK),

Lr(S + IK) = −IJ(S + IK) − 2IK(G + IJ),

Lr(H + IK) = −(G + IJ)(S + IK) − G(H + IK)

(14.284)

and

Lθ̂(S + IK) = (S + IK)2 + H(S + IK),

Lθ̂(H + IK) = −(G + IJ)2 +
(
2(S + IK) − H

)
(H + IK)

+ 2G(T + IJ),

Lθ̂(G + IJ) = IK(G + IJ) + 2IJ(S + IK),

Lθ̂(T + IJ) = (G + IJ)(S + IK) + S(T + IJ).

(14.285)

These equations are all consistent with the bracket structure, which now takes
the form

[Lr, Lθ̂] = −SLr − GLθ̂. (14.286)

Our set of equations is now complete. We have explicit forms for the intrinsic
derivatives of all of our variables; these are all consistent with the bracket struc-
ture, and the full Bianchi identities are all satisfied. We have achieved the first
main goal of the intrinsic method.

14.7.2 The Kerr solution

The vacuum equations summarised in equations (14.284) and (14.285) display a
number of remarkable features. They are naturally complex, with the spacetime

554

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.016
https:/www.cambridge.org/core


14.7 AXIALLY-SYMMETRIC SYSTEMS

pseudoscalar as the unit imaginary, and there is a clear symmetry between the
r and θ̂ equations. We now demonstrate that, subject to certain boundary
conditions, these equations admit a unique, two-parameter family of solutions.
This is the Kerr solution. The proof is constructive, but it is slightly involved
and we will skip some of the details.

The first step in solving a set of intrinsic equations is the identification of
suitable integrating factors. To find the first of these consider the function

Z = Z0α
−1/3, (14.287)

where Z0 is an arbitrary complex constant. The function Z satisfies

LrZ = (G + IJ)Z, Lθ̂Z = −(S + IK)Z. (14.288)

On separating Z into modulus X and argument χ,

Z = XeIχ (14.289)

we find that

LrX = GX, Lθ̂X = −SX. (14.290)

It follows that X acts as an integrating factor for G and S. But if we recall the
bracket of equation (14.286), we see that

[XLr,XLθ̂] = 0. (14.291)

We have therefore constructed a pair of commuting derivations. This is sufficient
to ensure that we can fix our displacement gauge freedom by setting g3 = i3 = 0.
With this done, we can then write

XLr = g(r)∂r, XLθ̂ = i(θ)∂θ, (14.292)

where g(r) and i(θ) are arbitrary functions that we can choose with further gauge
fixing.

More generally, if a pair of variables A and B satisfy the equation

Lθ̂A − LrB = GB + SA (14.293)

then an integrating factor C exists defined (up to an arbitrary magnitude) by

LrC = AC, Lθ̂C = BC. (14.294)

One such pair is T and −H. For these we define the integrating factor F ,
satisfying

LrF = TF, Lθ̂F = −HF. (14.295)

With the integrating factors X, Z and F at our disposal, we can considerably

555

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.016
https:/www.cambridge.org/core


GRAVITATION

simplify our equations for G + IJ and S + IK to obtain

Lr

(
FZ(G + IJ)

)
= 0, Lθ̂

(
XZ(G + IJ)

)
= −2XZ(SG + JK),

Lθ̂

(
FZ(S + IK)

)
= 0, Lr

(
XZ(S + IK)

)
= 2XZ(SG + JK).

(14.296)

These equations focus attention on the quantity SG + JK. On forming the
derivatives of this quantity we see that

Lr

(
XF (SG + JK)

)
= Lθ̂

(
XF (SG + JK)

)
= 0, (14.297)

and it follows that XF (SG + JK) is a constant. For the Schwarzschild solution
this constant is zero. We therefore expect that this term should also vanish
for a rotating source since, at large distances, the fields should tend to the
Schwarzschild case. It turns out that one can construct solutions with XF (SG+
JK) 	= 0, but these are appropriate for an infinite disc of matter and not a
localised source. As we are looking for the fields outside a localised rotating
source, we can set

SG + JK = 0. (14.298)

It follows that

XFZ2(G + IJ)(S + IK) = C1, (14.299)

where C1 is an arbitrary complex constant.
Remarkably, we are now close to a complete solution to the problem. Equa-

tion (14.296) tells us that we can set

FZ(G + IJ) = W (θ), FZ(S + IK) = U(r), (14.300)

where U and W are complex functions of r and θ respectively. If we now form

W (θ)
U(r)

