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Introduction.

This paper provides a detailed introduction to the differential geometric and
cohomological framework underlying BRS transformations and anomalies of gauge fields.
These items both appeared in the study of perturbative renormalization of gauge fields —
renormalization being required to yield in pabticu!a.r physical answers independent of the
choice of gauge [3]. The vanishing of anomalies thus appears as a criterion for the

0 However anomalies play also a positive role in a

relevance of fundamental fieid theories.
different context, that of phenomenological theories for the search of which they provide a
means of writing "effective lagrangians”. It is in this context that anomalies were first
found (11} Though they arose in s quantum ({field theory) context, BRS transformetions
and spomalies ultimately appear as purely classical (differential geometric) objects, which
can be isolated as such from the original quantum context — this is what we do in the
present paper. In fact the anomalies themseives -- and the algorithms which are usefnl
for their description -- are elements of certain vecior valued Lie algebra cohomologies
related to the ambient Yang-Mills principal bundle. This fact was realized following the
discovery of the Wess-Zumino compatibility condition, which in fact characterizes
i cocycle of the cobomology of the Lie algebra of the gauge group with values "local
fanctionals of the potentials {connection one-forms).

Our paper comprises seven sections, amongst which sections 1,2,3 and 5 describe
prevequisites to the actual subject matter in sections 4,6 and 7. We included these
prerequisites in order to be complete, and also because of the necessity of fixing notation.
Section 1 describes the De Rham complex A* of a principal bundle P with values in the
symmetric tensors on the Lie algebra L of the structare group G, and defines the
commuting actions, on this De Rham complex, of G and of the gauge group Y. Section 2
describes the subcomplex A® of fixpoints of the action of 6 f{i.e. Ad-equivariant element of
A*). Section 3 describes the cohomology algebra of the Lie algebra & of the gauge
group. After these prerequisites, Section 4 describes the cohomology of & with values in
A*, with the ensuing doubie complex and differential algebra structures. This furnishes the
framework of the BRS relations, to which section 5 is devoted, as well as a framework for
the construction of anomalies, described in section 7. The cohomology algebra of & with
values in local functionals of conmnection one-forms -- the receptable for anomalies -- is
defined in section &.

0) See, however, [10] where it is suggested that gauge theories with anomalies may
bave & consistent interpretation at the non-perturbative level.



This expository paper leaves aside important aspects to which we shall return later,
6.8,
(i} The additional analytical apparatus arising from the fact, realized in physics, that the
structure group G is a linear group {a group of matrices —- its Lie algebra L' consisting
then also of matrices). We here look for G a general Lie group, in the spirit of the
general theory of smooth principal burdle.
{ii} The Chevalley cohemology of the gauge group Lie algebra ¥ with values in the local
functionals of the potentials (resp., in & S{L}-valued D¢ Rham complex) has a version
utilizing equivariant differential forms on the gauge group Y himself, with the operators
stemming from the exterior derivative of L.
(iii) The bomotopy formuia should be generalized in two respects: one can avoid the
assumption of triviality of the principal bundle at hand by introducing a background field.
On the other hand, it is uoseful to consider multidimensional generalizations of
"transgression” involving more than one potential. This necessitates the replacement of
S{L) by an algebra of “graded symmetric" forms.

«
§1. The Gauge group # of a smooth principal bundle P = (P—*M,G). Actions of G and &
on the real and vector-valued De Rham algebras (A*{P.R}Ld,~), (A%(P.S{)),dx). and
(AP, L).ALAD.

x

Our hasic object in this paper is a smooth principal bundle P: P—+M, with basis M

and (compact) structural Lie group G. We shall denote L the Lie algebra of G, and write
[u,v] for the Lie bracket of u,v € L. We denote by R the right action of G on P:

1.1} Ryz = s, 2 € G, T €P

[1.1). The gauge group ¥ and ita Lie algebra X.
The gauge group & is the group of sutomorphisms of P inducing the identity on M.
Specificelly D consists of the diffeomorphisms: P—P commuting with all R, s € G, and

mapping each fiber into itself. Since ¥ acts on the fiber, we have
(1.2 ¥z} = zglz). tEP

where g is a smooth map: P—G, ad-equivariant in the sense

1,3 gizs} = Ado Mgt = s lgizls, z € P, s€ G

this expressing commutativity of ¥ and Rs' Relation {1,2) in fact establishes a bijection

between the elements ¥ of P and the smooth ad-egquivariant maps g P=—G, whereby
products and inverses in M are turned into pointwise products, resp. inverses:

¥ — g -1 -1 -1 - -1
(1,4) { . .={ —& . B (2) = glz) , 2EP.
LA ¥¥'e—gg', {(g8')(z) = g(z)g'(z)

Y is an Tinfinite dimensional Lie group” (a diffeological group in the sense of Souriau

[13])). As such it possesses a Lie algebra which we denote £. We can view £ as the
set of smooth maps 0O: P—L, Ad-equivariant in the sense:

{1.5) Olzs) = Ad 873 (0fz) = "s~1ln)s," s € 6



{here Ad s is the tangent map of ads = s-s'l at the unit of G). Lie bracket and

exponential are then obtained pointwise:
(1,6) 0,04z = [az,0i)), 00 EeX, z€P

{left hand side bracket in X, right hand side bracket in L),
1,7} ofliz) = eO(Z)’ o€, z€P

Setting, for ¢ € E°(M), (YO)z) = ¢in(z0iz), O € ¥, z € P, we thus obtain an action of
£*(M) on ¥ commuting with Lie-brackets; thus £ js 8 Lie algebra over 7 M),

(1.2]. The (real valued) De Rham complex (A®(PR),d,~) aa & GCDA. Action of the Lie
algebra Z(P} on A®(P.R). Representation of G and ¥ on A®(P.R).

