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Theories are constructed in which the action is invariant under local transformations of
the spin and species indices of the fields and under general coordinate transformations of
the spacetime coordinates. Such theories eventually might be used to unify gravity with
the strong and electroweak forces. Some examples are given.

I. INTRODUCTION

Gauge theory seems to describe well the four
fundamental forces. Yet the kind of gauge theory
that describes electromagnetism and the strong and
weak nuclear forces differs from the kind that de-
scribes gravity. The gauge group of the electronu-
clear forces transforms species indices but not spin
indices. The gauge group of gravity transforms
spin indices but not species indices. The action of
the electronuclear forces is invariant under global
Poincaré transformations; the action of gravity is
invariant under general coordinate transformations.
In the present paper, theories are constructed in
which the action is invariant under local transfor-
mations of the species and spin indices and under
general coordinate transformations of the space-
time coordinates. The gauge group may be said to
be collateral because it acts on spin and species in-
dices in a parallel and even-handed fashion. Such
theories eventually might be used to unify the elec-
tronuclear forces with gravity . Supergravity! is an
example of a collateral gauge theory. The purpose
here is to provide another example.

A collateral gauge transformation is both a local
linear transformation of the fields ¢/* and a general
coordinate transformation of the spacetime coordi-
nates x#. It associates with each spacetime point x
both an element g(x) of its gauge group G and an
image spacetime point x’. A collateral gauge
theory may associate various representations 7’
with its gauge group G. The representation T acts
on the spin and species indices of the fields, chang-
ing a field of one type into one of a different type.
Thus a collateral transformation changes the
matter field ¥%(x) into

PHx)' =T%[g(x)]¥P(x") (1.1)

and subjects spacetime coordinates to the general
coordinate transformation x#—x *. The indices a
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and b run over the species and spin indices of the
field .

Yang-Mills theories correspond to the choice G
compact and T a unitary representation of G act-
ing only on species indices. General relativity cor-
responds to the choice G=SL(2,C) and T a repre-
sentation of SL(2,C) acting only on spin indices.
There is considerable freedom in the choice of G
and T. Once they are chosen, there is a wider
variety of possible Lagrangians than in a Yang-
Mills theory because there are more invariants that
can be formed from a tetrad and a connection than
from a connection alone. The class of collateral
gauge theories is therefore very broad.

In theories having local or global SL(2,C) sym-
metry, there is a generic doubling of matter fields
because the representations (j,j') and (j',j) are ine-
quivalent. In a collateral gauge theory, T is typi-
cally larger than SL(2,C) and the representations 7,
T*, T~'T, and T~ often are all inequivalent. In
collateral gauge theories therefore, there is a natur-
al quadrupling of matter fields. Instead of having
two Weyl spinors, which one may combine into
one Dirac spinor, one has four Weyl spinors,
which one may combine into two Dirac spinors. If
T acts on a family of quark and lepton fields, then
one may have four families. This quadrupling of
matter fields may partially explain the apparent
proliferation of quarks and leptons.

In a famous paper,”> Coleman and Mandula
showed that under certain assumptions the sym-
metries of the S matrix take the form of a direct
product of the Poincaré group with an internal
symmetry group. Collateral theories gauge more
general groups. Thus those collateral gauge sym-
metries of the action that are not of the direct-
product type may fail to be symmetries of the S
matrix. In general the symmetries of the vacuum
and of the S matrix are fewer than those of the ac-
tion because the tetrads assume vacuum expected
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values, which determine the metric of spacetime.

Collateral covariant derivatives are defined in
Sec. II. Fermions are discussed in Sec. III. Vari-
ous actions for the gauge fields are described in
Sec. IV. Some examples of collateral gauge
theories are given in Sec. V. One of them attempts
to unify gravity with the electronuclear forces in a
toy model with two 16-member families of quarks
and leptons. These examples illustrate how the
vacuum expected values of the tetrads render the
vacuum and the S matrix less symmetric than the
action.