=
G + IJ

S + IK
= I

SJ − GK

S2 + K2
, (14.301)

we see that the result is a pure imaginary quantity. It follows that W and U are
π/2 out of phase and, since U and W are separately functions of r and θ, their
phases must be constant. Next we construct the derivatives of Z to obtain

XLrZ = g(r)∂rZ = XZ(G + IJ) = C1/U(r) (14.302)

and

XLθ̂Z = i(θ)∂θZ = XZ(S + IK) = C1/W (θ). (14.303)

It follows that Z must be the sum of a function of r and a function of θ. Fur-
thermore, these functions must also have constant phases, π/2 apart. Since the
overall phase of Z is arbitrary (Z was defined up to an arbitrary complex scale
factor), we can write

Z = R(r) + IΨ(θ), (14.304)
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where R(r) and Ψ(θ) are real functions. These satisfy the equation

XLr

(
XLr ln(Z)

)
+ XLθ̂

(
XLθ̂ ln(Z)

)
= α =

Z3
0

Z3
, (14.305)

which is to be solved for R and Ψ.
There is considerable gauge freedom in equation (14.305), since we are free to

choose the functions g(r) and i(θ). The most convenient choice of gauge is to set

Z = r − Ia cos(θ). (14.306)

The remaining functions are then found by integration. The end result, after a
series of further gauge choices, is the Kerr solution in the form

h̄(et) = gt =
r2 + a2

ρ∆1/2
et +

ar sin2(θ)
ρ

eφ,

h̄(er) = gr =
∆1/2

ρ
er,

h̄(eθ) = gθ =
r

ρ
eθ,

h̄(eφ) = gφ =
r

ρ
eφ +

a

ρ∆1/2
et,

(14.307)

where

ρ2 = X2 = r2 + a2 cos2(θ) (14.308)

and

∆ = r2 − 2Mr + a2. (14.309)

The mass is given by M , and the angular momentum by aMc. The quantity a

is the angular momentum per unit mass, and has dimensions of distance. The
limit a 
→ 0 recovers the Schwarzschild solution in the form appropriate for the
exterior of a non-rotating star. The reciprocal vectors are

gt =
∆1/2

ρ
et −

a

rρ
eφ,

gr =
ρ

∆1/2
er,

gθ =
ρ

r
eθ,

gφ =
r2 + a2

rρ
eφ − a∆1/2 sin2(θ)

ρ
et.

(14.310)
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The variables controlling the ω field are given by

G + IJ =
∆1/2

ρ
(
r − Ia cos(θ)

) ,
S + IK =

−Ia sin(θ)
ρ
(
r − Ia cos(θ)

) ,
T − G = −r − M

ρ∆1/2
,

H − S =
cos(θ)
ρ sin(θ)

.

(14.311)

The equation for T shows that a horizon exists where ∆ = 0. The fact that the
solution is singular there is a reflection of our choice of time coordinate. This
measures the time for observers at a constant distance from the source. Such
observers cannot exist inside the horizon, and the solution breaks down there.
As with the Schwarzschild system, the resolution of this problem is to express
the fields in terms of a different time coordinate.

The Riemann tensor for the Kerr solution can now be written in the compact
form

R(B) = − M

2
(
r − Ia cos(θ)

)3 (B + 3σrBσr). (14.312)

This is obtained from the Schwarzschild solution by simply replacing r by the
scalar + pseudoscalar combination r − Ia cos(θ). Precisely such a replacement
can be used to generate the Kerr solution using a ‘complex coordinate transfor-
mation’ in the Newman–Penrose formalism. This transformation does produce
the Kerr solution, but there is no a priori reason to expect that such a trans-
formation applied to a vacuum solution will generate a new vacuum solution.
Our extremely compact form of the Riemann tensor for the Kerr solution is a
significant advantage of the gauge theory approach to gravitation advocated in
this book. The comparison with the standard tensor formulation of general rel-
ativity is dramatic — most textbooks devote nearly a page to listing all of the
components of the Riemann tensor, if they list them at all.

14.7.3 A Newtonian gauge for the Kerr solution

The form of the Kerr solution developed in the preceding section gives rise to
a metric that expresses the geometry in terms of Boyer–Lindquist coordinates.
Such a form is only appropriate for the region outside an extended object. If a
horizon has formed we must find an alternative gauge choice which covers the
horizon smoothly. From our discussion of the Schwarzschild solution, we would
like to find an analogue of the Newtonian gauge appropriate for rotating black
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holes. Such a gauge does exist, though it is not straightforwardly obtained from
the Boyer–Lindquist setup.

