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Abstract. The aim of this report is to provide a brief account of the
mathematics underlying a substatial part of modern theoretical physics,
more specifically field theory, and in particular the gauge theories used
to describe elementary particle interactions. Therefore, the elements of
mathematics we consider mainly belong to the realms of differential ge-
ometry and topology, and is divided into five main chapters; Manifolds,
Tensors, Differential Forms, Lie Theory and Bundles and Gauge Theory.
Each chapter serve as an elementary introduction to the subject it con-
cerns and the degree of depth is largely determined by what is optimal
with respect to comprehension of the other chapters.

Sammanfattning. Syftet med denna rapport är att kort redogöra för ma-
tematiken som ligger till grund för en väsentlig del av den moderna teoretis-
ka fysiken, mer specifikt fältteori och speciellt gaugeteorierna som används
för att beskriva elementarpartikelväxelverkan. Matematiken vi behandlar
tillhör därför i huvudsak omr̊adena differentialgeometri och topologi och
är uppdelad i fem huvudkapitel; m̊angfalder, tensorer, differentialformer,
lieteori och buntar och gaugeteori. Varje kapitel utgör en elementär intro-
duktion till omr̊adet det rör och framställningens djup beror i huvudsak
p̊a vad som är optimalt med avseende p̊a först̊aelse av de övriga kapitlen.
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Introduction

The mathematics we will treat in this report has largely become essential
in physics because of three physical insights. First of all it has become ap-
parent that the universe cannot be thought of as a realization of Euclidean
3-space, not even if one adds a time dimension to the spatial part. The cur-
rent theory dictating the relation between space and time and the properties
of the world related to these, i.e. general relativity, states that space and
time must be equal parts of one entity, space-time, and demand a more gen-
eral space than the Euclidean to describe the universe and to this end spaces
called manifolds are used. The use of manifolds then requires a generalization
of the concept of vectors and this is obtained by the notion of tensors, and
in order to do analysis with these new objects analogous to vector analysis
one needs (exterior) differential forms. Secondly physicists have realized that
symmetry is very important in the universe and thus for the description of it,
therefore, algebra naturally enters into modern physics since this is a mathe-
matical subject well equipped, and in a way designed for treating symmetries
and thereby invariants. In particular the use of Lie groups have become es-
sential in modern physics, largely related to the fact that in addition of being
groups these objects are also manifolds. Finally, the above two realizations
and a third, which is the importance of a distinction between local- and global
properties of objects and phenomena in the physical universe, have made the
mathematical objects called bundles powerful and, in a way, essential tools in
modern theoretical physics. Thus, our opening claim seems fair and therefore
reading this report should be time well spent for people engaged in physics as
well as in mathematics.

The use of bundles in physics considered here is in field theory, in par-
ticularly (classical) gauge field theory, and the idea of letting fields represent
physical entities must be one of the most important ever conceived. Classi-
cal field theory begun with the development of electrodynamics in the 20th
century and through the general theory of relativity the subject got a very
geometrical flavor. These developments in physics was possible largely due to
the fact that in mathematics a theory of geometry had been developed, by B.
Riemann and others, that naturally allowed one to represent and work with
the entities of the physical theories and these entities became known as fields,
in the cases here, the electromagnetic- and gravitational field. In this way
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vi INTRODUCTION

mathematics paved way for physics, but the favor was to be returned. A mon-
umental event in the history of field theory, commonly refered to as the gauge
revolution, occurred when it was realized that gauge theories could be used
to accurately describe elementary particle interaction. This insight changed
the perceived nature of the physical fields, with respect to global vs. local
properties, and forced one to replace the function representation of them on
space-time by a more sophisticated object, a so called section of a fibre bun-
dle. Nowadays, although modern field theory involving quantum fields is in
its infancy, at least mathematically, it has in itself and through its generaliza-
tion, e.g. string- and M-theory, repaid the favor to mathematics, in particular
by providing new ways, using new invariants, to study the structure of low
dimensional topological spaces, especially manifolds. These things will not be
treated here though, since they lie well beyond the focus of this report.

The reader should note, that even though the contents of this report is
largely motivated by its relation to the gauge theories of modern physics the
report is a mathematical one. We begin by defining the basic concepts of
manifold theory, tensors, differential forms and Lie theory in a purely math-
ematical fashion. These are then intertwined with the subsequent chapter on
bundles into an exposition of gauge theoretical concepts through notions such
as connection, curvature and covariant derivative. Finally the reader should
note that an appendix has been added in which the necessary prerequisites
from topology, analysis and algebra may be found.

Lule̊a University of Technology
March 11th 2005

S. Eriksson J. Häggblad D. Strömbom
steeri-3@student.ltu.se jonhag-1@student.ltu.se danstr-2@student.ltu.se



CHAPTER 1

Manifolds

Traditionally we are used to do calculus in the familiar Euclidean space
R

n. Living as we do, in a world closely resembling this abstractation, it can
be hard to realize the limitations that this framework imposes on us. So it
would not come as a surprise that it took so long, from the ancient Greeks
to the 19th century, to free ourselves from the Euclidean mind set of R

n as
the most general space. With the groundwork of C. F. Gauss, B. Riemann
was finally able to generalize this notion to the concept of manifolds. The
fundamental idea behind manifolds is that although globally they can be very
complicated, locally they always look like the familiar Euclidean space. What
is meant by “globally” and “locally” can be illustrated by considering a sphere.
For a tiny 2-dimensional creature living on this sphere, the sphere looks flat.
Yet for a larger 3-dimensional creature observing from a distance, the sphere
is obviously curved. It should be noted that examples like these should not
be considered in detail, as the analogy is not exact. Yet it conveys the idea of
“local” and “global” in a nice way. The second crucial idea conceived with the
concept of manifolds is that although they can be embedded in R

n to help us
visualize them, this is not required. A manifold can be a completely separate
entity in itself. The natural example of this is of course the 4-dimensional
model of the world used in the formulation of Einstein’s General Relativity.
Here the world is modeled as a curved 4-dimensional manifold that we can
never visualize globally. The only thing we see is “flat” Euclidean space. This
is quite natural since in a fundamental physical theory about the world we
want the formulation to be independent and not depending on any external
phenomena.

The goal of this chapter is to define in mathematical terms what a manifold
is. Then we will develop the structure necessary for doing calculus on them.

1. Defining a Manifold

Before we can define a manifold we need the very important notion of
a homeomorphism (not to be confused with homomorphism). Intuitively we
can think of two homeomorphic spaces as such that one can in a continuous
way transform one into the other and vice versa. There are many topological
notions used here, especially in the first chapter, that if unsure of, should be
looked up in the prerequisites.

1



2 1. MANIFOLDS

Definition 1.1. If a function between two topological spaces f : M → N
is bijective with inverse f−1, and the both maps f and f−1 are continuous, we
say that f is a homeomorphism and the two topological spaces M and N
are said to be homeomorphic.

There are various ways of defining a manifold depending on how many
“strange” spaces one wants to include. A metrizable condition on the manifold
eliminates most, if not all of these. Yet, two different conditions, Hausdorff
and second countable (which are covered in the preliminaries), are used instead,
which one can show to be equivalent to the metrizable condition [Spi99]. This
is to clearer emphasize the properties of the space.

Definition 1.2. A manifold, or topological manifold, of dimension n
is a topological space M such that

(1) M is a Hausdorff space
(2) M is second countable (has a countable base for the topology)
(3) ∀x ∈M there exist a neighborhood U ⊂M of x such that U is home-

omorphic to an open subset of R
n.

The basic example of a manifold is the Euclidean space, as well as any
open set inside. Any smooth boundary of a subset of Euclidean space is a
manifold as well, such as the circle or the sphere.

Example 1.3 (S1 and S2). Two examples of manifolds are the unit circle
S1 in R

2 and the unit sphere S2 in R
3.

Another type of manifold is manifold with boundary. It is defined
similarly to a manifold except that U is homeomorphic to the closed set

H = {(x1, · · · , xn) ∈ R
n | xn ≥ 0}.

We will, unless otherwise specified, mean a “ordinary” manifold when we talk
about manifolds in our continued discussion.

2. The Differentiable Structure

To be able to do calculus on a manifold we need to introduce additional
structure to facilitate this. Basically what we need to do first is to make
sure that different homeomorphisms of a subset of a manifold M are compat-
ible with each other in the sense that one can transform between them in a
smooth way. If we let U , V be open subsets of a manifold M , then the two
homeomorphisms

x : U → x(U) ⊂ R
n

y : V → y(V ) ⊂ R
n

are called C∞-related if

y ◦ x−1 : x(U ∩ V )→ y(U ∩ V )
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x(U) ⊂ R
n

y(V ) ⊂ R
n

U V

M

x y

y ◦ x−1

Figure 1. The composition of two homeomorhisms in an over-
lapping region on a manifold M .

x ◦ y−1 : y(U ∩ V )→ x(U ∩ V )

are C∞. That is, the composite functions are infinitely many times differen-
tiable (smooth). These mappings are illustrated in figure 1. An atlas A for
a manifold M is a set of C∞ related homeomorphisms whose domains cover
M . An element (x,U) of an atlas is called a chart or a coordinate system.
The notation (x,U) is chosen to emphasize the domain of the chart. The
denotation “x” of the homeomorphisms instead of the otherwise common “φ”
is chosen so that one more easily identifies the point p ∈ M with the point
(x1(p), x2(p), . . . , xn(p)) ∈ R

n.

Example 1.4 (S1). An example of a manifold is the unit circle S1 in
R

2. We cannot cover the entire circle using a single chart, and thus must use
at least two overlapping charts. Here we show an example of such an atlas,
altough there are of course many other atlases. Using four homeomorphisms
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-0.5
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1

Figure 2. The four different charts covering the unit circle S1

(solid) in example 1.4. U1 dotted, U2 dashed, U3 longly dashed
and U4 very longly dashed.

xi : Ui → x(Ui) ⊂ R
1 we get the charts

(x1, U1) : U1 =
{
(x, y)|x > 0

}
x1(x, y) = y

(x2, U2) : U2 =
{
(x, y)|x < 0

}
x2(x, y) = y

(x3, U3) : U3 =
{
(x, y)|y > 0

}
x3(x, y) = x

(x4, U4) : U4 =
{
(x, y)|y < 0

}
x4(x, y) = x

where we have x2 + y2 = 1 for the unit circle. Note that the pair (x, y) is
a point on the manifold, which here is embedded in R

2. The inverse maps
(xi)−1 : x(Ui) ⊂ R

1 → Ui, are

(x1)−1(x) = ((1− x2)
1

2 , x)

(x2)−1(x) = (−(1− x2)
1

2 , x)

(x3)−1(x) = (x, (1− x2)
1

2 )

(x4)−1(x) = (x,−(1− x2)
1

2 )

Again, ((1−x2)
1

2 , x) are points on the manifold. If we want to convince ourself
that the overlapping maps are smooth, we can as an example look at a point
in U1 ∩ U3. The reasoning are similar for all other points. In a point (x, y) in
the overlap between U1 and U3 we have

y = (1− x2)
1

2 0 < x < 1, 0 < y < 1.

From the inverse maps we get (x3)−1(x) = (x, (1−x2)
1

2 ), and x1 ◦ (x3)−1(x) =

(1− x2)
1

2 , which obviously are smooth when 0 < x < 1, hence the manifold is
smooth.

Theorem 1.5. If A is an atlas on the manifold M, then A is contained in
a unique maximal atlas A′. The maximal atlas A′ is usually referred as the
differentiable structure of the manifold.
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That we have a maximal atlas is dependent on Zorns lemma, which is
equivalent to the debated axiom of Choice. A statement of Zorns lemma is
as follows: If S is a non-empty inductively ordered set, then S has a maximal
element. The statement above is proved analogous to the way one usually
proves, the more familiar theorem, that every vector space V has a basis.
That is, choose an arbitrary linearly independent subset S ⊂ V . If S does not
constitute a basis then there exist a vector v ∈ V that cannot be written as a
linear combination of the elements in S, which means that we can include v in
S and still have a linearly independent set S̃. If S̃ is still not a basis we repeat
the procedure and this is done again and again until finally a basis is obtained,
and it is Zorns lemma that guarantees that we in this way eventually will get
a basis. Thus, the maximal atlas statement is proved by starting with, for
instance, one atlas and then keep adding atlases in the same manner as in the
vector space case, until a maximal atlas is obtained.

Definition 1.6. A differentiable manifold or C∞-manifold is the pair
(M,A), where A denotes the maximal atlas for the manifold M .

In the same way as homeomorphisms are used with manifolds, the notion
of diffeomorphisms are used when dealing with differentiable manifolds.

Definition 1.7. If a function between two smooth (C∞) manifolds f :
M → N is bijective with inverse f−1, and the both maps f and f−1 are
smooth, we say that f is a diffeomorphism and the two manifolds M and N
are said to be diffeomorphic.

It should be noted that the concepts of homeomorphisms for topological
spaces and diffeomorphisms for manifolds are similar to what isomorphisms
are for vector spaces. From here on when we talk about a manifold M , we
mean a differentiable manifold M . Also when we mention U , we always mean
the subset U ⊂ M . Using this differentiable structure on a manifold we are
now ready to define what a differentiable function is.

Definition 1.8. A function f : M → N is differentiable at p ∈ U if
y ◦ f ◦ x−1 : R

n → R
m is differentiable in the usual sense.

For a function g : R
n → R we denote Dig(a) for

lim
h→0

g(a1, · · · , ai + h, · · · , an)− g(a)

h
.