We write A=(P,R) = @AP(P.R), with A*P.R) the set of smooth real-valued differential
p-forms on P. Denoting by X{(P) the Lis algebra of smooth vector fields on P, we can view
APR) as the set of E*(P)-valued, alternate £™(P)-lincar p-forms on X(P}) ") =

A®(PR)). The wedge product ~, exterior derivative & Lie derivative
LiE) along £ € %(P) ard {(nner product i(f) by & € XA(P), are then defined as
follows: for EO' El""'Ew‘q € %(P), 0 € A"(P,R), 8 € A®(P,R} we have

{1.8) (A BHE 1o € )
1 1
= Fr art 0‘6% . Ktﬂ)ﬂ((al.---,fop)-"fa(p.,.n.----fa'm'}
p4q
= & {.i -
{1,9) dakg.... k) = 1EO(-I) £lalE .. K 0
+ - t+i : - £ . £, N
951%35[:‘ 1) ﬂ(lfi.fllnfou "‘i""EJ" .Ep'
{1,10) {LiEralE 4. ) = ElolEq,... &0

- 3 ate by le 6ty

(1(E)a)(fl""'£p-’1) - ﬂ(f.il----.fp_l)
(1,11) Py
i{E) = 0 on AT(P,R).

Through definitions (1,8), (1,9} (A*(P,R),d,~} now becomes a GCDA. And definitions (1,10

and {111} determine an action (L) of the Lie algebra %{P} on this GCDA. For & proof of
these well Xnown facts we refer e.g. to [1], Corollary [10]).

In addition to the previous structure the De Rham complex AMPR) is both a

G-space and s D-space. We obtain the action of s € G on AXP,R) as ris) = RZ,

where R%a denotes the pull back of the differential form a by R., specificall_vn:

(1,12) (risallzZy) = alsRye Z). z€ P L €T,

m%wgzmwiﬁmmm;ﬁmmo_fmmmmm&d
{indeed ris), 5 € G, commutes with d and with the wedge product).The corresponding
representation of L:

) o
1,13 8l = g1 R*_ , uwu€l,
{ ) ( ) t t-_;o gtu
then arises as the composition

{1,14) o) = LY. uweEL

1) Since both the right action and the pull back are product-inverting, we obtain
indeed a representation s—R% of G on A*(P,R). For a definition in terms of sections see

(1.5] below.



with £Y the principal field

u _

{1,15) fz = Lz‘eu' u €L,
there L, 2z € P, is the map: G—P determined by

{1,16) Lza = 28 (= Rsz).. rEPSsEG

Prom this and the convention

{117 itw) = g™, weEL

we get an action (6,i) of the Lie algebra L on AZ(PR} ]
We now describe the representation p of &# on A*PR) for ¥ € ¥, plv) is

obtained by pulling back the {inverse} action of 2

{1,18) pivia = 10, ¥ e, o€ APR),

specifically we haves}

(1,188) pithazz) = atv @ N 2), z€P g €Th

2} Since Y acts on P on the left, we now have to pull back the inverse of ¥.

3) For a definition in terms of sections, see [1,5] below.

We shall also denote p the accompanying representation of #:

(1,19) | 0} = Frtgele!®, o€ x.
Specifically. one has, for ¥ = &'

(1,201 v, = R o ~ HE _togeed0te.”)

Y {resp. ¥) are thereby represented in the gzero grade nutomorphisms {resp. derivatives
commuting with d} of the GCDA {A®P.R).d -} (immediate consequence of the commutativity
of the pull back (1,18} with ¢ and with the wedge product). Furthermore, since ¥ € ¥
commutes with R, s € G, the representations of G and ¥ on A*{P.R} commute.

So much about real-valued differential forms on P. We now describe the
differential forms on P with values in L. or more generally in symmetric tensors over L.

[1.3). The S(L}-valued De Rham complex {A®{P,S{L)},d,%) as a GCDA. Representations of G

and & on A™P,S(LY)
We denote by S{L) the gymmetric algebra over L:

S(L) = @& Sk(L)
(1,21 kEN

5,.(L) = Lvk

L] sk
SRl S,(L) = R

equipped with the symmetric product

{1,21a) fof = 8,,,08%). € S, f € S,



Here Sk’ k > 0 the idempotent projecting Lek onto the symmetric tensors - vanishing on
the f@f‘-(—l]iﬁf'ef, ij € N, i+ = k. And 8y = id}, Note that the dual S¥{L} can be

identified with the set of symmetric k-linear forms P on i by writing

{1,22) P(ul,....uk) = Plugvo.vty) Uty €L

A subset of S§(L) of particular interest is the subeet Ip(l) of Ad-invariant symmetric k-

forms characterized by
{1,23} P{Ads(ull.....Ada(uk)l = P(nl.....l.lk}, e €0, LI €L

or equivalently

n
(1,23a) 12lPtul"“'“i—l’[“'"i]'“iﬂ""'uk, =0, 00y, € L.