II. COVARIANT DERIVATIVES

For some purposes it is convenient to use a ma-
trix notation in which the matrix 7T'[g(x)] is writ-
ten as T(x) and to imagine that a collateral gauge
transformation is implemented by an operator U,
which is a functional of the function g(x) in G. In
this notation, the matter field i(x) is a vector.
Under a collateral transformation, it is changed
into

Yx)=U""Px)U=T(x)(x'), 2.1

where x' is the image of x under the associated
general coordinate transformation. Since U is in-
dependent of x, the derivative of ¢ with respect to
x* is transformed into

Y (x)=U""13,0(x)U=3,[U~'¢(x)U]
=3,[T(x)P(x")]=08,x" "0, [T(x)¢(x")] ,
2.2)

where use has been made of the chain rule and of
the definition 3;,=0/9x’". A suitable covariant
derivative is

D,=0d,+4, (2.3)
provided the connection 4, transforms as
A, (x) =3,x""T(x)[A4,(x)+3,]1T~'(x) .
(2.4)

For then D, ¢ transforms as
D, ¥(x) = U“lDuz/J(x)U
=9d,x""T(x)[3, +4,(x") ]P(x")

=3,x"*T(x)D,¥(x") . 2.5)

The curvature tensor

F,,=[D,,D,] (2.6)
transforms as
Fu(x)'=08,x" 9, x" *T(x)F o (x") T~ }(x)
2.7
since
3x" 78,9, x"* =3, x" 73,9,x"™* . (2.8)

III. FERMIONS

Because T is in general larger than SL(2,0), it is
necessary to generalize the tetrad and to allow for
the possibility of four classes of fermions. It is an
open question whether this generic quadrupling of
kinds of fermions has any relation to the doubling
of flavors that is exhibited by the known quarks
and leptons or to the repetition of the quark-lepton
families.

A suitable Lagrange density L, for a spin-%
field ¢ that transforms as

Y(x)=Tx)P(x"), (3.1

where x' is the image of x under the associated
general coordinate transformation, may be con-
structed from the scalar 1,

1¢=é¢*e#1)“¢ + H.c. (3.2)

in which H.c. means Hermitian conjugate. The
scalar I, will be invariant if the tetrad e*
transforms as

eP(x ) =a,x*T~(x)e"(x") T~ \(x) . (3.3)

(One may obtain L, by multiplying I, by a scale
factor V' —g that, under a gauge transformation, is
multiplied by the Jacobian of the general coordi-
nate transformation x —x’. The metric g,,, is de-
fined in Sec. IV.)

The tetrad e* may be expanded in terms of a
suitable set of Hermitian orthonormal matrices ¢
as

et(x)=el'(x)t; . (3.4)

By substituting this expansion into the transforma-
tion law (3.4) and using the trace relation

Si,j:tr(titj) ) (3.5)

one may derive for the tetrad field e/ its transfor-
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mation rule
ef(x)' =0, x#W;;(x)ej(x") (3.6)

in which the coefficients W; are given by the
traces

W) =er[, T~ (x5 T=10)] 3.7)

The W’s form a second-rank tensor representation
of T. They are real, as are the tetrad fields e!.

The number of ¢;’s that are required depends
upon the representation 7. In the simplest case in
which T is SL(2,C) there are four, which may be
taken to be the unit matrix and the three Pauli ma-
trices. Other examples are given in Sec. V.

When T and T* are inequivalent, it is necessary
to allow for the possibility that some spin-% field
X might transform with T*,

X(x)=T*(x)X(x'), (3.8)

rather than with 7. By examining the complex
conjugates of the preceding equations for the field
¥, one may show that a suitable Lagrange density
L, may be constructed from the scalar Iy:

Iy==X"e"DiX +H.c. (3.9)

When T, T*, and T~ are all inequivalent, one
may have a field ¢ that transforms as

Px)=T"(x)p(x") . (3.10)

In this case one introduces a contragredient tetrad
hH
h*(x)=h!t; (3.11)

that transforms as
hH(x) =3, x T (x)h*(x") T (x) (3.12)
and constructs the Lagrange density L, from the

scalar

I =é<p7h"D*¢+H.c. (3.13)

¢ H

The contragredient tetrad fields 4! transform as
hi(x) =0, x*V;e/(x") , (3.14)

where the coefficients V; are given by the traces
Vi =tr[;T(x)y;TH(x)] . (3.15)

These coefficients are real, as are the h/”s. In the
next section, the metric of spacetime is made out
of the two tetrads e and h*.