This with the familiar chain rule for two functions g : R
m → R

n and h : R
n →

R,

Di(h ◦ g)(a) =

n∑

j=1

Djh(g(a)) ·Dig
j(a),
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we can define how the function f : M → R is differentiated with respect to its
charts.

∂f

∂xi

∣
∣
∣
∣
p

= Di(f ◦ x
−1)(x(p)). (1)

To avoid lengthy expressions involving multiple summations we will intro-
duce a summation convention directly here in the beginning. This convention,
the Einstein summation convention, means that whenever two indices in
an expression appears both “up” and “down”, it is summed over, e.g.

aiei =
∑

i

aiei.

Theorem 1.9. Let (x,U) and (y, V ) be two charts on the manifold M, and
f : M → R is differentiable map. Then on U ∩ V we have

∂f

∂yi
=

∂f

∂xj

∂xj

∂yi
. (2)

Proof. Using the definition in equation (1) and the chain rule, gives

∂f

∂yi

∣
∣
∣
∣
p

= Di(f ◦ y
−1)(y(p))

= Di([f ◦ x
−1] ◦ [x ◦ y−1])(y(p))

= Dj(f ◦ x
−1)([x ◦ y−1](y(p))) ·Di[x ◦ y

−1]j(y(p))

= Dj(f ◦ x
−1)(x(p)) ·Di[x

j ◦ y−1](y(p))

=
∂f

∂xj

∣
∣
∣
∣
p

·
∂xj

∂yi

∣
∣
∣
∣
p

�

We will often write this important result on operator form

∂

∂yi
=
∂xj

∂yi

∂

∂xj
.

3. The Tangent Space

For a curve in R
2 or a surface in R

3, what is meant by a tangent vector
is easily defined and visualized. For an abstract space such as a manifold this
is no longer the case. Fundamentally because the manifold can be the space
itself, and not like for example the 1-dimensional curve embedded in R

2, where
the tangent vectors are simply the vectors in R

2 that are tangent to the curve.
That is, the tangent vectors “live” in a space outside of the space they are
tangent to. Thus, for a manifold we must define tangent vectors on a manifold
intrinsically of the manifold itself.
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TpM

P

M

Figure 3. The 2-dimensional tangent space at a point p on a
2-dimensional manifold embedded in R

3

Definition 1.10. A tangent vector, vector or contravariant vector
X at p is a derivation (derivative operator) defined on the germs of functions
as X : C∞

p (M)→ R such that

(1) X(αf + βg) = αX(f) + βX(g)
(2) X(f g) = X(f) g(p) + f(p) X(g)

The first condition is the usual linearity condition. The second is the
Leibniz property that we require derivations to satisfy. We can also define the
tangent vector in a cumbersome, but more intuitive, way by letting X be an
equivalence class of curves c : (−ǫ, ǫ) → M passing through a point p ∈ M
such that their tangents coincide in p. This definition is harder to work with,
but included for illustrative purposes. Next we define the tangent vector space
in the natural way.

Definition 1.11. The tangent vector space at p ∈M , written TpM , is
the vector space spanned by all tangent vectors at p ∈M .

Theorem 1.12. In a given chart (x,U), a vector X at p ∈M admits the
representation

X = X(xi)
∂

∂xi

∣
∣
∣
∣
p

The basis of this representation,

∂

∂x1

∣
∣
∣
∣
p

, · · · ,
∂

∂xn

∣
∣
∣
∣
p

is called the coordinate basis.

This theorem is stated without proof, and as with the other theorems
stated without proofs, they can be found in [Spi99]. Using theorem 1.12 we
can let

X = ai ∂

∂xi

∣
∣
∣
∣
p

(3)

correspond to the vector a at the point p ∈ U for the chart (x,U). We can
now express a vector in terms of charts on the manifold. Next we want a way
to transform a vector between different charts on U ⊂M .



8 1. MANIFOLDS

Theorem 1.13. Two vectors a, b ∈ TpM for different charts (x,U) and
(y, V ) where
p ∈ U ∩ V are the same vector if and only if they satisfy

bj =
∂yj

∂xi

∣
∣
∣
∣
p

ai (4)

Proof. We can express a vector a at the point p as

X = ai ∂

∂xi

according to equation (3) in the chart (x,U), and another vector b at the same
point as

X = bj
∂

∂yj
.

Comparing those two expression we immediately get the result

bj =
∂yj

∂xi
ai

at the point p. �

In physics this theorem is often taken as the definition of a contravariant
vector. That is, one defines a contravariant vector in the way its coefficients
transform between different charts (coordinate systems). Although this ap-
proach makes it possible to do calculations fairly early, it does not give the
same level of understanding of what a contravariant vector is. We will see this
later on when we define “the other” type of vectors, called covariant vectors.
Grasping the fundamental difference between these two types of vectors can
be quite difficult if one just considers how they transform.

Since we have a one-to-one correspondence [Spi99] between tangent vec-
tors X ∈ TpM and the differential operators they are associated with, we do

not make a distinction between a vector and the differential operator ∂
∂xi

∣
∣
p

corresponding to it. To emphasize this further we will use the notation

∂i =
∂

∂xi
. (5)

Most of the work uptil now has been to construct on manifolds, the usual
structures we are accustomed to in R

n, and we are now ready to start exploring
these tools in the context of manifolds.

4. The Tangent Bundle

The tangent bundle is an important construction. We will later see that
it is used to define vector fields on manifolds and in an example from classical
mechanics the tangent bundle is the space of generalized velocities. It is also
our first example of a fibre bundle.
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π

T

Figure 4. The manifold R, its tangent space TR and the pro-
jection π

Definition 1.14. The tangent bundle of a manifold M is the disjoint
union of all its tangent spaces

TM =
⋃

p∈M

TpM (6)

together with a continuous map onto M

π : TM →M (7)

such that at every point p ∈M , TpM is mapped to p. The inverse of this map
at every point p, is called the fibre over the point p, denoted by π−1(p), and
is obviously the set of all tangent vectors at the point p.

The tangent bundle will be denoted by its map π : TM → M or simply
just TM . Locally the tangent bundle for an open set U ⊂M looks like U×R

n.
This is a property that we will return to later, as the tangent bundle belongs to
the important class of structures called fibre bundles, which will be our focus
later on in chapter 5. We will then also define, more precisely what a bundle
topology is, whereas this definition of the tangent bundle is more informal.

Definition 1.15. Let f : M → N be differentiable, then at the point
p ∈ U ⊂M the differential f∗p : TpM → TpN of the map f is defined by

(f∗pX)(g) = X(g ◦ fp) ∀g ∈ C∞
f(p)(N).

The union of all f∗ is written as f∗ : TM → TN and gives rise to the com-
mutative diagram

TM
f∗
−−−−→ TN

π



y



yπ

M
f

−−−−→ N

(8)

The principles of how the differential of a function behaves, can easier be
seen if one consider the definition mentioned earlier about tangent vectors at
a point p as an equivalence class of curves. Then the differential is simply the
transportation of the tangent vector c(t0) 7→ f ◦c(t0). As mentioned earlier the
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tangent bundle TM looks locally like U ×R
n which is an important property.

This we can for example use to see that the tangent bundle TM is itself a
manifold. Let (x,U) be a chart, then all X ∈ TM |U is uniquely of the form

X = ai∂i, p = π(X),

and thus the map (x ◦ π,X) : TM |U → x(U)× R
n is simply

x∗ : U × R
n → x(U)× R

n

when we identify TM |U with U ×R
n in the natural way. This is of course an

homeomorphism and hence qualifies the tangent bundle TM to be a manifold
in itself. If (y, V ) is another chart then we can show [Spi99] that y∗ ◦(x∗)

−1 is
C∞ and thus x∗ and y∗ are C∞-related and can be extended to form a maximal
atlas on TM . This makes TM , not surprisingly, a differentiable manifold as
well.

Example 1.16 (Configuration space in mechanics). The configuration of
a dynamical system with n degrees of freedom can be thought of as a n-
dimensional manifold M , this we call the configuration space. Usually in
physics these coordinates are denoted by qi. A tangent vector on this manifold
is thought of as a velocity vector and its components are written as q̇i (instead
of vi, the reason for this will be expanded on later). We say that they are
“generalized velocities” and TM is simply the space of all these velocities. For
a simple pendulum, M is S1 and for a dynamical system of two particles in
R

2, M is R
2 × R

2.

5. Vector Fields and the Lie Bracket

A section of a tangent bundle π : TM → M is a continuous function
s : M → TM such that π ◦ s is the identity of M . This map we can use to
define vector fields in an extremely elegant way.

Definition 1.17. A vector field X on M is a section X : M → TM .

We can understand a section if we think of how a vector field assigns to
every point p on the manifold M a point in π−1(p) ⊂ TM . The section s then
describes in a smooth way in TM how the vector field on M is constructed.

Example 1.18 (Vector field on R). If we have as a manifold M the real
line R then our tangent bundle TM will be R × R. The 0-section, which
always exists, will then give a vanishing vector field on R, and how a section
s produces a vector field on M is illustrated in figure 5.

A vector field can thus be seen as a (locally) continuous set of tangent
vectors to M . For a chart (x,U) we have

X(p) = ai(p)∂i

∣
∣
p
∀p ∈ U.
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0- section

section s
TM

M

Figure 5. The section s in TM and the vector field on M
for this section. Included is also the 0-section which gives a
vanishing vector field on M

Thus we usually just write a vector field as

X = ai∂i.

We define in the usual way the vector fields X + Y and fX by

(X + Y )(p) = X(p) + Y (p)

(fX)(p) = f(p)X(p)

where X and Y are vector fields and f : M → R. Thus we see that for every
p ∈M the set of all vector field on M constitutes a real vector space over R,
which we denote by χ(M). However if X,Y ∈ χ(M), then the operation XY ,
if viewed as repeated application, does not generally lie in χ(M). We can see
this easily from the following

XY (fh) = X(fY (h) + hY (f))

= X(f)Y (h) + fX(Y (h)) +X(h)Y (f) + hX(Y (f))
(9)

which certainly is not a vector field according to the Leibniz property of a
vector in definition (1.10). To satisfy this it should have been hX(Y (f)) +
fX(Y (g)). Although we can conclude that XY is not a vector field, we note
that

Y X(fh) = Y (fX(h) + hX(f))

= Y (f)X(h) + fY (X(h)) + Y (h)X(f) + hY (X(f)),
(10)

and if we now subtract equation (10) from equation (9) we get

(XY − Y X)(fh) = fX(Y (h))− fY (X(h) + hX(Y (f))− Y (X(f)))

Thus we have

(XY − Y X)(fh) = h(XY − Y X)f + f(XY − Y X)h.
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which shows that XY −Y X behaves correctly compared to the definition 1.10
of a vector. This convinces us together with the easily shown fulfillnes of
the linear properties that XY − Y X is a vector field. We can now define a
composition rule under which χ(M) is closed.

Definition 1.19. Let X,Y be (differentiable) vector fields on a manifold
M and let the map f : M → R be C1. The Lie bracket is defined as

[X,Y ] (f) = (XY − Y X)(f)

and forms a vector field [X,Y ] which we usually write as

[X,Y ] = XY − Y X.

This is also called the Lie derivative LXY of Y in the direction of X.

An algebra is a vector space closed under a bilinear composition, and
thus χ(M) together with the Lie bracket is an algebra. This algebra is also
anti-commutative

[X,Y ] = − [Y,X]

and satisfies the Jacobi identity [Spi99]

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Definition 1.20. An algebra that has a anti-commutative composition that
satisfies the Jacobi identity is called a Lie algebra

Thus obviously the set χ(M) of C∞ vector fields on M is a Lie algebra.
The notion of a Lie algebra is important and one which we will return to in
our discussion of Lie theory.



CHAPTER 2

Tensors

The notion of a tensor is a natural generalization of scalars and vectors
that we need when, either dealing with these objects on manifolds, or simple
want to describe more complex behavior and transformations. In physics,
one usually never need tensors of higher degrees than two, the one with the
lowest degree higher than that of regular vectors. But that doesn’t make the
general framework any less interesting. Tensors traditionally were introduced
using the “index approach”, the reason for this is that it is simpler but can
sometimes hide the central concept behind what E. Cartan called “the debauch
of indices”. We will instead use the more modern approach, which emphasize
the tensor as a linear map. This also makes the important introduction of
differential forms much more natural, as we shall see later on.

1. Covectors and the Dual Space

Before we can introduce the concept of a tensor we must define some
notions we need to use. The first is that a linear functional α on V , where
V is a vector space, is a linear function α : V → R. From this we can define
the very important concept of dual spaces.

Definition 2.1. The set of all linear functions α on a vector space V
forms a new vector space V ∗, called the dual space of V. Elements of this
space we call covectors or covariant vectors.

The basis of the dual space V ∗ is related to the basis of V . If e1, e2, . . . , en
is a basis for V then we define the basis of V ∗ to be σ1, σ2, . . . , σn where

σi(ej) = δi
j .

Since for a vector v we have

σi(v) = σi(ejv
j) = σi(ej)v

j = δi
jv

j = vi

Hence σi is a linear functional that picks out the ith component of a vector.
To see that σi forms a complete basis we note that, assuming that a linear
combination aiσ

i is the zero functional:

0 = aiσ
i(ej) = aiδ

i
j = aj .