The first step in expressing the Kerr solution in a Newtonian gauge is the
introduction of spheroidal coordinates (r̄, θ̄, φ), as described in section 6.2.2.
The spheroidal coordinates are related to their spherical counterparts (r, θ, φ) as
follows:

(r̄2 + a2)1/2 sin(θ̄) = r sin(θ),

r̄ cos(θ̄) = r cos(θ).
(14.313)

The scalar parameter a is the same as that controlling the angular momentum.
In the limit a 
→ 0, the barred coordinates reduce to their unbarred spherical-
polar equivalents. Surfaces of constant r̄ are ellipses in flat space, though a
statement such as this relates to the properties of the coordinate system, and
not necessarily to physically measurable features. It is convenient to introduce
the hyperbolic coordinate u, defined by

a sinh(u) = r̄. (14.314)

The coordinate frame vectors are given by

er̄ = tanh(u) sin(θ̄)
(
cos(φ) γ1 + sin(φ) γ2

)
+ cos(θ̄) γ3,

eθ̄ = a cosh(u) cos(θ̄)
(
cos(φ) γ1 + sin(φ) γ2

)
− a sinh(u) sin(θ̄) γ3

(14.315)

with eφ unchanged from its spherical definition. We also define the unit vectors

êr̄ =
a cosh(u)

ρ̄
er̄, êθ̄ =

1
ρ̄
eθ̄, (14.316)

where ρ̄ is defined by

ρ̄2 = a2 sinh2(u) + a2 cos2(θ̄) = r̄2 + a2 cos2(θ̄). (14.317)

The unit frame vectors satisfy

etêr̄ êθ̄φ̂ = I. (14.318)

The Newtonian gauge form of the Schwarzschild solution, defined in equa-
tion (14.65), contains the unit vectors et and er. The generalisation of this
function to the Kerr solution is given by

h̄(n) = n −
(

2Mr̄

r̄2 + a2

)1/2

n·êr̄ v, (14.319)

where the vector argument is denoted by n to avoid confusion with the scalar
parameter a. The timelike velocity vector v is defined by

v = cosh(β) et + sinh(β) φ̂ (14.320)

559

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511807497.016
https:/www.cambridge.org/core


GRAVITATION

where

tanh(β) =
sin(θ̄)

cosh(u)
=

ar sin(θ)
r̄2 + a2

. (14.321)

It follows that

cosh(β) =
a cosh(u)

ρ̄
, sinh(β) =

a sin(θ̄)
ρ̄

. (14.322)

Comparison with equation (14.65) shows how the various terms are generalised
in moving from the Schwarzschild to the Kerr solution.

The ω(a) function generated by equation (14.319) has

ω(et) = 0,

ω(êr̄) = − M

α(r̄ − Ia cos(θ̄))2
êr̄∧v,

ω(êθ̄) =
α

r̄ − Ia cos(θ̄)
êθ̄∧v,

ω(φ̂) =
α

cosh(β)(r̄ − Ia cos(θ̄))
σφ,

(14.323)

where

α = − (2Mr̄)1/2

ρ̄
. (14.324)

The terms in the ω function also neatly generalise their counterparts in the
Schwarzschild solution. In particular, the fact that ω(et) vanishes implies that
et satisfies the geodesic equation. The trajectories defined by this velocity define
a family of observers whose proper time is given by t.

The remaining covariant object to construct is the Riemann tensor. If we
define the unit bivector

N̂ = êr̄∧v, (14.325)

then the Riemann tensor takes on the simple form

R(B) = − M

2
(
r̄ − Ia cos(θ̄)

)3 (B + 3N̂BN̂). (14.326)

This is obtained from the form of equation (14.312) by a displacement (taking
the unbarred to the barred coordinates) and a boost from et to v. Both are gauge
transformations, so the intrinsic information in equations (14.312) and (14.326)
is precisely the same. The same transformations are involved in taking the h̄(a)
function from the form of equation (14.307) to that of equation (14.319). In
addition, further (singular) transformations are also required to convert t to the
time measured by a set of infalling observers with covariant velocity et.
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14.7.4 Geodesics and the horizon

The h̄ and ω fields for the Newtonian form of the Kerr solution are well defined
over all spacetime, down to the ring r̄ = cos(θ̄) = 0. There are no problems with
motion through the horizon, and infalling observers reach the central singularity
in a finite coordinate time. This is because the coordinate t now measures the
proper time for a family of free-falling observers with covariant velocity et. The
trajectories defined by this velocity have

x′ = h(et) = et − αêr̄ = et − ˙̄rer̄. (14.327)