Finally, if T~'7 is inequivalent to T, T*, and
T-', then there may be a field that transforms as

ox)=T"Tx)w(x') . (3.16)

Now the appropriate scalar is
I,= éw"h*mgm +H.c. (3.17)

The present notation does not help one remem-
ber how various fields transform. For this a nota-
tion due to van der Waerden is useful. Objects
that transform with T are given a superscripted in-
dex:

' =T%" . (3.18)

Those that transform with T* are given a dotted
superscripted index:

X4 =T*4xb (3.19)

Those that transform with T~ get a dotted sub-
script:

@, =T""%; . (3.20)

Finally, those that transform with -7 get an un-
dotted subscript:

we=T"T%p, . (3.21)

The components of the tetrad matrices are e(x),,
and h*(x)®. Those of the curvature-tensor matrix
are F ;.

Scalars now may be formed by contracting an
upper undotted index with a lower undotted index
or by contracting an upper dotted index with a
lower dotted index. Some examples are

v, X, ¢'gt?, and X0, . (3.22)

Gauge-invariant mass terms may be made from
such scalars.

Other scalars may be constructed if fields like
p"b, q‘"’, Yap, OT 54, are present. Some examples are

0'po, o'qw, ¥Try, ¥isy, and XTsy . (3.23)

Such interactions may contribute to fermion
masses if certain components of these extra fields
P, g, ¥, or s acquire vacuum expected values. These
interactions are not all of the Yukawa type since
some of the components of the extra fields are vec-
tor fields. The extra fields ¢ and s may be taken to
be Hermitian and may be expanded in terms of the
matrices t; as

g=gq;t; and s =s;t; . (3.24)

For later purposes it will be well to assume that g
and s are nonsingular matrices.
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IV. ACTIONS FOR GAUGE FIELDS

The tetrads defined in the preceding section will
now be used to construct the metric of spacetime
and various possible actions for the gauge fields
A

u
One may construct two Hermitian contravariant
tensors from the tetrads e and h*. The first,
ghv=1 tr(ePh”+e*ht)

1 ba ba

= (eb,h"+e; h#*)

1
ZT(e#hiv—Feivh[P) s (4.1)

is real and symmetric. The second,

k""=—;— tr(e*h¥—e*h#)
é(eabhvba e;bhvbd)

= é(e,“h,-"—e,-"h,“) , 4.2)

is imaginary and antisymmetric. Both transform
like a contravariant tensor:

gM(x) =d5xH 3, x"gM(x') (4.3)

with a similar equation for k*”.

The metric of spacetime will be taken to be the
covariant tensor g, that is the inverse of g*”. It
transforms like

8un(x)'=3,x"3, x" %g15(x") (4.4)
since
3ux M xt =3, x M x =57 . 4.5)

In order to make a suitable Lagrange density L
from a scalar I, one must multiply the scalar by a
quantity that, under a gauge transformation, is
multiplied by the determinant of d,x"". The deter-
minant of any second-rank covariant tensor will
do, but the natural choice is

V —g =V —det(g,,) . (4.6)

There are many scalars I that may be made
from the curvature tensor F, va, the two tetrads e
and h"“”, and their Hermitian conjugates. One
need only contract each contravariant index with a
covariant index, each dotted superscript with a
dotted subscript, and each undotted superscript
with an undotted subscript. Then if the resulting
scalar is not Hermitian, one may extract its Hermi-
tian or anti-Hermitian part. It is not useful to list
more than a few of the possible scalars that may so

be formed.
A natural choice linear in F is

I,=m?r(e!F,h")
=m’efy Fych* 4.7)

in which m is a mass, presumably the Planck
mass, inserted for dimensional reasons. Two
scalars quadratic in F are