13
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Thus σi are linearly independent since all coefficients are zero. That they span
the entire vector space we get from:

α(v) = α(viei) = viα(ei) = σi(v)α(ei) =
(
α(ei)σ

i
)
(v),

and hence we can write any linear functional α as a linear combination

α = α(ei)σ
i = aiσ

i. (11)

Now we have the basic general definitions. Returning to manifolds we say
that the dual space to the tangent space TpM , denoted by TpM

∗, is called
the cotangent space. Since TpM

∗ is also a vector space we can use it to
construct a bundle in the same way we did with TpM .

Definition 2.2. Let M be a manifold, then the cotangent bundle of M is
the disjoint union of all its cotangent spaces TpM ,

TM∗ =
⋃

p∈M

TpM
∗.

Once again this definition might seem a bit sloppy, but when we generalize
the notion of bundles later on we shall make a more precise definition. The
reason we introduce these different types of bundles early on is that we need
them to define fields in an elegant way, but also to familiarize us with the
concepts, as they are so important in the general framework of gauge theory.
Using the general definition (1.15) of a differential, we can now use our new
formalism to define an important special case. This is in fact so important
that we shall from now mean this when we talk about differentials.

Definition 2.3. If f : Mn → R, then the differential of f at p ∈ M is
the function df : TpM → R defined by

df(p)(X) = X(f) X ∈ TpM.

If (x,U) is a chart on M , then using the definition directly we see that

dxi(p)
(

∂j

∣
∣
p

)

= δi
j ,

and thus dx1(p), . . . , dxn(p) is a basis for TpM
∗. Hence with equation (11) we

can express a linear functional α ∈ TpM
∗ as

α(p) = α(p)

(
∂

∂xi

)

dxi(p) = ai(p)dx
i(p)

Covectors written in this way we call 1-forms or differential 1-forms if the
coefficients αi(p) are differentiable. In the same way that we defined fields of
vectors on a manifold M , we can define fields of covectors as sections on the
cotangent bundle.

Definition 2.4. A covector field α on M is a section α : M → TM∗
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In an analog way to what we did with vector fields we define the sums of
covector fields and the product of functions and covector fields by

(α+ β)(p) = α(p) + β(p)

(fα)(p) = f(p)α(p).

Thus we can write

α = aidx
i

for all covectors on M . Using this we can write the differential df in these
coordinate basis, which is a classical formula.

Theorem 2.5. Let f be a C∞ function and (x,U) a chart on the manifold
M , then on U ⊂M we have

df =
∂f

∂xi
dxi (12)

Proof. If X ∈ TpM is a vector

X = ai∂i

∣
∣
p
,

then we have

ai = X(xi) = dxi(p)(X).

Thus

df(p)(X) = X(f) = ai∂if
∣
∣
p

= ∂f
∣
∣
p
dxi(p)(X),

which in traditional notation is

df(p)(X) =
∂f

∂xi

∣
∣
∣
∣
p

dxi(p)(X).

�

How the components of a covector transform between different charts can
easily be derived in a similar way to the case with vectors.

Theorem 2.6. If (x,U) and (y, V ) are two charts on M, then the compo-
nents of a covector α = αidx

i on U ∩ V transform according to

βj =
∂xi

∂yj
αi

Proof. Since we can always express a covector β in terms of the coordi-
nate basis for different charts, we can in the overlap U ∩ V write

β = αidx
i. (13)

β = βjdy
j. (14)

From equation (12) we have

dxi =
∂xi

∂yj
dyj ,
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substituting this into (13) we get

β = αi
∂xi

∂yj
dyj.

Finally comparing with (14) gives

βj =
∂xi

∂yj
αi.

�

Again as mentioned for the case of vectors, this result is often used to de-
fine covectors in physics (and older books on differential geometry). Although
it gives a concrete definition early on, it is difficult to see what these transfor-
mation rules actually mean. That is why we use the more modern approach
of emphasizing the linear transformation properties of vectors and covectors.
More specifically we can use the definition of the dual space to say that a
vector X is a map

X : V ∗ → R, (15)

and a covector α is a map

α : V → R. (16)

These two definitions are very important and it is crucial to understand them
for the continued discussion.

Example 2.7 (Phase space in mechanics). Let M be the configuration
space of a dynamical system. The Lagrangian of this system is then

L = L(q, q̇).

Thus we can view the Lagrangian as a function on the space of generalized
velocities TM

L : TM → R.

This formulation is called the Lagrangian formulation in mechanics. The
Hamiltonian formulation is in mechanics usually viewed as a simple change
of variable from q and q̇ to q and p,

pi(q, q̇) =
∂L

∂q̇i
. (17)

To analyze this change of variables we see how they transform under a change
of coordinates. First, if (q1, U) and (q2, V ) are two charts on M we get

q2 = q2(q1)

q̇i
2 =

∂qi
2

∂qj
1

qj
1 (18)
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Thus we see the tangent bundle structure these coordinates have. Now with
the new p variables we see that they transform according to

(p2)i =
∂L

∂q̇i
2

=
∂L

∂qj
1

∂qj
1

∂q̇i
2

+
∂L

∂q̇j
1

∂q̇j
1

∂q̇i
2

=
∂L

∂q̇j
1

∂q̇j
1

∂q̇i
2

=
∂L

∂q̇j
1

∂qj
1

∂qi
2

=
∂qj

1

∂qi
2

(p1)j

since q1 does not depend on q̇2 and
∂q̇

j
1

∂q̇i
2

=
∂q

j
1

∂qi
2

from equation (18). Hence p

is a covector and we can view the p’s and q’s as coordinates on the cotangent
bundle. Equation (17) can thus be seen as a map

p : TM → TM∗.

This space TM∗ is called phase space in mechanics

Example 2.8 (Vectors and covectors in mechanics). When learning clas-
sical physics in R

3, one usually doesn’t distinguish between vectors and cov-
ectors and this can thus sometimes give rise to some confusion. Although we
could see in the previous example that velocity is a vector and momentum is
a covector by looking how they transform, there is a simpler way to see this.
The most natural vectorial quantity is the radius vector r of a point in space
relative the origin. Hence the velocity v = dr

dt
is also a vector, as it is the

derivative of r with respect of a scalar quantity. On the other hand if we con-
sider the potential energy U as a scalar, it’s relation to force is dU = −F · dr.
Thus force is a linear map of vectors into scalars F(dr) = −dU , and hence a

covector (1-form). This in turn implies, through the Newton equation F = dp
dt

,
that the momentum p also is a covector.

Example 2.9 (The electric field). The electric field E, although often
thought of as a vector field, is actually a field of covectors (1-forms) mapping
the infinitesimal vector dr into the infinitesimal potential difference −dV =
E(dr).

2. The Pull-back of Covectors

Covectors has an important property that vectors don’t have and that is
that we can globally “pull” a covector field from a manifold N to a manifold
M with a map f : M → N . Although we can do something similar locally for
vectors, it is not guaranteed that we can do it globally.

Definition 2.10. Let f : M → N be a C∞ map between two manifolds
and α ∈ Tf(p)N

∗ a covector. Then we can use the differential f∗ to define the
pull-back f∗α ∈ TpM

∗ by

(f∗α)(X) = α ◦ f∗p(X) X ∈ TpM

That is we pull the function α : N → R“back” to f∗α : M → N → R. The
reason for the terminology “back” is because it gives rise to the commutative
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diagram

TpM
∗ f∗

←−−−− Tf(p)N
∗

π



y



yπ

p
f

−−−−→ f(p)

(19)

This is also a source of confusion about the name “contravariant” and “covari-
ant”. In differential geometry vectors are called “contravariant” and covectors
“covariant”, but category theorists would do the opposite and call our “con-
travariant” vectors “covariant” since they with f∗ transform “the same way”
on the commutative diagram (8) as f . Our “covariant” vectors would then be
called “contravariant” since they with f∗ transform “the other way” as f in
the commutative diagram (19). The reason for the classical terminology in
differential geometry can be seen by considering charts on R

n. If x(vi) = ei
then

x(a1v1 + · · ·+ anvn) = (a1, . . . , an).

If y is another such chart then

yj =
∂yj

∂xi
xi.

Comparing this with equation (12) we see that the differentials

dyj =
∂yj

∂xi
dxi

transform “in the same way” as the coordinates xi, and hence are called “co-
variant”.

3. Contravariant Tensors

With our current understanding of vectors and covectors as the linear maps
(15) and (16), then it is straightforward to generalize this to the concept of
tensors. What we mean by multilinear here is that a function T : V1 × · · · ×
Vn → R is multilinear if T (v1, . . . , vn) is linear in each argument, provided the
rest is held fixed. The first type of tensor we will deal with is contravariant
tensors. They are the natural generalizations of vectors.

Definition 2.11. A contravariant tensor of degree r or (r,0)-tensor
is a multilinear mapping

T : V ∗ × · · · × V ∗

︸ ︷︷ ︸

r

→ R.

The vector space of all contravariant r-tensors is denoted by

V ⊗ · · · ⊗ V = ⊗rV,

where these circle signs is the tensor product which is defined in the natural
way.
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Definition 2.12. Let T ∈ ⊗rV and S ∈ ⊗kV , then the tensor product
T ⊗ S ∈ ⊗r+kV is defined by

T ⊗ S(v1, . . . , vr, vr+1, . . . , vr+k) = T (v1, . . . , vr) · S(vr+1, . . . , vr+k)

If e1, . . . , en is a basis for V, then the basis for ⊗rV is

ei1 ⊗ · · · ⊗ eik 1 ≤ i1, . . . , ir ≤ n

which thus has dimension nr. The tangent bundle can also easily be general-
ized in a straightforward way. For the same reasons as with vectors, bundles
allow us to define fields in an elegant way.

Definition 2.13. Let M be a manifold, then the bundle

⊗rTM =
⋃

p∈M

⊗rTpM

is called a contravariant tensor bundle of order r.

Definition 2.14. A section of ⊗rTM is called a contravariant tensor
field of order r.

Using the coordinate basis of the tangent space TpM we get in an analogue
way a coordinate basis for ⊗rTpM , that is the tensor products

∂i1

∣
∣
p
⊗ · · · ⊗ ∂ir

∣
∣
p
∈ ⊗rTpM 1 ≤ i1, . . . , ir ≤ n

is a basis for ⊗rTpM . So on U , every contravariant tensor field T of order r
can written

T (p) = T i1...ir(p) ∂i1
x

∣
∣
p
⊗ · · · ⊗ ∂ir

x

∣
∣
p
.

This is usually shortened to

T = T i1...ir ∂i1 ⊗ · · · ⊗ ∂ir .

We define the addition of two contravariant tensor fields and the product of a
function and a tensor field in the obvious way by

(T1 + T2)(p) = T1(p) + T2(p)

(fT )(p) = f(p)T (p).

We can also define a new tensor field of order r+k by using the tensor product
on two tensors fields of order r and k by

(T1 ⊗ T2)(p) = T1(p)⊗ T2(p),

operating on TpM
∗ × · · · × TpM

∗ r + k times.

Theorem 2.15. If (x,U) and (y, V ) are two different charts on a manifold
M , then on U ∩ V the components of a contravariant tensor T transform
according to

T ′j1...jr =
∂yj1

∂xi1
· · ·

∂yjr

∂xir
T i1...ir
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It should be pointed out that this result, like the one for vectors and
covectors, are motivated for use as definitions in the physics literature as they
emphasize the property, important in physics, that tensors represent physical
quantities which are independent of coordinate system (chart). In our case
this property is obvious in our more thorough construction of manifolds, but
should yet be noted.

It is easy to see the naturality of these generalizations from vectors to
contravariant tensors and thus there is not much to say about them outside of
that they are very important, both as representation of physical quantities and
as basis for other important objects, most notably the metric tensor. Their
importance will become clearer later on.

4. Covariant Tensors

Covectors can be generalized in much the same way as with contravariant
vectors, and thus we will only state the summarized results.

Definition 2.16. A covariant tensor of degree r or (0,r)-tensor is
a multilinear mapping

T : V × · · · × V
︸ ︷︷ ︸

r

→ R.

The vector space of all covariant r-tensors is denoted by

V ∗ ⊗ · · · ⊗ V ∗ = ⊗rV ∗

and their basis is

σi1 ⊗ · · · ⊗ σir 1 ≤ i1, . . . , ir ≤ n,

where the tensor product is defined in an analogous way as with contravariant
tensors.

Definition 2.17. Let M be a manifold, then the bundle

⊗rTM∗ =
⋃

p∈M

⊗rTpM
∗

is called a covariant tensor bundle of order r.

A section of ⊗rTM∗ is called a covariant tensor field of order r. Thus
using the basis

dxi1(p)⊗ · · · ⊗ dxir(p) ∈ ⊗rTpM
∗ 1 ≤ i1, . . . , ir ≤ n

for ⊗rTpM
∗, we can thus write every covariant tensor T of order r as

T = Ti1...ir dx
i1 ⊗ · · · ⊗ dxir .

Addition of these covariant fields and the product of a function and a covariant
tensor is defined in the same way (point wise) as contravariant tensors.
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Theorem 2.18. If (x,U) and (y, V ) are two different charts (coordinate
systems) on a manifold M , then on U ∩ V the components of a covariant
tensor T transform according to

T ′
j1...jr

=
∂xi1

∂yj1
· · ·

∂xir

∂yjr
T i1...ir

Something that we could not do with contravariant tensors, but can with
covariant tensors, is that similarly in the case of covectors we can define the
pull-back. Let f : M → N then the map f∗ takes covariant tensor fields T of
order r on N to covariant tensor fields f∗T of order r on M by

f∗T (p)(X1p , . . . ,Xrp) = T (f(p))(f∗X1p , . . . , f∗Xrp).