This defines a family of observers all infalling along directions with constant θ̄

and φ, and with infall velocity

˙̄r =
(

2Mr̄

r̄2 + a2

)1/2

. (14.328)

This family neatly generalises the observers in radial free fall from rest at infinity
employed in the Schwarzschild solution. As in the spherical case, many physical
phenomena are simplest to interpret when expressed in terms of observers with
covariant velocity et. A curious feature of these observers is that they appear to
‘slow down’ as the singularity is approached, though they do reach r̄ = 0 in a
finite proper time.

The next task is to locate the horizon in our new form of the Kerr solution.
A horizon marks the boundary between regions where one cannot signal to the
other. This occurs where it is no longer possible to send null photons outwards.
If k denotes the covariant photon velocity, with k2 = 0, a horizon will occur
when it is no longer possible to satisfy

êr̄ ·h(k) < 0. (14.329)

The left-hand side of this inequality can also be written as

h̄(êr̄)·k =

(
êr̄ +

(
2Mr̄

r̄2 + a2

)1/2

v

)
·k. (14.330)

It is not possible for two future-pointing null vectors to have an inner product
less than 0, so the horizon occurs at

2Mr̄

r̄2 + a2
= 1. (14.331)

This defines a quadratic equation, with two solutions when a < M , one when
a = M and no solutions for a > M . In the case where a < M , the outer horizon
defines an event horizon. Photons can cross this on an inward trajectory, but no
photons can escape. The inner horizon is slightly different. On the inside of the
inner horizon it is possible for photons to travel outwards, but they cannot cross
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the horizon. Instead, they pile up just inside the boundary, forming an unstable
Cauchy horizon.

Instead of considering observers attempting to exit to infinity, suppose instead
that we look for observers at rest with respect to the background (r̄, θ̄, φ) coor-
dinates. Such observers can be constructed from observations of distant stars,
for example. These observers have covariant velocity

h−1(ẋ) = ṫh−1(et) = ṫ

(
et +

2Mr̄

r̄2 + a2
cosh(β) φ̂

)
, (14.332)

and the condition that this is a unit timelike vector forces

ṫ2
(

1 − 2Mr̄

r̄2 + a2 cos2(θ̄)

)
= 1. (14.333)

The surface within which it is not possible to remain at rest is called the er-
gosphere. For non-rotating black holes the horizon and ergosphere coincide. But
for rotating black holes the ergosphere is defined by

r̄2 + a2 cos2(θ̄) − 2Mr̄ = 0. (14.334)

This surface lies outside the horizon, and touches the horizon at the poles. In
the intervening region it is impossible to remain at rest, but it is still possible
to escape. One can think of this in terms of the angular momentum of the hole
dragging observers around with it.

To gain some further insight into the properties of the Kerr solution, consider
circular orbits in the equatorial plane (θ̄ = π/2). For these we have

(
h−1(ẋ)

)2 = ṫ2 − (r̄2 + a2)φ̇2 − 2M

r̄
(ṫ − aφ̇)2 = 1. (14.335)

The r̄ derivative of this expression must vanish for a circular orbit, which tells
us that

r̄3 = M

(
ṫ

φ̇
− a

)2

. (14.336)

If we let Ω denote the angular momentum measured by our set of preferred
infalling observers (which are at rest at infinity), we have

Ω =
φ̇

ṫ
. (14.337)

It follows that, for circular orbits,

Ω =
M1/2

aM1/2 ± r̄3/2
. (14.338)

For a given distance, there are two possible values of the angular velocity for
circular orbits. The larger value of Ω is for a particle corotating with the black
hole, and the smaller for a counterrotating orbit. Again, this effect can be
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understood in terms of the black hole dragging matter around with it. The
larger angular velocity for corotating orbits means it is possible to form stable
orbits much closer to the event horizon than for the Schwarzschild case.