I,=tr(F,F,)g"*g" (4.8)
and
Iy=tr(e#F, h*e*Fy,h°) . (4.9)

Scalars bininear in F and F' tend to be lopsided
like
Iy=tr(Fh*e*hoTF] et . (4.10)

If, however, some of the extra fields p, g, r, or s
are present then symmetrical scalars bilinear in F
and F' do exist. One of the simplest is

Is=tr(F,,s~ IF] s)gthge | 4.11)

in which the assumed invertibility of s is used.
Another is

Tg=tr(ePF, h"s h*Flie%s ") . (4.12)

There are many other possibilities.

One may convert the above scalars I; into
Lagrange densities by multiplying them by V' —g.
One may sometimes avoid this square root by us-
ing the totally antisymmetric Levi-Civita tensor
€2 of which €”'?*=1. An example is

Ly=€"1tr(Fpus ~'Fl,s) . (4.13)
One may wish to provide the extra field s with

its own action term. A suitable covariant deriva-
tive for s is

+
Dys=0,s—sA,—A,s , 4.14)

which like s is Hermitian. A Lagrange density for
s may be made from the scalar

IS:m’Ztr(D”ss“less“‘e“h") . (4.15)

There are many other such scalars.

V. EXAMPLES

Four examples of collateral gauge theories are
given in this section. The fourth pretends to unify
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gravity with the electronuclear interactions and
provides natural roles for two 16-member families
of quarks and leptons. These examples are intend-
ed to illustrate the structure of collateral gauge
theories, not to provide realistic models.

For simplicity the gauge group G of the first ex-
ample will be taken to be the direct product of
SL(2,C) with a compact Lie group K that acts only
on the species indices. The theory is then only
trivially collateral and resembles many convention-
al theories. The matrices #; may be taken to be the
unit matrix and the three Pauli matrices. Since the
generators of the Lorentz group commute with
those of the Yang-Mills group, the curvature ten-
sor F splits into two independent pieces. The piece
referring to the Lorentz group may contribute to
the action via the scalar 1| of Eq. (4.7), in which
the tetrad fields are related by h!=m;;el, where 7
is the metric of flat space. Then k*¥ vanishes and
g"v=e*Tne¥. The Yang-Mills piece may contri-
bute to the action through the scalar I, of Eq.
(4.8).

The gauge group G of the second example is
GL(4,0) and T is its fundamental representation.
The vacuum expected values of the tetrads deter-
mine which gauge transformations represent
Lorentz transformations, as will be explained at
the end of this section. For one simple set of
tetrad vacuum expected values,’ a Lorentz
transformation is represented by a matrix T of the
form

A O

T=19 A

) (5.1

where A is in SL(2,C). There are now 16 matrices

t; which may be defined in terms of the four ma-
J

1

(5,3)®[(5,0) @ (0,5)1P=2[(1,1) ® (1,0) & (0,1) ®

under Lorentz transformations. Thus the tetrad
fields e“fb and h*%® which transform similarly,
each contain two spin-2 fields, four spin-1 fields,
two scalars, as well as two spin-2 fields that
transform as (%,%) and as (-;—,%) and two spin-1
fields that transform as (1,0) and as (0,1). If the
extra field s, is present, then it transforms as
11

2(5

5,7) @ (1,0) & (0,1) & 2(0,0) . (5.5)
The fourth example is a toy model that seeks to
unify gravity with the electronuclear interactions in

a world with two families of quarks and leptons.