That is, the pull-back is a map

f∗ : ⊗rN∗ → ⊗rM∗,

which can be shown to be an algebra homomorphism, that is, f∗(α ⊗ β) =
(f∗α)⊗ (f∗β) .

5. Mixed Tensors

Often we have mixed tensors, written as (r,s)-tensor. This is simply a
multilinear mapping

T : V ∗ × · · · × V ∗

︸ ︷︷ ︸

r

×V × · · · × V
︸ ︷︷ ︸

s

→ R

with the tensor product T ⊗S of a contravariant tensor and a covariant tensor
defined in the natural way as

T ⊗ S(v1, . . . , vr, vr+1, . . . , vr+k) = T (v1, . . . , vr, vr+1) · S(vr+1, . . . , vr+k).

Thus every mixed tensor T, can be written as

T = T i1...ir
j1...js

∂i1 ⊗ · · · ⊗ ∂ir ⊗ dx
j1 ⊗ · · · ⊗ dxjs

in the coordinate basis.

Theorem 2.19. If (x,U) and (y, V ) are two different charts on a manifold
M , then on U ∩ V , the components of a mixed tensor T transform according
to

T ′µ1...µr
ν1...νs

=
∂xi1

∂yν1

· · ·
∂xir

∂yνs

∂yµ1

∂xi1
· · ·

∂yµr

∂xir
T i1...ir

j1...js

This equation exemplifies the monstrosities that classical differential books,
and to some extent physics books, are filled with. Altough they concretely
state how the components transform, the sheer number of indices easily hides
the important transformation properties.

An important mixed tensor is the (1, 1)-tensor

T : V × V ∗ → R.



22 2. TENSORS

These type of tensors arises from linear transformations A : V → V by the
formula

T (v, α) = α(Av).

Actually each such transformation A gives rise to a tensor T : V × V ∗ → R,
and this correspondence is linear and bijective and hence is an isomorphism.
Thus we shall not distinguish between a linear transformation A and its as-
sociated mixed tensor T , a linear transformation A is a mixed tensor (with
components Ai

j). Not knowing the difference here is a source of confusion in
elementary linear algebra, since the matrix of a linear transformation A is usu-
ally written there as aij, and the difference between bilinear forms and linear
transformations are not pointed out. From the three matrices aij , a

ij and ai
j ,

the first two define bilinear forms (on V and V ∗ respectively), while the last
is the matrix of a linear transformation.

This isomorphism can be used to define the contraction of a mixed tensor
T : V ×V ∗ → R by taking the trace of the correspondig transformation matrix
A : V → V to get a scalar.

Theorem 2.20. If T ...i...
...j... are the components of a (r, s)-tensor, the the

contraction on a pair of indices i, j, defined by the components T ...i...
...i... , defines

a (r − 1, s− 1)-tensor.

6. Scalar Product and the Metric Tensor

An important second order covariant tensor is the metric tensor. To see
how it arises we consider the scalar product. Assume e1, . . . , en is a basis of
V with v, u ∈ V , v = eiv

i and u = eiu
i. Then

〈v , u〉 = 〈eiv
i , eju

j〉 = vi〈ei , ej〉u
j .

Now we can introduce the metric tensor (gij) as the matrix in the last expres-
sion

gij = 〈ei , ej〉. (20)

Here we can also note that if the basis is orthonormal, then the metric tensor
would simply be the identity matrix. This is the case in elementary linear
algebra, where the metric tensor never is introduced at all. Furthermore,
since the scalar product is a bilinear function, that is, linear in each of its
arguments, it is possible to introduce the covariant version (2.1) of each vector
v in a vector space V with a scalar product. That is we can define the covariant
vector α by the functional

α(ei) = 〈v, ei〉, (21)

which together with the expression α = αiσ
i allows us to write

α = α(ei)σ
i = 〈v, ei〉σ

i,

and hence by equation (20)

α = (vjgji)σ
i.
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The covariant version of the vector v thus has the components αi = vjgji =
gijv

j . Normally the components of this covariant vector is referred to as vi

to make the connection with the vector v more easily seen. This procedure
is usually referred to as lowering or raising indices. The inverse of the metric
tensor (gij)

−1 is normally written as gij , and with the help of this we can, in
an analogous way, define the components of the contravariant version of the
covector α as

vi = gijvj

7. Riemannian Manifolds

Now when we have introduced the concept of a metric, it is possible to
assign a specific such to a manifold. Here we will discuss the Riemannian
metric.

Definition 2.21. A Riemannian metric on a manifold M assigns, in
a differentiable way, a positive definite scalar product 〈 , 〉 for each tangent
space TpM . A Riemannian manifold is then a manifold equipped with a
Riemannian metric. A pseudo-Riemannian metric is a metric where we
allow the scalar product to be non-positive definite. The resulting manifold is
then naturally called a pseudo-Riemannian manifold.

In a specific chart (x,U) on M it is possible to write the Riemannian
metric with the help of the metric tensor as

〈 , 〉 = gijdx
i ⊗ dxj .

So the scalar product of two tangent vectors X,Y ∈ TpM will have the form

〈X,Y 〉 = gijX
iY j

at all points on M . Now we can see that the concept of length of a tangent
vector is possible to define in a natural way, in accordance with our concept
of length in R

n, as

|X| =
√

〈X,X〉 =
√

gijXiXj .

This is a direct consequence of the introduction of a metric on the manifold.

Example 2.22 (Euclidean metric). The simplest example of a Riemannian
metric is R

3 equipped with the usual metric. The metric tensor is thus

gij =





1 0 0
0 1 0
0 0 1





and from this we can construct the distance d(x, y) between two points x, y

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

The signature for this metric is (+,+,+)
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Example 2.23 (The Minkowski metric). An example of a pseudo-Riemannian
metric is the well known Minkowski metric used in special relativity. This is
R

4 equipped with a metric tensor of the form (with c=1)

gij =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






,

which obviously has signature (+,−,−,−). The distane between two points
x, y will with this metric be

d(x, y) =
√

(x1 − y1)2 − (x2 − y2)2 − (x3 − y3)2 − (x4 − y4)2.

We note here that, in contrast to example 2.23, it is possible with the Minkowski
metric to have d(x, y) = 0 without x = y, which makes this metric a pseudo-
Riemannian metric. The points were d(x, y) = 0 forms a cone which sometimes
in physics is referred to as the light cone.

Definition 2.24. For a Riemannian manifold, the gradient vector ∇f
is defined as the contravariant vector associated to the covector df by

df(v) = 〈∇f, v〉.

The gradient vector has the coordinates (∇f)i = gij∂jf . We also see that
if we have an orthogonal basis we will have the ordinary partial derivatives as
components, since gij will be the identity matrix.

8. A Note on Cartesian-tensors

It should be mentioned here that the objects encountered in vector analysis
in flat Euclidean space, usually called Cartesian-tensors, are not tensors in the
general sense. This is also why we write“Cartesian-tensors”and not“Cartesian
tensors”. The reason behind this is that in standard vector analysis, Cartesian-
tensors are defined as objects which “are the same” under transformations
between orthogonal coordinate systems (charts). General tensors on the other
hand “are the same” under transformations between all coordinate systems.
Thus tensors are Cartesian-tensors but Cartesian-tensors are not necessarily
tensors. Another example of these special type of less restrictive tensors are
Lorentz-tensors.



CHAPTER 3

Differential Forms

We now turn to an interesting part of the more modern formulations of ge-
ometry, and that is the concept of an exterior algebra. Grassmann introduced
this new algebra in the middle of the 19th century as a vast generalization
of the scalar and vector products in use today in vector analysis. This is
also closely connected to the objects known as exterior forms, which much
of modern differential geometry and theoretical physics is formulated in. Al-
though one can view exterior forms as “objects one integrates on manifolds”,
we will only cover the differential part, not the integral part to avoid a too
large detour.

1. The Exterior Algebra

In the same way as we introduced multilinearity as an fundamental prop-
erty of tensors, the notion of antisymmetry is the main new property we need
to define exterior forms. A tensor T ∈ ⊗rV ∗ is called antisymmetric if

T (v1, . . . , vi, . . . , vj , . . . , vr) = −T (v1, . . . , vj , . . . , vi, . . . , vr)

for each pair of entries.

Definition 3.1. An (exterior) k-form is an antisymmetric covariant
k-tensor and the set of all k-forms is denoted by ∧kV ∗ ⊂ ⊗kV ∗.

From now on we will drop the “exterior” part when referring to k-forms.
In this section, where we construct the machinery behind the exterior algebra,
will unfortunately like the section on tensors be very technical. Continuing,
the important property of these k-forms is thus that they are antisymmetric.
Now that we have these objects, we must define the operations used on them
to get the full exterior algebra. Obviously ∧kV ∗ is closed under addition of
the k-forms and multiplication of a scalar function, yet for the tensor product
this is not the case. That is for α, β ∈ ∧kV ∗, the tensor α ⊗ β does not in
general lie in ∧kV ∗, and hence is not a form. Thus we must define a “product”
that keeps this antisymmetry of the forms.

Let Sn denote the symmetric group of all permutations σ of {1, · · · , n}.
Then we define the “alternation” of a tensor to

Alt T (v1, · · · , vk) =
1

k!

∑

σ∈Sk

sgn σ · T (vσ(1), · · · , vσ(k)).

25
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Thus Alt is a projection operator ⊗kV ∗ 7→ ∧kV ∗.

Definition 3.2. The exterior product (wedge product or Grassmann
product) of two forms ω ∈ ∧kV ∗ and η ∈ ∧nV ∗ is defined by

ω ∧ η =
(k + n)!

k!n!
Alt(ω ⊗ η)

The“funny”coefficient here is mainly to get nicer looking calculations later
on, it is the alternation operator that is the important part of the definition.

Proposition 3.3. The properties of the exterior product is

(1) bilinear.
(2) f∗(ω ∧ η) = f∗ω ∧ f∗η.
(3) anticommutative: ω ∧ η = (−1)knη ∧ ω.

Since forms are also tensors we can easily see that the basis for ∧kV ∗ is

σi1 ∧ · · · ∧ σik 1 ≤ i1 < · · · < ik ≤ n,

where σ1, . . . , σn is the basis for V ∗. The dimension of ∧kV ∗ is thus
(
n

k

)

=
n!

k!(n− k)!
.

Hence we can now define the direct sum, ∧∗V ∗ = ∧0V ∗⊕· · ·⊕∧nV ∗, of all these
forms as the Exterior or Grassmann algebra. Here we define the space of
0-forms as just R. Now from this structure we can derive some results.

With some algebra one can show [Fra04] that if α1, . . . , αk are 1-forms
and v1, . . . , vk is an k-tuple of vectors, then

α1 ∧ · · · ∧ αk(v1, . . . , vn) = det[αj(vi)]. (22)

An elegant theorem with which one can discuss linear independence in a nice
coordinate-free way is the following.

Theorem 3.4. The 1-forms α1, . . . , αr are linearly dependent if and only
if

α1 ∧ · · · ∧ αr = 0.

Proof. If αk = aiα
i, then α1 ∧ · · · ∧αk ∧ · · · ∧αr will be a sum of terms,

each having a repeated αi, and thus the product will be zero. If on the other
hand the α’s are linearly independent, then we can complete them to a basis
α1, . . . , αn. Letting f1, . . . , fn be the dual basis we get from equation (22) the
expression α1∧ · · · ∧αr ∧ · · · ∧αn(f1, . . . , fn) = 1. Hence α1∧ · · · ∧αr 6= 0, �

With the general structure complete we turn our attention to the specific
case of forms on manifolds and its (co)tangent space. First we define the form
bundle in an analog way to the previous bundles as the disjoint union

∧kTM∗ =
⋃

p∈M

∧kTpM
∗
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X

Y

Figure 1. The 1-form dx+ 2dy in R2

for a manifold M . A field of k-forms on M is thus a section α : M → ∧kTM∗.
If dx1(p), . . . , dxn(p) is a basis for TpM then

dxi1(p) ∧ · · · ∧ dxik(p) i1 < · · · < ik,

is a basis for ∧kTpM
∗. So on U , every k-form field α can be written

α = αi1...ik dx
i1 ∧ · · · ∧ dxik .

To make things simpler we use I to denote (i1, · · · , ik), where i1 < · · · < ik,
and use it to write ωI = ωi1 ∧ · · · ∧ ωik . Thus we can write k-form fields as

α = αIdx
I ,

which we call a field of differential forms of order k, if the coefficients αI are
differentiable. We will actually restrict ourselves to differential forms from
now on, even though we usually just say “forms”.

Example 3.5. In R
3 we have the following types of forms (where ai are

real functions in R
3).

0-forms: functions in R
3

1-forms: a1dx
1 + a2dx

2 + a3dx
3

2-forms: a12dx
1 ∧ dx2 + a13dx

1 ∧ dx3 + a23dx
2 ∧ dx3

3-forms: a123dx
1 ∧ dx2 ∧ dx3

Example 3.6. Let α = x1dx
1 + x2dx

2 + x3dx
3 ∈ (R3)∗ be a 1-form in R

3

and

β = x1dx
1 ∧ dx2 + dx1 ∧ dx3 ∈ ∧2(R3)∗

a 2-form in R
3. Then, since dxi ∧ dxi = 0 and

dxi ∧ dxj = −dxj ∧ dxi, i 6= j,

we get

α ∧ β = x2dx
2 ∧ dx1 ∧ dx3 + x3x1dx

3 ∧ dx1 ∧ dx2

= (x1x3 − x2)dx
1 ∧ dx2 ∧ dx3.
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2. Exterior Differentiation

From a 0-form (a regular function f) we can get an 1-form df which in a
coordinate system (x,U) is given by

df =
∂f

∂xi
dxi.