14.7.5 The Dirac equation in a Kerr background

As a final illustration of the utility of the Newtonian gauge form of the Kerr
solution, we return to the Dirac equation. We first form

∂bω(b) =
M

αρ̄2
v −

(
2Mr̄

r̄2 + a2

)1/2

et
1

r̄ − Ia cos(θ̄)
. (14.339)

The Dirac equation in the Newtonian gauge can therefore be written

∇ψ − (2Mr̄)1/2

(
v

ρ̄

∂

∂r̄
ψ +

v

4r̄ρ̄
ψ + et

1
2(r̄2 + a2)1/2

(
r̄ − Ia cos(θ̄)

)ψ
)

= −mψIγ3. (14.340)

If we again multiply through by et, we arrive at an interaction Hamiltonian of
the form

ĤKψ =
i(2M)1/2

ρ̄2

(
(r̄3 + a2r̄)1/4 ∂

∂r̄

(
(r̄3 + a2r̄)1/4ψ

)
−a cos(θ̄) r̄1/4 σφ

∂

∂r̄

(
r̄1/4ψ

)
+

ar̄1/2 cos(θ̄)
2(r̄2 + a2)1/2

Iψ

)
, (14.341)

where we continue to use i for the quantum imaginary. This Hamiltonian is
(almost) Hermitian when integrated over flat three-dimensional space, because
the measure in oblate spheroidal coordinates is

d3x = ρ̄2 sin(θ̄) dr̄ dθ̄ dφ. (14.342)

Our form of the Kerr solution therefore does generalise the many attractive fea-
tures of the Newtonian gauge for the Schwarzschild solution. As in the Schwarz-
schild case, the Hamiltonian is not self-adjoint when acting on normalised wave-
functions. For the Kerr case a boundary term arises at r̄ = 0, which now defines
a disc of radius a.

The Dirac equation (14.340) is separable in spheroidal coordinates, though the
details of this separation are quite complicated. One problem is that the angular
separation constant depends on the energy. This makes scattering calculations
far more difficult than in the spherical case, as the separation constant must be
recalculated for each energy. A considerable amount of work remains to be done
in extending the detailed understanding of quantum theory in a Schwarzschild
background to the Kerr case.
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14.8 Notes

Many of the applications discussed in this chapter are covered in greater detail
in the papers by Doran, Lasenby, Gull and coworkers. The solution method
described in this chapter was first proposed in the paper ‘Gravity, gauge theories
and geometric algebra’ by Lasenby, Doran & Gull (1998). This method should
be compared with the spin coefficient formalism of Newman & Penrose (1962).
The advantages of the Newtonian gauge for spherically-symmetric systems have
been promoted by a handful of authors, most notably in the papers by Gautreau
(1984), Gautreau & Cohen (1995), and by Martel & Poisson (2001).

The problem of the electromagnetic fields created by a point charge at rest
outside a Schwarzschild black hole was first tackled by Copson (1928), who ob-
tained a solution that was valid locally in the vicinity of the charge, but con-
tained an additional pole at the origin. Linet (1976) modified Copson’s solution
by removing the singularity at the origin to obtain the potential described in
section 14.3.5. Similar plots to those presented in section 14.3.5 were first ob-
tained by Hanni & Ruffini (1973), though these authors did not extend their
plots through the horizon. A popular means of interpreting these plots in terms
of effects entirely around the horizon is advanced in The Membrane Paradigm
by Thorne, Price & Macdonald (1986). We believe that a better understanding
is gained by considering the global properties of fields, both inside and outside
the horizon.

Scattering and absorption processes by black holes have been widely discussed
by many authors. Summaries of this work can be found in the books by Fut-
terman, Handler & Matzner (1988) and Chandrasekhar (1983), or the article by
Andersson and Jensen (2000). The first attempt at a quantum calculation of the
scattering cross section was by Collins, Delbourgo & Williams (1973), though
their derivation did not employ a consistent perturbation scheme. The calcu-
lation described in this chapter was first published in the paper ‘Perturbation
theory calculation of the black hole elastic scattering cross section’ by Doran
and Lasenby (2002). Classical and quantum absorption processes are discussed
in detail by Sanchez (1977, 1978) and Unruh (1976).

Cylindrical systems are discussed by Deser, Jackiw & ’t Hooft (1984) and
Jensen & Soleng (1992). The properties of cosmic strings are described in Cos-
mic Strings and Other Topological Defects by Vilenkin & Shellard (1994). The
solutions described in this chapter were developed in the paper ‘Physics of rotat-
ing cylindrical strings’ by Doran, Lasenby & Gull (1996). The form of the fields
outside a rotating black hole was first discovered by Kerr (1963), and has been
widely discussed since. A fairly complete summary of this work in contained in
Chandrasekhar’s The Mathematical Theory of Black Holes (1983). The complex
coordinate transformation trick for deriving the Kerr solution was discovered
by Newman & Janis (1965), and later explained by Schiffer et al.(1973). The
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uniqueness theorem for black holes was developed by Carter (1971) and Robin-
son (1975). The analogue of the Newtonian gauge for the Kerr solution was
discovered by Doran (2000).