The simplest and most conventional such model is
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trices o*=(1,5) as

1 a0 110 o
ti=‘2‘ 0 o’ t4+i:_5 o 0l
1108 O
t8+i 3 0 —o'|’ (52)
and
1 0 iot
t12+i=E —iot 0|

In these examples, the tetrad fields all have spin
2. There is one tetrad field e/ in the first example.
In the second example, the tetrad fields e/ split up
into four spin-2 fields e/, e,.“+4, el."+8, and e{‘+12, for
i=1-4. So do the 4. Each such spin-2 field ac-
tually contains a scalar component and two spin-1
components that transform as (1,0) and as (0,1).
The extra field s, if present in the first example, is
a vector field s;. If present in the second example,
s splits into four vector fields. The extra fields p
and r have scalar components, but g like s is purely
vectorial.

The gauge group G and representation T of the
third example are those of the second, but now it is
assumed that the tetrads assume a different set of
vacuum expected values. A Lorentz transforma-
tion now is represented by a matrix T of the form

A O

T=1o A+

) (5.3)

where A is in SL(2,C). The matrices ¢; may be
chosen as in the second example. The tetrad fields
el, now transform as

(0,0]®4(5,5)® (5,7) D (3,5) (5.4)

I

provided by the first example with K =SUs. In or-
der to make a fully collateral theory, however, it
seems necessary to avoid grand-unification
schemes® that place fermions in tensor representa-
tions, like the 10 of SUs. For such fermions would
then transform as tensors under Lorentz transfor-
mations as well. The simplest scheme® with spinor
representations’ for fermions uses the group
SO(10) and places 16-member families of fermions
into 167 spinorial representations. The gauge
group of the fourth example is G =SO(1,13),
which contains SL(2,C) ® SO(10) as a maximal
subgroup.® Fermions are placed in the 64 spi-
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norial representation 7" of G. Under

SL(2,C) ® SO(10), the 64+ transforms as
((%,0),&*) @ ((0,%),&_), to which are assigned
one SO(10) family and one “antifamily,” i.e., the
right-handed antifields of a second SO(10) family.}?
The representation 7% =64~ seems to have the
wrong structure, being ((%,0),&“) ® ((0,%),1_6+).
The representations 7—!7 and T~ are here
equivalent to T and T*. A Lorentz transformation
is represented by a 64 by 64 matrix T that has 16
factors of the SL(2,C) matrix A and 16 factors of
A* along its main diagonal. There are now 91 ma-
trices ¢;, which may be constructed iteratively from
those of the second example. One might be able to
extend this toy model to one big enough to hold
four families by choosing as G a somewhat larger
group in which T, T*, T~'7, and T~ are all ine-
quivalent.

There are many choices for the action of the
gauge field. The simplest choice involves the
scalar I;. Two other choices use the scalars I5 and
I of Egs. (4.11) and (4.12).

In these examples if the scalar I, is used, then
the field equation that follows from the require-
ment that the action be stationary under small
variations of the gauge fields 4, is an equation
that involves 4, only algebraically. In general this
equation can be solved for 4,, in terms of the
tetrad fields, the fermi fields, and any extra fields
that may be present. The field equations of the
tetrad fields involve derivatives of 4,. So if one
substitutes the expression for the gauge fields into
the tetrad field equations, then one finds second-
order differential equations for the tetrad fields.

In these examples, suitable actions for the fermi
fields may be made from the scalars (3.2), (3.9),
(3.14), and (3.17).

As mentioned in the Introduction, the vacuum
expected values of the tetrads make the vacuum
and S matrix less symmetric than the action.
Whatever the action of the theory, the metric of
spacetime is the inverse of the matrix g#¥, which is
the trace (4.1) of the product of the tetrad fields
el and h*%. The tetrad fields therefore assume
nonzero vacuum expected values wherever the
metric is well defined.. To lowest order in #, the
vacuum expected values of the tetrads are solutions
of the classical equations of motion. Collateral
gauge theories generally possess classical vacuum
solutions in which the gauge fields vanish, 4, =0,
in which the tetrads e* and A” assume constant
values, and in which the extra field s, if present, is
also constant. These solutions describe empty flat

space. They spontaneously break the symmetry of
the vacuum under general coordinate transforma-
tions, and reduce its gauge symmetry. Some classi-
cal tetrad solutions describe curved space or have
the wrong signature. Those that describe flat Min-
kowski space leave the vacuum with rigid Poincaré
invariance, in which coordinate transformations,
x—x', must be synchronized with rigid Lorentz
rotations, ¥'=T1vy. Thus, as noted in the examples,