This we can generalize further to k-forms.

Theorem 3.7. There is a unique operator, called the exterior derivative

d : ∧kM → ∧k+1M,

such that

(1) d(ω1 + ω2) = dω1 + dω2,
(2) d(dω) = d2 = 0,
(3) d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)kω1 ∧ dω2),

which given a k-form

ω = ωIdx
I

we can write as

dω = dωI ∧ dx
I =

∂ωI

∂xj
dxj ∧ dxI .

Theorem 3.8. Let α be a differential form, then the pull-back and the
exterior derivative commutes such that we have

f∗(dα) = d(f∗α)

Example 3.9 (Electromagnetism in Minkowski space). The electromag-
netic field in vacuum, described by Maxwell’s equations

∇ · E = ρ ∇×B = ∂E
∂t

+ j,

∇ ·B = 0 ∇×E = −∂B
∂t
,

can be written in terms of the two potentials V and A using the equations

E = −
∂A

∂t
−∇V,

B = ∇×A.

In Minkowski space with c = 1 and using a metric with the signature (+,−,−,−),
we can combine this to form a covariant 4-vector Ai = (V,−A). That is, the
electromagnetic field is described by the covector field

A = Ai(x)dx
i. (23)

One can show that this potential can be used to describe the field strength in
a compact way by forming the electromagnetic field strength tensor

Fij = ∂iAj − ∂jAi.
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These are the components of a covariant second-order tensor field that is clearly
antisymmetric. Thus this field is actually an field of 2-forms

F = (∂iAj − ∂jAi)dx
i ∧ dxj .

From classical physics we know that the field strength is the derivative of the
potential, e.g

E = −∇V, F = −∇U.

This is also the case with the electromagnetic field strength tensor F , as it is
actually the exterior derivative of the covector field A [Fra04]

F = dA.

Although it would take the full machinery of integrating differential forms
on manifolds, formulating the entire Maxwellian dynamics is a beautiful way
to illustrate the power and elegance of the exterior algebra. For a deepened
discussion on this, [Fra04] is an excellent resource.

Example 3.10 (Gauge transformations in electromagnetism). As men-
tioned earlier the first example of a Gauge theory is Maxwell’s electromag-
netism. This can be illustrated by showing that we can transform the 4-vector
potential Ai by a so-called Gauge transformation

Ai → Ai − ∂iΛ,

which leaves the electromagnetic fields E and B unchanged. The reason for
this will be investigated more deeply in the final chapter.





CHAPTER 4

Lie Theory

Originally Lie groups were introduced in 1870 by S. Lie to study sym-
metries of differential equations. His approach to groups was to study only
elements close to the identity of the group and then use generators of the
group, hence restricting the important part of the group to a neighborhood
of the identity. The use of generators meant that the group needed to be
equipped with differentiable maps adding some extra structure to the group.
The area of Lie groups was further broadened by E. Cartan who contributed to
the classifications of Lie algebras and applications of Lie groups in theoretical
physics and differential geometry. Further developments over the years have
shown that Lie groups are also a useful tool to study symmetries of structures
in many other branches of mathematics and physics.

In order to have a Lie group we start with a manifold with group properties.
The manifold G then needs to have the usual properties of a group, meaning
that the manifold G must be equipped with a associative group operation
G×G→ G, an identity element and for all elements in the group there must
exist an inverse. Furthermore for the group to be a Lie group we require the
group operation and the inverse map to be smooth. We now state the formal
definition of a Lie group.

Definition 4.1. A Lie group is a group G which is also a manifold with
a C∞ structure such that

(x, y) 7→ xy

x 7→ x−1

are C∞ functions

Lie groups can be classified according to their properties. Some exam-
ples are simple, semi-simple, nilpotent and abelian Lie groups. It is also of
importance if the Lie group is classified as connected and/or compact.

1. Examples of Lie Groups

One trivial example of a Lie group is the Euclidean space R
n with the nor-

mal vector addition as the group operation. Obviously this operation and the
inverse map both are C∞ maps. Another important example is the following
matrices.

31
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Definition 4.2. The general linear group of degree n over the field R

is the set
GL(n,R) = {A ∈M(n,R) | det(A) 6= 0},

where M(n,R) denotes the set of all real n× n matrices.

Equipped with ordinary matrix multiplication it is not difficult to show
that GL(n,R) is a Lie group. In GL(n,R) the inverse is always defined since
the determinant is nonzero. Moreover the determinant of A ∈ GL(n,R) is a
continous function and obviously det(A) 6= 0 does not change that it is an

open set. Then it is clear that GL(n,R) is a open subset of R
n2

and since the
inverse is a function of the determinant it is clear that the inverse is smooth.
Hence GL(n,R) is a manifold with dimension n2, However GL(n,R) is not a
connected Lie group. This can be seen by noting that for every A ∈ GL(n,R)
we have det(A) 6= 0, so the group consists of two separate parts, one with
det(A) > 0 and one with det(A) < 0. Another important class of matrices are
the orthogonal group of matrices. We shall here show that this is a subgroup
of GL(n,R).

Definition 4.3. The orthogonal group over the field R is the subgroup
of GL(n,R):

O(n,R) = {A ∈ GL(n,R) | AAT = I}.

To show that O(n,R) really is a subgroup of GL(n,R) we need to show
that the set contains the group identity element, is closed under the group
operation and that the set is closed under the inverse operation. Associativity
is inherited from GL(n,R).

(1) The identity element is in O(n,R) since IIT = I
(2) We show that O(n,R) is closed under the group operation by taking

two elements in O(n,R), A1 and A2, then A1A2 is in O(n,R) since

(A1A2)
T (A1A2) = AT

2A
T
1A1A2 = AT

2A2 = I.

(3) We want to show that if A is in O(n,R) so is A−1. Since A−1 = AT ,
we need to show that AT is in O(n,R). But this must be the case
since

AT (AT )T = ATA = I

Furthermore it is possible to show that O(n,R) is a closed and bounded subset

of M(n,R). Since M(n,R) is homeomorphic to R
n2

we can note that O(n,R)
is in fact compact which we shall see is of importance later. From O(n,R)
we can form yet another subgroup of matrices by noting that if A ∈ O(n,R)
then (detA)2 = 1 since AAT = I. So there are two disjoint sets one with
detA = −1 and one set with detA = 1. The set with detA = −1 can not
form a group since it does not contain the identity element but the set of
matrices with detA = 1 forms a subgroup of O(n,R). This subgroup is called
the special orthogonal group SO(n,R). [Fra04]
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Definition 4.4. The special orthogonal group over the field R is the
group

SO(n,R) = {A ∈ GL(n,R) | detA = 1}.

So far all groups has been over the field R, but if we replace R with the field
C in the definitions of the orthogonal and special orthogonal group we will get
similar groups of the same form. These are the unitary group U(n,C) and the
special unitary group SU(n,C). Alternatively we can use O(n), SO(n), U(n)
and SU(n) since there is no risk of confusion over which field the groups are.

Definition 4.5. The unitary group U(n) is the group

U(n) = {A ∈ GL(n,C) | A† = A−1}.

where A† = ĀT is the (hermitian) adjoint.

Note that U(1) is the group of complex numbers z = eiθ, that is, we can
think of it as the group of all rotations in the plane. U(1) is also the only
abelian unitary group.

Definition 4.6. The special unitary group SU(n) is the group

SU(n) = {A ∈ U(n) | detA = 1}.

2. Invariant Vector Fields

Lie groups are equipped with two diffeomorphisms. These are called the
left translations

Lg : G→ G Lg(h) = gh,

and the right translations

Rg : G→ G Rg(h) = hg.

By use of these two translations we can define two vector fields on the manifold
as we can translate vectors to any point. So for a tangent vector at the identity
e of G, we left or right translate the tangent vector to any point on G by the
differentials (1.15) with

Xg = Lg∗Xe

and

Xg = Rg∗Xe.

We can now pay special attention to the vector fields which does not change
under this transformation. We call a vector field X left-invariant on G if it
is invariant under the left translation

Lg∗Xh = Xgh ∀g, h ∈ G,

and of course similar for a right-invariant vector field.
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3. One Parameter Subgroups

To each vector field X in R
n, it is possible to associate a time independent

flow φi having X as its vector field [Fra04]. As the flow is time-independent,
it implies

φs(φt(p)) = φt(φs(p))

as well as
φ−t(φt(p)) = p,

hence
φ−t = φ−1

t .

This makes it possible to define a 1-parameter group of maps. The integral
curves of the system can then be established as φi(p), where φi(p) simply
means that we shall move along the integral curve through the point p. With
this in mind we can define the concept of a 1-parameter subgroup.

Definition 4.7. A 1-parameter subgroup of the group G, is a differ-
entiable group homomorphism

φ : R→ G

t→ φ(t) ∈ G

of the additive group of the reals into the group G. That is, we have

φ(s+ t) = φ(s)φ(t) = φ(t)φ(s).

For a 1-parameter subgroup of a matrix group G, we thus have φ(t+ s) =
φ(t)φ(s) with the normal matrix multiplication as the group operation. Now
differentiating and evaluating at s=0 gives

φ′(t) = φ(t)φ′(0). (24)

Solving this equation we get

φ(t) = φ(0)etφ
′(0),

where the exponential function for matrices is defined as

expA = I +A+
A2

2!
+
A3

3!
+ . . .

If we now generalize equation (24) to the case where it is not a matrix group
we get

φ′(t) = Lφ(t)∗φ
′(0),

that is, the tangent vector X to the 1-parameter subgroup is left translated
along the subgroup. So the 1-parameter subgroup of G with tangent vector
Xe at e, is the integral curve through e of the vector field X on G after left-
translation of Xe over all of G. The vector Xe is called the infinitesimal
generator of the 1-parameter subgroup. We are now in a position to define
the exponential map.
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Definition 4.8. The exponential map

exp : TeG→ G,

is the map such that when given X ∈ TeG with the diffeomorphism φ : R→ G
satisfying

dφ

dt
(0) = X,

then

expX = φ(1).

That is, the exponential map is a local diffeomorphism from the tangent
space TeG at the identity element to G. Thus close to the identity, the expo-
nential map and its inverse are both smooth functions. For any Lie group G,
we shall also denote the 1-parameter subgroup whose generator at the identity
is X, by

g(t) = exp tX.

For all matrices we have det eA = etr A, where trA denotes the trace of A. This
relation will be usefull a little later when we are dealing with the exponential
map in an example.

4. Lie Algebra

The tangent space TeG of G at the identity plays an important part, as
we shall soon see. First we consider two left-invariant vector fields X1 and X2

on G, for which we can use (1.19) to show

Lg∗[X1,X2] = [X1,X2], (25)

that is, the Lie bracket of X1 and X2 are again left-invariant. This leads us
to the definition of a Lie algebra for a Lie group.

Definition 4.9. The vector space of all left-invariant vector fields on a
Lie group G with the Lie bracket as composition, is called the Lie algebra of
the group G and denoted g.

Thus we can think of the Lie algebra as the tangent vector space TeG of
the Lie group G, and then the exponential map is obviously the map

exp : g→ G.

Example 4.10 (The Lie algebra of R
n). From the previous discussion we

can conclude that the Lie algebra for the Euclidean space R
n, is the set of all

left-invariant vector fields. Since for R
n the tangent space at the identity is

R
n, and this obviously also is the set of left-translated tangent spaces, we can

conclude that the Lie algebra of R
n is R

n.
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Example 4.11 (The Lie algebra of GL(n,R)). For the general linear group
GL(n,R) we can say the following. First note that for every A ∈M(n,R) we
have

det eA = etr A > 0,

so it is clear that
exp : M(n,R)→ GL(n,R).

Since exp∗(X) = X for a tangent vector X we can thus say that the exponential
map is left-invariant. From dim M(n,R) = n2 = dim GL(n,R) we can see
that the Lie algebra of GL(n,R) is

gl(n,R) = M(n,R),

with the commutator AB −BA as Lie bracket.

Example 4.12 (The Lie algebra of U(n)). Since U(n) is the group of
matrices such that A† = A−1, we note that if A is skew hermitian,

A† = −A,

then expA ∈ U(n) and thus the Lie algebra of U(n) is the vector space of all
skew hermitian matrices denoted u(n), with the commutator as Lie bracket.

Definition 4.13. A Lie algebra is simple if its only ideal are {0} and the
whole Lie algebra itself.

Definition 4.14. A semi-simple Lie group is a Lie group with a semi-
simple Lie algebra. The Lie algebra is a semi-simple Lie algebra if it is a
direct sum of simple Lie algebras.

5. Group action and Representations

Representation theory may be defined as the study of the ways in which a
given group may act on vector spaces. There is, however, an interesting more
general theory of representations in category theory which contain represen-
tations on vector spaces as a special case. Here, though, we will only consider
representations on vector spaces, but an easily accessible account of the more
general theory may be found in [Ger85].
Now, the aim of this section is not to give a detailed account of the theory of
group actions and representations but rather define and exemplify the com-
ponents needed in subsequent chapters. With this in mind we now proceed to
find out, in particular, what a representation is and we will learn that it is a
special kind of group action so we begin by defining this notion.