The applications of the gauge theory approach to gravity discussed in this
chapter have concentrated on the simplest Einstein–Cartan theory. Modern de-
velopments in quantum gravity have suggested a number of modifications to
this theory. Two of the most common ideas include the introduction of local
scale invariance, and the inclusion of higher order terms in the Lagrangian. The
geometric algebra gauge theory approach is equally applicable in these settings.
Some preliminary work on this subject is described by Lewis, Doran & Lasenby
(2000). This field is developing rapidly, driven in part by developments in in-
flationary theory and observations of the cosmic microwave background. These
observations could well revolutionise our understanding of gravitation in future
years.

14.9 Exercises

14.1 Spherical symmetry of the h function can be imposed by demanding that

Rh̄x′(R̃aR)R̃ = h̄(a),

where R is a constant spatial rotor (RetR̃ = et), and x′ = R̃xR. Prove
that this symmetry implies that the {er, et} and {eθ, eφ} pairs decouple
from each other. Show further that we must have

h̄(θ̂) = αθ̂ + βφ̂,

h̄(φ̂) = αφ̂ − βθ̂,

and explain why we can always set β = 0 with a suitable gauge choice.
14.2 The energy-momentum tensor for an ideal fluid is

T (a) = (ρ + p)a·vv − pa.

Show that covariant conservation of the energy-momentum tensor results
in the pair of equations

D·(ρv) + pD·v = 0,

(ρ + p)(v ·Dv)∧v − (Dp)∧v = 0.

Give a physical interpretation of these equations.
14.3 The Schwarzschild line element is defined by

ds2 =
(
1 − 2M

r

)
dt2 − r

r − 2M
dr2 − r2 dθ2 − r2 sin2(θ) dφ2.

Find the equation for the free-fall time as measured by radially-infalling
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observers, starting from rest at infinity. Express the line element in terms
of this new time coordinate to obtain the Painlevé-Gullstrand form

ds2 = dt2 −
(

dr +
(

2M

r

)1/2

dt

)2

− r2(dθ2 + sin2(θ) dφ2).

14.4 Prove that the total absorption cross section for a spherically-symmetric
black hole of mass M is given by

σabs =
πM2

2u4

(
8u4 + 20u2 − 1 + (1 + 8u2)3/2

)
where u is the incident velocity.

14.5 The covariant electromagnetic field generated by a charge at rest on the
z axis outside a Schwarzschild black hole is defined by

F = −∂V

∂r
eret −

1
r − 2M

∂V

∂θ
θ̂
(
et +

√
2M/rer

)
,

where

V (r, θ) =
q

ar

(r − M)(a − M) − M2 cos2(θ)
D

+
qM

ar

and

D =
(
r(r− 2M)+ (a−M)2 − 2(r−M)(a−M) cos(θ)+M2 cos2(θ)

)1/2
.

Prove that F is finite and continuous at the horizon.
14.6 In calculating the scattering cross section from a black hole we need to

compute the integral

I1 =
∫

d3k

(2π)3
k2 − p2

|pf − k|7/2|k − pi|7/2
(k̂ + m).

Evaluate this integral by first displacing the origin in k-space by the
amount (pf + pi)/2, and then introducing spheroidal coordinates

k1 = α sinh(u) sin(v) cos(φ),

k2 = α sinh(u) sin(v) sin(φ),

k2 = α cosh(u) cos(v),

where 0 ≤ u < ∞, 0 ≤ v ≤ π, 0 ≤ φ < 2π and α = |q|/2.
14.7 The Kerr–Schild form of the Schwarzschild solution is defined by

h̄(a) = a +
M

r
a·e− e−, e− = et − er.

Construct the Dirac equation in this gauge, and find the interaction
vertex factor in momentum space. Calculate the differential scattering
cross section for a fermion in this gauge, and verify that it is the same
as found in the Newtonian gauge.
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14.8 Prove that det (h) is constant for spherically-symmetric vacuum gravi-
tational fields.

14.9 For a particle in a circular orbit around a Schwarzschild black hole,
prove that the non-relativistic binding energy (as defined by the effective
potential) is given by (G = c = 1)

Eb = −M

2r

r − 4M

r − 3M
.