~ the tetrad vacuum expected values define what is

meant by a Lorentz transformation. They leave
the vacuum with an internal gauge symmetry asso-
ciated with a compact Lie group lying in the gauge
group G. Any vacuum expected values assumed by
any extra fields, such as s, may further reduce the
symmetries of the vacuum and of the S matrix.

The vacuum expected values of the tetrads also
specify the chiralities of the matter fields ¢, since
they define what SL(2,C) matrices are associated
with a Lorentz transformation. The index a is a
pair a =(a,s) of indices in which the Weyl index a
is 1 or 2 and the species index s runs from 1 to n.
The tetrad vacuum expected values

1

e#éb :e“izs,Bs’: ‘/E Uﬂdﬁas,s' (5.6)
and
. . 1 .
hvba:hvBs,as: VBaS o 5.7
WerRdit (5.7)

describe flat Minkowski space and imply that the
field ¥* consists of n left-handed Weyl spinors.
These tetrad values reduce the internal symmetry
of the vacuum to U(n). The symmetries of the
vacuum and of the S matrix are then of the form
of the direct product of the Poincaré group with a
compact internal symmetry group, as required by
the Coleman-Mandula theorem.> Their theorem
suggests that something like this happens whenever
it is possible to define an S matrix in flat space.

ACKNOWLEDGMENTS

The author wishes to thank Professor Roy J.
Glauber for the hospitality extended to him at
Harvard University where the early stages of this
work were done with support from the Department
of Energy. He is grateful also to Professors J. D.
Finley, III, M. Grisaru, J. Mandula, P. van
Nieuwenhuizen, R. Slansky, G. J. Stephenson, and
P. B. Yasskin for useful conversations and to Pro-



1922 KEVIN CAHILL

fessors C. Moler and S. Steinberg for use of the
computer systems of the Departments of Computer
Science and of Mathematics and Statistics of the

University of New Mexico. This work was sup-
ported in part by the U.S. Department of Energy
under Contract No. DE-AC04-81ER40042.

IP. van Nieuwenhuizen, Phys. Rep. 68, 189 (1981).

28. Coleman and J. Mandula, Phys. Rev. 159, 1251
(1967).

3A suitable set of tetrad vacuum expected values is
ef' =38} and hf'=n;e} for pu,i,j=1—4 and ef'=hf'=0
for i=5—16 and u=1—4. Space is then flat and
Minkowskian and the symmetry group of the S ma-
trix is the direct product of the Poincaré group with
the internal symmetry group U(2), in accordance with
the Coleman-Mandula theorem (Ref. 2).

4Such as ej =h|{=1; ek, , = —h¥, ;=8¢ for u,i=2—4;
and all others zero.

SH. Georgi and S. Glashow, Phys. Rev. Lett. 32, 438
(1974).

SH. Georgi, in Particles and Fields—1974, Proceedings
of the 1975 Meeting of the Division of Particles and
Fields of the Americal Physical Society, edited by C.
Carlson (AIP, New York, 1975); H. Fritzsch and P.
Minkowski, Ann. Phys. (N.Y.) 93, 193 (1975); and M.
Gell-Mann, P. Ramond, and R. Slansky, Rev. Mod.
Phys. 50, 721 (1978).

7F. Wilczek and A. Zee, Phys. Rev. 25, 553 (1982).

8R. Casalbuoni and R. Gatto, Phys. Lett. 90B, 81
(1980). These authors considered the group O(13,1)
and noted that it naturally supports two families.
They suggested gauging it, but seem not to have done
SO.