Definition 4.15. A left action of a group G on a set S is a map

π : G× S → S

such that
π(idG, s) = s
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and

π(g, π(g̃, s)) = π(gg̃, s)

for g, g̃ ∈ G and s ∈ S, where idG denotes the identity element.

If we denote π(g, s) by gs the conditions in the definition become

g(g̃s) = (gg̃)s

and

idGs = s.

It is immediate from the definition that each π have an inverse π(g)−1 and that
the map g 7→ π(g, s) is a group homomorphism G → GL(S). Furthermore,
any group homomorphism G → GL(S), reciprocally, defines a left action of
G on S. We illustrate these notions with an example that takes us closer to
what we are primarily interested in, that is, representations on vector spaces.

Example 4.16. Let V be a vector space over a field F, e.g. R or C, and
G = GL(V ). For g ∈ G and v ∈ V the map

(g, v) 7→ gv

then defines an action of G on V . Usually, in this report, we have that V = F
n

and then take G to be the group of all invertible n× n-matrices over the field
F so that, for M ∈ G and x ∈ Fn, an action of G on Fn is defined by

(M,x) 7→Mx.

Generally when we refer to an action we mean a left action, however, in the
subsequent chapter on bundles we will, in connection to the so called principal
G-bundle, find it useful to have a right action as well. A right action of G
on a set S is defined as a map

π̃ : S ×G→ S

satisfying

π̃(s, idG) = s

π̃(π̃(s, g), g̃) = π̃(s, gg̃)

for g, g̃ ∈ G and s ∈ S. Similarly as with the left action we will write π̃(s, g)
as sg. For both the left- and right action we have a natural action of a group
G on itself given by

π(g, g̃) = gg̃

and

π̃(g̃, g) = g̃g,

respectively. If we have a left- and a right action on a set S by groups G and
H simultaneously then if

(gs)h = g(sh), ∀s ∈ S, g ∈ G, h ∈ H
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the two actions are said to commute. A particular type of action, referred
to as effective, will be used in subsequent chapters and we now examine this
notion. If we have a left action

π : G× S → S

then associated to this is a subgroup

G0 = {g ∈ G | ∀s ∈ S, gs = s}

of G, which is normal in G since it is the kernel of the homomorphism

G→ GL(S).

Now, an action is called effective if G0 = idG. Specifically for Lie groups we
have seen earlier in this chapter that the tangent space TgG at any point other
then the identity can be canonically identified with the Lie algebra g of a Lie
group G in two ways. Considering right action and the fact that any v ∈ TgG
can be written as

v = Ag,

according to section 2, with A ∈ g the so called adjoint map

Adg(A) = gAg−1

which maps g into itself is obtained. We now know enough about group action
to define representations of groups on vector spaces as follows.

Definition 4.17. A representation of a group G on a vector space V
over a field F is a left action of G on V such that ∀v ∈ V , g ∈ G the map

v → gv

is F-linear.

Usually one writes gv = R(g)v with R(g) ∈ GL(V ) and from the definition
of action it follows that R(idG) = idV , and for g, g̃ ∈ G we have that

R(gg̃) = R(g)R(g̃),

that is, we have a group homomorphismG→ GL(V ). Given a set of such maps
we also, reciprocally, have a group representation, and if V is finite dimensional
of dimension n we may fix a basis and thus represent each R(g) as an n× n-
matrix M(g) ∈ GL(n,F ). These matrix representations are therefore simply
group homomorphism

G→ GL(n,F )

and are particularly useful, especially in physics, as the following shows.

Example 4.18 (Matrix representations). The equations of modern physics
are often eigenvalue equations of the form Aψ = aψ, where A is a Hermitian
matrix and a the corresponding (real) eigenvalues. The matrix representations
arise naturally from symmetries of these equations as follows. Assume that
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the eigenvalue equation above is invariant under a group G of transformations
T , e.g. coordinate rotations. Then we have

Aψ = aψ,

which by assumption is invariant under the transformations T in G so that

A = TAT−1.

Applying a transformation T to a solution ψ so that ψ → Tψ gives together
with the two equations directly above

Aψ = aψ

⇔ aTψ = Taψ = TAψ = TAT−1Tψ = ATψ.

Assuming the vector space V of solutions has finite dimension n and a basis
B = {ψ1, ..., ψn} we may expand each member of V in terms of B as

Tψi =
∑

k

tikψk.

So to all transformations T in G we may associate a matrix (tik) and the map
T → (rik) is the matrix representation of G.





CHAPTER 5

Bundles and Gauge Theory

A key element in defining gauge theory is the notion of bundles, or fibre
bundles. Bundles as part of mathematics was founded and recognized in the
1930’s with, in particular the works of H. Whitney, H. Hopf and E. Steifel. A
general interest in bundles followed fairly soon after their conception because
of the theory’s ability to supply great applications of topology to other fields.
Their use in physics, or more specifically field theory, became a necessity when
physicists tried to describe fundamental particle interactions and realized that
the representation of physical fields as functions on space-time was obsolete
and that topologically more complex objects was needed. A suitable choice
turned out to be sections, or cross-sections, of bundles. However, the use of
bundles in physics and mathematics is by no means restricted to the above
mentioned, they have in fact turned out to be very useful in many areas, for
instance in dynamical systems.

In this chapter the material from the theory of bundles necessary to present
the elements of gauge theory is introduced and examples concerning gauge
theories will be given, specifically the ones used to describe interactions in
modern particle physics. The exposition will proceed from the general case,
i.e. the fibre bundle, to the special case of a vector bundle, and in this general
scheme the relevant bundle concepts, e.g. section and group of a bundle, will
be defined, explained, exemplified, and related to previous theory. After this
familiarization with the relevant types of bundles and concepts, notions such
as connections and curvature is treated and, generally, considered in relation
to one specific type of bundle where its significance, with respect to gauge
theory, is the greatest.

The dependence of this chapter on the previous ones is as follows. The
theory of Lie groups enters almost at once since the structure group of each of
the bundles is generally of this type. The examples given in the bundle part has
been chosen as to make full use of the previously introduced concepts such as
that of tangent- and cotangent bundles. The sections concerning connections,
curvature and covariant derivatives are basically applications of the theory of
differential forms and tensors and may be seen as examples of the notions and
techniques introduced in these chapters.

41
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1. Fibre Bundles

In mathematics some objects are fortunate enough to have names that
in some sense, without a great deal of imagination, conveys their structure
through the meaning of the words with respect to the real world. This is the
case with bundles and they are so called because they consist of objects, the
fibres, which are bundled together to form the bundle, like a bundle of hay.
The strength of the bundle concept and its importance lies in the fact that it
generalizes the notion of product space and, in turn the notion of function,
which allows one to treat situations where the range of the function is only
well defined locally. These facts, and many more, will become evident in what
follows and we now begin to introduce the mathematical object called fibre
bundle.

In order to indicate the notions mathematical nature and origin, and for
clarification we first point out that; generally the three spaces T , B and F ,
in the definition of fibre bundle to be given shortly, are only required to be
topological spaces and the defined mappings homeomorphisms. However, for
our purposes it is more efficient to consider them to be differentiable mani-
folds, objects which we have familiarized ourselves with earlier as opposed to
topological spaces. Furthermore, what we call a fibre bundle will sometimes
be referred to as a coordinate bundle because a fibre bundle in the proper
sense should not be dependent on a particular covering of the base space, and
is therefore defined as an equivalence class of coordinate bundles. In this sense
one can think of a fibre bundle as a maximal coordinate bundle but this will,
possibly without gain, obscure the path we are currently on, i.e. to gauge
theory. Because the usual general definitions does not supply enough for us
to work with we will also equip the bundle with a structure group G and also
a class of transition functions. Thus, we define a fibre bundle as follows.

Definition 5.1. A fibre bundle F consist of and are subject to the fol-
lowing:

F1 Three differentiable manifolds: The total- (or bundle-) space T , the
base space B, and the (typical) fibre F .

F2 A surjective map, the projection,

p : T → B

F3 A covering C of B by a family of open sets {Ui} and to each Ui a
corresponding diffeomorphism, the local trivialization,

φi : Ui ×F → p−1(Ui)

with the property that

p ◦ φi(u, f) = u, ∀u ∈ U, f ∈ F .
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F4 A group G, the structure group (of the bundle), which acts effectively
on the fibre F from the left.

F5 Define the map φi,u : F → p−1(u) by

φi,u(f) = φi(u, f)

so that ∀i, j and ∀u ∈ Ui ∩ Uj the diffeomorphism

φ−1
j,u ◦ φi,u : F → F

may be identified with a unique element of G and the map

gji : Ui ∩ Uj → G

defined by

gji(u) = φ−1
j,u ◦ φi,u

is differentiable.

As for the all important question of equivalence, we say that two fibre
bundles F1 and F2 are equivalent if T1 = T2, B1 = B2, F1 = F2, p1 = p2,
G1 = G2 and if {U1i

} ∪ {U2j
} is another covering of B and {φ1i

} ∪ {φ2j
} is

another corresponding trivialization.
The definition above is the most general bundle definition that will appear

in this report and its main purpose is to provide a unifying frame for the
special types of bundles we will be examining. These bundles will essentially
only differ from the characterization above by an additional structure on the
fibre F , i.e. the fibre may in addition of being a differentiable manifold, have
e.g. a vector space- or group structure.
Furthermore, there are a few specifics worth noting concerning the definition.
First of all it follows from F3 that ∀u ∈ U the fibre over the point u,

Fu = p−1(u),

is diffeomorphic to the (typical) fibre F of the bundle, since ∀u ∈ U the
assignment

f ∈ F → φj(u, f) ∈ p−1(u)

establishes a diffeomorphism. The defining criteria F4 and F5 are those who
incorporate the group and its structure, e.g. topology, into the bundle struc-
ture. In the sequel the structure groups will generally be compact semi-simple
Lie groups.

The maps gij defined in F5 are called transition functions and they
are the entities that allows one to paste the local pieces together to form a
bundle. Directly from the definition we can then derive the following relations,
sometimes called consistency conditions, since if they are not satisfied the
bundle cannot be assembled in a consistent way.

gkj(u)gji(u) = gki(u)
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gii(u) = idG

gij(u) = g−1
ji (u)

If the only necessary transition function is the identity idG then we have that
the total space

T = B × F

and in this case the bundle is called trivial. Examining the consistency condi-
tions in this case, where only one patch Ui is necessary to cover the base space
so that i = j = k, it becomes evident that the group of the bundle consist of
only the identity.

We now know what a fibre bundle is and have an idea about how it gener-
alizes the concept of product space and it would be interesting to find out how
this setting may be used to generalize the notion of differentiable function.
This is shown in the next definition where we define the essential notion of a
section, or cross-section, of a bundle.

Definition 5.2. A section on a fibre bundle F is a differentiable map
s : B → T such that p ◦ s = idB.

In general we do not have sections defined on the whole of B but rater on
some U ⊂ B and we call these

sU : U → T

local sections. Now, in a bundle F we have for u ∈ U ⊂ B that s(u) ∈ Fu

and we label the class of all sections defined on U ⊂ B by Γ(U,F). If we do
have sections defined on all of B we call them global sections and denote the
class of them by Γ(B,F).

To familiarize ourselves with the concepts above and add some context we
examine the trivial bundle and then we revisit the slightly more interesting
case of the tangent bundle in the following two examples.

Example 5.3 (The Trivial Bundle). This is the simplest bundle there
is and it is the closest relative to the object that bundles are supposed to
generalize, i.e. product spaces. However, the trivial bundle is just a relative,
it is not a product space as some, especially in the physics oriented, literature
make it out to be. It is indeed true that the total space T in this case is of
the form

T = B × F ,

however, by construction of the bundle the natural projection

π : X × Y → Y,

in the case of topological or manifold product spaces X × Y , defined by

π(x, y) = y, ∀x ∈ X, y ∈ Y

is lost. Now, let us go through each point of definition 5.1 for the trivial bundle
and see how it works.
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F1 The three manifolds are B, F and

T = B × F .

F2 The projection p : B × F → B is the natural one defined by

p(b, f) = b.

F3 Covering B by U = B we may choose the global trivialization φ = id
which clearly is a diffeomorphism and it make

p ◦ φi(u, f) = u, ∀u ∈ U, f ∈ F

trivially satisfied by definition of the projection.
F4− 5 G will consist of only the identity since the elements of this group are

the transitions maps, denoted g in definition 5.1, between the fibres
and these are in the case of the trivial bundle identical and hence only
a map mapping one fibre onto itself, i.e. the identity, is necessary.
Actually, it follows directly from F5 that if the group of a bundle
consist of the identity alone, then the bundle is equivalent to a trivial
bundle.

Furthermore, this bundle have one global section

s : B → T = B × F ,

and this is of course the inverse, p−1, of the projection p.

The reason for calling the map

φi : Ui ×F → p−1(Ui),

in the definition of the fibre bundle, a local trivialization now seem very sensible
since what the map actually does is to make the part of the bundle over each
Ui into a trivial bundle.

Example 5.4 (The Tangent Bundle). The base space B in this case is an
n-dimensional differentiable manifold, and the total space T is the set of all
tangent vectors at all points of B. The projection p is the map that sends each
tangent vector, in T , to its initial point, in B. Clearly

p : T → B

is surjective. Now the fibre over the point b ∈ B, Fb, is the tangent plane at
b, and this is a linear space. We saw earlier that each fibre over a point in the
base space was diffeomorphic to the (typical) fibre, and we have linear spaces
so a vector space isomorphism Fb → F can be constructed, thus in this case
the structure group is

G = GL(n,R).