14.10 Derive the full set of time-dependent radial equations with the cosmo-
logical constant Λ included.

14.11 A spherically-symmetric distribution of dust is released from rest, with
the initial density distribution chosen so that streamlines do not cross.
Prove that a singularity forms at the origin after a time

tf =
(

3π

32ρ0

)1/2

,

where ρ0 is the central density.
14.12 Solve the Dirac equation in a cosmological background with k 	= 0. Is the

Dirac field homogeneous? Can you construct self-consistent solutions to
this system of equations?

14.13 Construct a matched set of interior and exterior gravitational fields
around a rigidly-rotating cylindrical string. Do closed timelike curves
exist in this geometry?

14.14 Verify that the Kerr solution defined by equation (14.307) satisfies the
vacuum field equations.

14.15 The Riemann tensor for the Kerr solution can be written as

R(B) = − M

2
(
r − Ia cos(θ)

)3 (B + 3σrBσr).

Prove that this satisfies ∂bR(b∧c) = 0 and interpret both parts of this
result.

14.16 The Newtonian gauge form of the Kerr solution involves the spheroidal
coordinates r̄ and θ̄. Prove that r̄ = cos(θ̄) = 0 defines a ring.
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C.J.L Doran et al. Spacetime algebra and electron physics. Adv. Imag. & Elect.

Phys., 95:271, 1996b.
C.J.L Doran et al. Effects of spin-torsion in gauge theory gravity. J. Math. Phys.,

39(6):3303, 1998.
L. Dorst, C. Doran and J. Lasenby, editors. Applications of Geometric Algebra in

Computer Science and Engineering. Birkhäuser, Boston, 2002.
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adjunct field, 243
affine parameter, 132
alternating tensor, 117
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rigid body, 76
angular momentum tensor, 452, 454
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Argand diagram, 27
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axial vector, 42

balanced algebra, 413
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bivector, 13, 30, 33
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bivector algebra, 406
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canonical transformation, 438
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spacetime, 383
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spacetime, 384
conformal symmetry, 455, 458
connection, 462
connection coefficients, 211
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covariant tensor, 476
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exterior product, 11
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Fermi derivative, 153
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Feynman propagator, 202, 298
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fluid dynamics, 443
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Foldy–Wouthuysen transformation, 286
force, 55
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frame, 100
spacetime, 133

Friedmann equations, 538

gauge field strength, 463, 475
gauge fixing, 499, 553
gauge invariance, 283, 453
gauge transformation, 460, 463
Gauss’ law, 235
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general linear group, 412
general relativity, 483
geodesic equation, 487
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axioms, 85
geometric product, properties, 91
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Grasmann, H.G., 12
Grassmann calculus, 399
Grassmann variable, 17, 399, 431
gravitation, gauge theory of, 466
Green’s function, 195, 197, 235, 242, 259

Lorentzian, 200
Green’s theorem, 194
group manifold, 53, 401
gyromagnetic moment, 161, 275, 430
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for black hole, 524
Hamiltonian dynamics, 432
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Helmholtz equation, 259
Hestenes, D., 54, 122, 164, 224, 305, 390
Hodge dual, 220
homogeneous coordinates, 348
homogeneous multivector, 39
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Hubble function, 538
Huygens’ principle, 263
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hyperbolic geometry, 129, 370
hyperelastic material, 440, 446, 447
hyperfine structure, 297

ideal fluid, 443, 482
idempotent, 253, 322
impact parameter, 518
inertia tensor, 73
inner product, 39, 86, 91
integrating factor, 505
interior derivative, 172
intersection, 351, 365
interval, relativistic, 127, 135
intrinsic geometry, 206
intrinsic quantities, gravitational, 498
inverse, of a linear function, 109
inversion, 357, 389
isometry, 217
isomorphism, 3

Jacobi identity, 95, 407, 436, 493
join, 345
Jones vector, 253

Kepler, 56, 60
Kerr solution, 551, 554, 558, 567
Kerr–Schild form, 523
Killing form, 408
Killing vector, 486, 494
Kirchoff theory, 266
Kleinian geometry, 340
Kronecker delta, 6

Lagrangian, 421
multivector, 431

Lagrangian density, 439
Lamb shift, 297
Laplacian, 175, 225
Legendre transformation, 433
Liénard–Wiechert potential, 242
Lie derivative, 216
Lie group, 49, 401
lightlike vector, 132
line

conformal representation of, 361
projective representation of, 345

line element, 376
line integral, 183
linear algebra, 103
linear functions, product of, 105
linear space, 2
linear transformation, 414
linearly dependent, 3
Lorentz contraction, 148
Lorentz force law, 156, 424, 445, 446

rotor form, 157
Lorentz gauge, 232, 243
Lorentz group, 143, 333
Lorentz transformation, 138, 233, 333, 374,

388
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Möbius transformation, 392
magnetic media, 234
magnetic monopole, 265
matrix representation, 26, 37
Maxwell equations, 229, 453, 489
meet, 346
metric tensor, 119, 211, 469, 498
minimal coupling, 462
mixed state, 313
momentum, relativistic, 137
monogenic, 180, 197, 289
Mott scattering formula, 303
multiparticle spacetime algebra, 315
multivector derivative, 394

Newtonian gauge, 508, 558
NMR, 277, 319
Noether’s theorem, 422, 449
non-Euclidean geometry, 370
null tetrad, 336
null vector, 132, 351, 413

observable, 272, 281, 318
Oppenheimer–Volkov equation, 509
outer product, 11, 16, 40, 86, 92
overdot notation, 169, 172

parabola, 62
parity, 283
partial trace, 314
Pauli equation, 287
Pauli matrices, 37, 269
Pauli observable, 272
Pauli operator, 271, 306
Pauli principle, 329
Pauli spinor, 268, 306
permeability, 234
permittivity, 234
perturbation, cosmological, 539
phase space, 433
Piola–Kirchoff tensor, 222, 441
plane

conformal representation of, 364
projective representation of, 351

Poincaré disc, 371
Poincaré sphere, 257
point at infinity, 342, 354, 359
point charge, 241
Poisson bracket, 436
polar vector, 42
precession, gravitational, 65
precession, symmetric top, 81
principal axes, 75
principal stretch, 221, 441
projective geometry, 13, 341
projective split, 348
propagator, 199, 201
proper orthochronous, 145
proper time, 132
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pseudoclassical mechanics, 430
pseudoscalar, 24, 40, 96, 203, 346

spacetime, 129
pure state, 309, 313

quantum correlator, 317
quaternions, 7, 17, 34, 47

radiation, electromagnetic, 243, 260
Rayleigh scattering, 262
reciprocal frame, 100
redshift, gravitational, 515
reduced mass, 60, 311
reflection, 40, 97, 369, 388
regularization, spinor, 67
relative vector, 134
residue theorem, 196
reverse, 39, 94
Ricci scalar, 478
Ricci tensor, 478
Riemann tensor, 212, 477, 485, 490, 499, 503
Riemannian geometry, 202
Rig-Veda, 12
rigid body, 71, 425
rotating frame, 69
rotation, 28, 43, 98, 356
rotor, 44, 103
rotor equation, 72, 276
rotor group, 99, 403
rubber, 447
Rutherford scattering, 303, 520

scalar product, 4
scattering, 261, 297, 520, 526
scattering operator, 300
Schmidt decomposition, 313, 319
Schwarz inequality, 5
Schwarzschild solution, 510, 565
screw theory, 357
semi-major axis, 63, 82
shape tensor, 208
shear modulus, 224, 227
shear tensor, 546
simplex, 186, 188
singlet state, 322, 326, 334
singular value decomposition, 113, 125
spacelike vector, 132
spacetime algebra, 127, 130
spacetime diagram, 129
spacetime split, 135, 315
special conformal transformation, 359, 389
sphere, conformal representation of, 364
spherical polar coordinates, 177
spherical symmetry, gravitational, 500
spheroidal coordinates, 177
spin, 268, 427
spin group, 402
spin precession, 162
spin tensor, 480, 482
spin vector, 273

spin-frame, 336
spinor, 268, 274
stationary observer, 516
stereographic projection, 352
Stern–Gerlach experiment, 267
Stokes parameters, 256, 266
Stokes’ theorem, 206, 219
strain, 221, 224
stress, 222
structure constants, 407
subspace, 3
surface integral, 184
symmetric function, 112
symmetric top, 80
symplectic geometry, 434
symplectic group, 439
symplectic manifold, 446
synchrotron radiation, 248

tangent space, 203, 209, 434
tensor, 115, 119
tensor analysis, 103, 174
Thomas precession, 153
time reversal, 283
timelike vector, 132
torque, 57, 77
torsion, 541
torsion tensor, 478, 480
translation, 355, 373, 388
triangulated surface, 185
trivector, 30, 34, 43, 361
twistor, 384
two-spinor, 332

unitary group, 411

vector derivative, 168, 395
vector manifold, 202
vector potential, 231
vector space, 2
vierbein, 469
volume form, 40
vorticity bivector, 546

wedge product, 11
Weyl tensor, 491, 503
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