A section of the tangent bundle is a vector field and thus the set of all sections
is the set of all vector fields over the base space B.
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This example may be somewhat un-pedagogical since the tangent bundle
carries additional structure on its fibre, namely a linear structure, and therefore
it is not a general fibre bundle but rather a special case called a vector bundle,
which we shall examine in a while.

As usual when one embarks on new ground in mathematics two questions
are of special interest, namely, what are the objects and what kind of maps (or
morphism) do we have between these objects. For example in the first part
of this report the objects were manifolds and the mappings homeomorphism,
which soon became differentiable manifolds and diffeomorphisms and even
later we encountered the pair vector space and (vector space) isomorphism.
This type of pairing, object-map, is a general trait of mathematics, which a
subdiscipline of mathematics called category theory exploits, so we now ask
what the maps between our newly found objects, the bundles, are.
The main property of these maps is, quite naturally, that they do not disturb
the structure on the fibre, i.e. they are fibre preserving, as the following
definition shows.

Definition 5.5. Let F1 and F1 be two fibre bundles with the same fibre F
and structure group G. A bundle map

β : F1 → F2

is then defined as a differentiable map β : T1 → T2 subject to the following:

(1) ∀b1 ∈ B1 β takes every Fb1 ∈ T1 diffeomorphically onto a Fb2 ∈ T2.
This induces, through the projections in each bundle, a differentiable
map β̃ : B1 → B2 such that

p2 ◦ β = β̃ ◦ p

(2) If u ∈ U1i
∩ β̃−1(U2j

) and

βu : F1 → F2

is the map induced by β(β̃(b1)) then the map g̃ : F → F defined by

g̃ji(u) = φ−1
j,b2
◦ βx ◦ φi,u = p2j

◦ βx ◦ φi,u

coincide with the operation of an element in G and the map

g̃ji(u) : U1i
∩ β̃−1(U2j

)

obtained in this way is differentiable.

We collect a few facts regarding these bundle maps in the following theo-
rem.

Theorem 5.6. Properties of bundle maps are

(1) the identity map id : T → T is a bundle map F −→ F

(2) the composition of two bundle maps F1 −→ F2 −→ F3 is also a bundle
map F1 −→ F3
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Proofs are relatively easy obtained from the definition and are not given
in detail here, however, they can be found in [Ste51]

The g̃ji:s above are obviously related to the transition functions introduced
earlier and as can be seen in the definition they are mapping transformations
analogous to the role of coordinate transformations that the transformation
functions have. These two types of transformation functions are also related
by the following relations which the g̃ji:s are required to satisfy

g̃1kj
(u)g1ji

(u) = g̃1ki
(u),

for u ∈ U1i
∩ U1j

∩ β̃−1(U2k
), and

g2lk
(β̃(u))g̃1kj

= g̃1lj
,

for u ∈ U1i
∩ β̃−1(U2k

∩ U2l
). Similarly to the related consistency conditions

for transition functions these relations follow directly from the definition.
This concludes our treatment of the general fibre bundle and we now ex-

amine some important special cases.

2. Vector Bundles

A vector bundle is a fibre bundle F whose fibre F is equipped with a linear
structure, i.e. the vector bundle fibre F is a differentiable manifold and a
vector space, and thus the fibre over every point b in the base space B is of
this type also. To get a more intuitive idea of the vector bundle one may think
of it as a family of vector spaces parameterized by points in the base space
B, through the projection. Furthermore, in our exposition the vector spaces
will be finite dimensional over the real numbers R or the complex numbers
C. For information about the cases where one considers vector spaces over
other number fields, e.g. the quaternions and the p-adic numbers, or infinite
dimensional spaces in the bundle setting we refer to other sources.
Now we formally define the notion of vector bundle using the definition of fibre
bundle with appropriate changes to incorporate the structured fibre.

Definition 5.7. A vector bundle V consist of and are subject to the
following:

V1 Two differentiable manifolds: The total- (or bundle-) space T , the
base space B.

V2 A differentiable manifold equipped with a vector space structure called
the (typical) fibre and denoted by F .

V3 A surjective map, the projection,

p : T → B

V4 A covering C of B by a family of open sets {Ui} and to each Ui a
corresponding diffeomorphism, the local trivialization,

φi : Ui ×F → p−1(Ui)
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with the property that

p ◦ φi(u, f) = u, ∀u ∈ U, f ∈ F .

V5 A group G ⊂ GL(n,F), where F is R or C and n is the (vector space)
dimension of F , called the structure group (of the vector bundle),
which acts linearly on the fibre F from the left.

V6 Define the map φi,u : F → p−1(u) by

φi,u(f) = φi(u, f)

so that ∀i, j and ∀u ∈ Ui ∩ Uj the vector space isomorphism

φ−1
j,u ◦ φi,u : F → F

may be identified with a unique element of G and the map

gji : Ui ∩ Uj → GL(n,F)

defined by

gji(u) = g−1
j,u ◦ gi,u

is differentiable.

If the fibre F is one-dimensional the vector bundle is called a line bun-
dle. Note that the transition functions gij in the vector bundle are elements of
GL(n,F) and can thus be thought of as invertible n× n-matrices and we em-
phasize this by calling the gij :s transition matrices. Generally, the larger the
group is the more complicated it is to have as a group of a bundle and there-
fore one often have smaller subgroups of GL(n,F) such as SU(n,F), U(n,F),
O(n,F) etc. as structure groups instead.

The sections of a vector bundle are of importance in what follows and some
particularities that may be difficult to see from just generalizing the definition
of section given previously are useful, and therefore we briefly survey the notion
here. The basic definition is the same as in the case of fibre bundles.

Definition 5.8. a section on a vector bundle V is a differentiable map

s : B → T

such that p ◦ s = idB.

Now, for two sections s1 and s2 of a vector bundle pointwise vector addition
and scalar multiplication is defined as one expects by

(s1 + s2)(b) = s1(b) + s2(b), b ∈ B

(fs1)(p) = f(p)s1(p).

In every vector bundle V there is also a global section, the null section s0,
which in any trivialization satisfies

φ−1(s0(b)) = (b, 0).
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3. Principal G-Bundles

In the previous section we found out that the essential difference between
a vector- and a fibre bundle is that the typical fibre F of the former is a vector
space whereas it in the latter only is a manifold. When we now examine the
principal G-bundle we will find similarly that what essentially distinguishes it
from the fibre bundle is that its fibre has a group structure, more specifically
its typical fibre is equal to the structure group of the bundle and we have the
following definition.

Definition 5.9. A principal G-bundle, or G-bundle for short, G con-
sist of and are subject to the following:

G1 Two differentiable manifolds: The total- (or bundle-) space T , the
base space B.

G2 A differentiable manifold equipped with a group structure called the
(typical) fibre, denoted by F , and this will be identical to the structure
group to be defined in G4, thus we have F = G.

G3 A surjective map, the projection,

p : T → B

G4 A covering C of B by a family of open sets {Ui} and to each Ui a
corresponding diffeomorphism, the local trivialization,

φi : Ui ×F → p−1(Ui)

with the property that

p ◦ φi(u, f) = u, ∀u ∈ U, f ∈ F .

G5 A group G ⊂ GL(n,F), where F is R or C and n is the dimension
of F , called the structure group (of the principal bundle), which acts
linearly on the fibre F , i.e. itself, from the left.

G6 Define the map φi,u : G → p−1(u) by

φi,u(g) = φi(u, g)

so that ∀i, j and ∀u ∈ Ui ∩ Uj the isomorphism

φ−1
j,u ◦ φi,u : G → G

may be identified with a unique element of G and the map

gji : Ui ∩ Uj → G

defined by

gji(u) = g−1
j,u ◦ gi,u

is differentiable.
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What is remarkable about the G-bundles is that one also have a natural
right action of the structure group on the total space of the bundle itself, i.e.
the natural right action commutes with the left action, something which is not
shared by our other types of bundles.

4. Associated Bundles

In this section we will not get to know a new type of bundle in the sense
that the typical fibre has some new type of structure. Instead we associate,
in particular, the special types of bundles we have encountered above, i.e. the
vector- and principal G- bundles. The general idea underlying what follows is
that one begin with one special kind of bundle and then find a way to, from in
particular the typical fibre of this bundle, generate a new bundle, and this is
called an associated bundle of the former. We will mainly consider the case
when one starts out with a principal G-bundle and to it associates a vector
bundle by means of a representation.
The reason for this associating of bundles is generally that some property
or structure of the former bundle naturally induces a desirable property or
structure in the associated bundle. In our case the connection on the G-bundle
will induce a covariant derivative on the associated vector bundle.

To figure out how we may construct associated bundles it is of interest to
us to know what information we necessarily must have in order to reconstruct
a fibre bundle F, if we for now consider the general case. It turns out that if B,
F , G, {Ui} and gij(u) are known then the remaining definitional components
p, T and φi can be determined uniquely and thus the fibre bundle may be
reconstructed. To show this we proceed as follows.

Define a space X by

X =
⋃

i

Ui ×F .

Then for (u1, f1) ∈ Ui×F and (u2, f2) ∈ Uj×F define an equivalence relation
∼ by

(u1, f1) (u2, f2) ⇔ u1 = u2

and gij(u)f1 = f2. The total space of F may then be defined as

T = X/ ∼ .

If we now denote an element of T by [(u, f)], the projection is given by

p([(u, f)]) = u.

Finally the local trivialization φi : Ui ×F → p−1(Ui) is given by

φi((u, f)) = [(u, f)].

The above tells us not only if and how we can recover a partially lost fibre
bundle, but more importantly how we may construct an associated bundle to
a given bundle. Since we are mainly interested in vector bundles associated to
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principal G-bundles what is done will sometimes seem devoid from the above
construct, however, the reader will benefit from keeping it in mind.

Now consider a principal G-bundle G with fibre F = G and local transition
matrices

gij : Ui ∩ Uj → G.

If we have that

ρ : G → GL(n,C)

is some representation of the structure group G, we may define a new vector
bundle VG,ρ associated to the principal bundle G by the representation ρ
using as transition matrices the ρ(gij):s instead of the gij :s. The associated
vector bundle will, in this case, have F = C

n and as for the change of transition
matrices we define an equivalence relation ∼ for u ∈ Ui∩Uj , (u, ϕUi

) ∈ Ui×C
n

and (u, ϕUj
) ∈ Uj × C

n by

(u, ϕUi
) (u, ϕUj

)⇔ ϕUi
= ρ(gij(u))ϕUj

The direction of association is not really important for the terminology and
we may refer to an associated principal G-bundle of a vector bundle, and it is
perfectly in order to associate a bundle of a given type to another bundle of
the same type, e.g. an associated vector bundle of a vector bundle. This last
paragraph and the reasoning above is enlightened in the following example
which defines the concept of duality of vector bundles.

Example 5.10 (Dual vector bundles: the tangent- and cotangent bundles).
From the previous chapters of this report re-collect that if TM is the tangent
bundle over the manifold M , we know that g12 = ∂u1

∂u2
, and if we define the

representation

ρ∗ : GL(n,C)→ GL(n,C)

by

ρ∗(h) = (h−1)T = h∗,

the associated transition matrices are

ρ∗(g12) = [g−1
12 ]T = g∗12.

Identifying

tU1

a =

[
∂u1

∂u2

]T

a

btU2

b = tU2

b

[
∂ub

1

∂ua
2

]T

shows that TMρ is indeed the cotangent bundle. As indicated above this
applies to a general vector bundle V and we call its, by the representation ρ∗,
associated vector bundle the dual bundle of V and denote it by V∗.
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5. Connections on Principal G-Bundles

A connection is basically a covariant differentiation operation, in that it
specifies how tensors are transported along a curve. In this section we will
examine, in particular, connections on G-bundles. The fact that we have G-
bundle connections as our primary objective we will not exhaustively examine
the notion of connections but rather collect a few, for us, interesting definitions
and facts. The reader is referred to [Fra04] or [Nak03] for a more detailed
treatment of bundle connections, in particular their relation to parallel trans-
port etc.

The general idea is to separate the tangent space TtT over the total space
T of a G-bundle G over each point t ∈ T into vertical VtT and horizontal
HtT parts, somewhat analogous to the resolving of an arbitrary vector, e.g.
in the plane, into orthogonal parts, usually as multiples of orthonormal base
vectors. Generally this is done by projecting the vector onto each vector in
the base and this is essentially what we do for the tangent space to T in terms
of differential forms, and we will refer to a connection as a g-valued 1-form (on
T ). Before we give a precise definition of connection we need to specify what
we mean by vertical- and horizontal parts, i.e. subspaces, of a tangent space
to a G-bundle. Throughout all of this it is essential to remember that we are
working with G-bundles since we will frequently use the natural right action
which they, but not the other bundles, are endowed with.

The vertical part VtT is a subspace of TtT which is tangent to the fibre
Fu where u = p(t) and is constructed as follows. Choose an M ∈ g so that by
the right action

Rexp(xM)t = t exp(xM)

a curve through t is defined in T and this curve is confined to Fu since

p(t) = p(t exp(xM)) = u.

Let φ : T → R be an arbitrary smooth function and define a vector M̃ ∈ TtT
by

M̃φ(t) =
d

dt
φ(t exp(xM))|x=0.

This vector M̃ is thereby tangent to T at t and thus M̃ ∈ VtT . If this is done
for all points of T a vector field M̃ has been constructed and there is a vector
space isomorphism

i : g→ VtT

defined by

i(M) = M̃.

Now as soon as we have a connection in G the horizontal part HtT is uniquely
specified as the complement of VtT in TtT and we proceed to define the notion
of a connection in a G bundle.
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Definition 5.11 (The Ehresmann Connection 1-form ω). A connection
1-form ω ∈ g⊗ T ∗P is a projection of TtT onto VtT such that

ω(M̃) = M,M ∈ g,

R∗
gω = Adg−1ω, g ∈ G,

i.e. for X ∈ TtT we have that

R∗
gωtg = ωtg(Rg∗X) = g−1ωt(x)g.

The horizontal part is then defined by

HtT = Ker(ω) = {X ∈ TtT | ω(X) = 0}

What we really want is to localize this connection and this may be done in
different ways depending on if one chooses to use the frame bundle explicitly
or not, and we choose not to do this and we go about it as follows. Let G be
a G-bundle with a covering {Ui} of B and let {si} be a corresponding set of
local sections, i.e. for all i the section si is defined on the patch Ui. Now we
localize the connection by defining a g-valued 1-form Ai through

Ai = s∗iω ∈ g⊗ Ω1(Ui).

Thus the pull-back Ai is defined locally, but in general not globally since a
non-trivial G-bundle cannot have a global section, as discussed previously.
We now have our first gauge theory component and it is the Ai defined above,
which in gauge theory is identified with a gauge- or Yang-Mills potential.
Generally we will, of course, need to have more than one gauge potential Ai for
full coverage since the bundles of relevant gauge theories are rarely trivial, the
exception being the U(1) gauge theory for electromagnetic interaction where
the bundle is in fact trivial. Now, if we need several potentials these cannot
be completely arbitrary, and they must satisfy the following compatibility
condition

Aj = g−1
ij Aigij + g−1

ij dgij ,

where the d denotes the exterior derivative on G and the gij :s are transition
functions. This is obtained by using the properties of the connection 1-form
and an expression describing how sections act on an element of the tangent
space over a point, and a derivation of this and the details of the following
may be found in [Nak03]. Furthermore, this compatibility condition lead to
a relation between two corresponding gauge potentials A1 and A2 given by

A2 = c−1A1c+ c−1dc,

where the c is the canonical local trivialization defined, generally, by

φ−1
i (t) = (u, ci)

for

t = si(u)ci.
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Written in component form this relation becomes

A2µ(u) = c−1(u)A1µ(u)c(u) + c−1(u)∂µc(u),

which is the form of a gauge transformation.

6. Curvature on Principal G-Bundles

As in the above section we will here only take a brief look at curvature and
find a localized form of it which, similar to the way the section based local form
of a connection gives a gauge field, provide the (gauge or Yang-Mills) field
strength. To start with we define the usual non-localized curvature 2-form Ω
in a principal G-bundle G as the covariant derivative of the connection 1-form
ω, that is

Ω = ∇ω ∈ Ω2(T ∈ G)⊗ g,

then we localize it analogously to the case of the connection and we have the
following definition.

Definition 5.12. For a G bundle G the local form C of the curvature
Ω is

C = s∗Ω,

where s is a local section defined on a chart U of T of G.

The localized curvature C may be expressed in terms of the gauge potential
A as

C = dA+A ∧A,

where d is, as above, the exterior derivative on T . To prove this one makes
use of Cartan’s structure equation and a proof can be found in [Nak03].
The localized curvature C act on elements X and Y in the tangent space TT
according to

C(X,Y ) = dA(x, Y ) + [A(X),A(Y )].

Now if U is a chart with coordinates tµ = ϕ(u), A = Amudt
mu and we write

C =
1

2
Cµνdt

µ ∧ dtν

we find that C in component form becomes

Cµν = ∂µAν − ∂νAµ + [Aµ,Aν ]

Now we have an idea of what the localized curvature C is and as we re-
marked in the beginning this corresponds to the field strength in gauge theo-
ries.



7. COVARIANT DERIVATIVE ON ASSOCIATED VECTOR BUNDLES 55

7. Covariant Derivative on Associated Vector Bundles

In this section we will briefly outline how a connection A in a G-bundle
G specifies a covariant derivative ∇ in an associated vector bundle VG,ρ. The
full details may be found in [Fra04]. This result is very useful since being
able to covariantly differentiate sections in a vector bundle associated to a
principal G-bundle is a necessity in gauge theory because this, for instance,
enables one to construct gauge invariant actions. The reason why this induced
covariant derivative is better than others one may define is that it is directly
related to the connection on the G-bundle and is therefore by construction
compatible with this. Which is essential since information extracted from
both the (localized) connection in G and the (localized) covariant derivative
in VG,ρ is used in the same theory. Our aim is, as in the previous section, to
obtain a localized form of the object we are dealing with, which here is the
covariant derivative, and we proceed as follows.

Let G be a principal G-bundle and VG,ρ be an, through the representation
ρ, associated vector bundle. Choose a local section si ∈ Γ(Ui,TG) which by
the canonical trivialization give

si(u) = φ(u, idGG
)

for u ∈ Ui and let γ : [0, 1]→ BG be a curve in Ui and γ̃ its horizontal lift, i.e.

γ̃(t) = si(t)gi(t), gi(t) = gi(γ(t)) ∈ GG

Now take a section

en(u) =
[(
si(u), e

0
n

)]
∈ (T )VG,ρ

where e0n is the n:th basis vector of FVG,ρ
. Thus we have that

en(t) =
[(
γ̃(t)gi(t)

−1, e0n
)]

=
[(
γ̃(t), gi(t)

−1e0n
)]
.

Denote γ(0) by u0 and let X ∈ TuBG be a tangent vector to the curve γ at
u0. Then the covariant derivative of en along γ(t) at u0 is given by

∇Xen =

[(

γ̃(0),
d

dt

(
gi(t)

−1e0n
)
|t=0

)]

=
[(
γ̃(0)gi(0)

−1
)
,Ai(X)e0n

]

=
[
si(0),Ai(X)e0n

]
,

(26)

where Ai is the local connection form the previous section. Now if we express
the Ai in local coordinates xµ similarly to the localization of curvature in the
previous section and combining this with the last equation above we obtain

∇en = Am
inem.

This is now the local form of the covariant derivative on an associated vector
bundle induced from a connection A on the corresponding principal G-bundle.
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It should be noted that the connection induces a covariant derivative unique
up to representations.

8. Gauge Theories

In the language of bundles introduced in this chapter one may summarize
gauge theory as the study of principal G-bundle connections. The gauge fields
are identified with localized counterparts of these connections, which in physics
is identified with physical fields, e.g. the electromagnetic field. The structure
(Lie-)group of the bundle, now called the gauge group, represents the sym-
metries of the physical system under consideration, and from this group one
can via a representation get an associated vector bundle on which the princi-
pal bundle connection induces a covariant derivative which provides a way to
differentiate sections of the vector bundle. Furthermore, the field strength is
identified with the localized curvature corresponding to the connection. In this
section we will give an example containing the simplest of the common gauge
theories, namely the U(1) gauge theory for the electromagnetic interaction
and then make some remarks on gauge theory in general.

Example 5.13 (Maxwell’s Electromagnetism as a Gauge Theory). Maxwell’s
electromagnetism is described by the unitary group U(1). This is a Lie group
and a general element may be represented in the form eiθ with θ ∈ R. Thus
U(1) may be thought of as the complex numbers of modulus one or the circle

x2 + y2 = 1

in R
2 so the manifold part of U(1) is the 1-sphere S1. Considering the principal

G-bundle G with

F = G = U(1)

and the base space B being e.g. Minkowiski space-time, it is clear that G is
trivial so we have that the total space

T = R
n × U(1)

and we need only one global trivialization. The other gauge concepts, in this
case, also come in their simplest form with gauge potential

A = Aµdx
µ

and field strength

C = dA.

At present the theory that provide the most accurate description of the
forces of nature, with the exception of gravity, is the so called Standard model.
In terms of the contents of this report the symmetries of the standard model
may be expressed as the direct product

U(1) × SU(2)× SU(3),
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where the components U(1) × SU(2) and SU(3) are the symmetry groups of
the electroweak- and strong interactions, respectively. The standard model is
by no means a complete theory, rather an intermediate step in the quest for
a unified theory of interaction. The most obvious reason for this conclusion
is, of course, that gravity is not included. A key concept in understanding
the relation between the building blocks of the standard model and the cur-
rent attempts to extend the theory by enlarging the symmetry group, to e.g.
SU(5), is that of spontaneous symmetry breaking and this is something the
reader interested in these matters should look into. Another notion of great
importance is that of renormalization. The gauge theories are endowed with
a property called renormalizability, which G. t’Hooft has shown, and this is
one of the main reasons for their use as models of interactions. The problems
with unifying gravity and the other interactions also has to do with renormal-
ization, so the reader may find it worth while to investigate this very technical
subject.
Among the most important things to do in gauge theory in the future is to put
the modern theory on a solid mathematical foundation. At present there are
several things that are unclear of which the existence of a, so called, mass gap,
in quantum Yang-Mills theories are the most important. The mathematical
community has recognized the importance of this and the Clay Mathematics
Institute has included this as one of their Millennium Prize Problems. More
specifically they offer a prize of $1,000,000 to anyone who solves the following
problem.

Prove that for any compact simple gauge group G, quantum Yang-Mills
theory on R

4 exists and has mass gap ∆ > 0.

For the details concerning the problem and the prize visit the Clay Math-
ematics Institute on the Internet at www.claymath.org.

This constitutes a suitable ending to our report, and we do not include
any exercises so that the reader may fully devote him- or herself to the above
problem, good luck!





APPENDIX A

Prerequisites

1. Topology

Definition A.1. A class T of subsets of a set X 6= ∅ is a topology on X
if

(1) ∅,X ∈ T .
(2) The union of any number of sets in T belongs to T .
(3) The intersection of a finite number of sets in T belongs to T .

The elements of T are called open sets, or T -open to indicate that they
are open with respect to the topology T .

The pair (X,T ) is called a topological space. Usually one denotes the
space by X instead of (X,T ).

Definition A.2. Let (X,T ) be a topological space. A class B ⊂ T is a
basis for T if every open set S ∈ T is the union of elements in B.

Definition A.3. Let X and Y be topological spaces. The product topol-
ogy on X × Y is the topology having as basis the collection B of all sets of
the form U × V where U is an open subset of X and V an open subset of Y .
Furthermore, let π1 : X × Y → X be defined by

π1(x, y) = x

and π2 : X × Y → Y be defined by

π2(x, y) = y.

These maps π1 and π2 are called the projections of X × Y onto its first and
second component, respectively.

Definition A.4. A topological space X is said to be disconnected if it is
the union of two nonempty disjoint open sets. Otherwise the topological space
is said to be connected.

Definition A.5. A topological space X is said to be compact if every
covering of X with open subsets admits a finite sub-cover.

Definition A.6. Let X be a topological space. If for any two distinct
points u and v in X there exist neighborhoods U of u and V of v such that

(U ∩ V ) 6= ∅
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the space X is called a Hausdorff space.

Definition A.7. A topological space X is said to be second countable if
it has a countable base. That a topological space X has a base means that every
open set can be constructed from a specific union of open sets. This union of
open sets are then said to be defining the base. A countable base is then a base
where the base elements are countable.

2. Analysis

Definition A.8. A function is said to be smooth or C∞ if it is differen-
tiable infinitely many times.

Definition A.9. A metric on a set S is a map m : S × S → R such
that ∀x1, x2, x3 ∈ S satisfies

(1) m(x1, x1) = 0,
(2) m(x1, x2) > 0 if x1 6= x2,
(3) m(x1, x2) = m(x2, x1),
(4) m(x1, x2) +m(x2, x3) ≥ m(x1, x3) (the Triangle inequality).

A set equipped with such a map is said to be a metric space. If the second
condition is replaced with m(x1, x2) ≥ 0 for x1 6= x2, then the map m is called
a pseudo metric.

Definition A.10. The set of germs of functions is defined as

C∞
p (M) = {f : M → R | f differentiable}/ ∼,

where the equivalence relation ∼ is defined by f ∼ f̃ if and only if f and f̃
coincide in a neighborhood of p.

3. Algebra

Definition A.11. A group G is a nonempty set together with a binary
operation G×G→ G with the properties:

(1) if g1, g2 ∈ G then g1g2 ∈ G
(2) g1(g2g3) = (g1g2)g3 ∀g1, g2, g3 ∈ G
(3) there is a element e ∈ G such that ge = eg = e ∀g ∈ G
(4) ∀g ∈ G there is an element g−1 ∈ G such that gg−1 = e.

Definition A.12. A group G is called commutative, or abelian, if

g1g2 = g2g1 ∀g1, g2 ∈ G.

Definition A.13. A normal subgroup H of a group G is a group such
that the left- and right cosets of H in G coincide.

Definition A.14. A simple group G is a group where the only normal
subgroups of G are the trivial group and G.
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Definition A.15. An ideal is a subset I of a ring R, if it together with the
addition operator of the ring (I,+) forms a subgroup of the abelian group of
the ring (R,+), and also if the multiplicative operation is closed in the subset
for all elements in the ring R .

∀i ∈ I , r ∈ R ri ∈ I or ir ∈ I
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