Now we consider the S(L)-valued De Rhem complex of P:

{1,24) A*(P.SIL} = eAP(P.S(L)
P

4) The latter are in turn one-to-one with the polynomials of order k on L., the

passage from k-forma to polynomials arising by restriction to the diagonal, and inversely by
polarization.

with AP(P.S(L)) the set of S(L)-valued smooth differential forms on P, alternatively

{1,25)

AP(P,SIL) = S{L} @AF(P.R)

with the identification

v = f@n {'f(E‘s---nEp) - ﬂ(fli"
(1.25&){

Of course AP{P,S{L)) decomposes into *homogeneous components’:

(1,26}

..Ep)f. for all £,..--,8,

r € AP(p.S(L)), a € AP(R.R), £ € S(L)

AP(p,5(L)) = & AP(P,S(L))
KEM

AR(p,s(L)) = AP(P,5, (1))

1_5)

= AT(P,RIQ@S, (L)

the term k = D arising from our convention Bn(L) = R, which implies

(1.27

ARP.S(LY) = APP.R)

{incorporating in this way the real valued De Rham

virtue}

5} We accordingly write AZ(P.S{L) = oI;AEtP.S{L)).

10

complex has a convenient unifying



On A%P,SIL)} we now define®
- a bilinear product X by requiring

¢ . 1! \ a,a'€A{P,R)
1,28 x{f'@a’) = ' a’),
(1,28) fgapx(f'ea’) = (E-18lan £.£rE5¢L)
- operators, d, ilu) Ou), u € L as follows:
(1,29 d= ids(L}ed
{1,30) itu}) = ids(mei(u)
{1,31) 8{e) = ids(ueotui + Ad “eidAD(P.R)
{with the following definition of Adu on S{L)
k
(.32} { Aduu v-..vu ) = 1§1lllv- savug gviusu fvug v s -vuk>l
Ujsesapuy € L
-— actions v and p of G, resp. ¥, as follows:
(1,33} ris) = Ads®R}, s € G

6) Note that these definitions extend d, i{u} and p(¥) by requiring them to be
trivial on S5{L) = S{LM31, 1 the unit function on P. In contrast &{u) and r{s) are obtained
from tensorizing with the adioint representation. This will result in a departure from a

"Lie action situation”, see (ii} below.
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{with- the following definition of Ads on S(L):

Ade{ Jwve . avAd N v ey L
(1.34) - Adsty v, vy ) ={ M 2o v Uk € 1)
Ads = id on SD(L)
{1,35} pl¥) = idS(L}OP{’)

the latter yielding as usual

(1.36) o) = i, _oote!®, o€ 2

We pote that these definitions reduce on A%(P.S{L) to our former definitions (1,8},

(1,9, {1,313}, (1,17). {1,12) and (1,18), in accordance with embedding (1,27},
The foregoing definitions mow imply the following:
{i} AMP S{LI)Ld,x) is 8 GEDA whose sub-GCDA {A3{P.S(L),d.X] is ispmorphic with

(AXPR).d, ).
i) The pair {@,i) behaves as an action of X(P) on this GCDA, but for the fact that one
has?
1.37 Huld + dito} = idg,; @), (= O() - Adugid L uw€L
AR R}

{iit r as defined in {1,33) is & representation of G on AXP.S{L) by gero-grade
automorphisms of the Jlotter as a GCDA, moreover such that the accoﬁpng@ ¥4

representation of L coincides with 8%

7} In other terms, with the replacement (—+A*(P,S{L}), the product = — the
product X, one has properties (A1} through (A,16) in Appendix A except property (A.14) to
be replaced by (1,37).

8) Coherent with the fact that the @(a) are derivations commuting with d {cf. A,13)
and (A.15).



(1,38) Folieore®™ = 6w,  welL

fiv)  p as defined in (1,35} {resp. {1,36)) i a representation of ¥ (resp. &) on
AMP.S(L) by zero grade automorphisms of the latter as a GCDA {resp. by derivations of
{AMP,S{L]},~) commuting with 4}

n

v} The representations r and o cogutes,:

{1,39) pl¥iris) = rls}pl¥), s € G, ¥ € &,
accordingly
(1,40} 2lO)O) = Gfulpin), wé€EL DE X

These facts are classical. Por a proof of (i} we refer to, e.z. [1, Theorem 1,8] with the
replocement L—(P), A—C”(P), V—B(LIBCT(P), olf)—idg 88, d —d, —X. The
proof of (ii) is as follows: denote 8,{u}, resp. 6,lu) the first, resp. szecond term r.h.a of
(1,31} (Gl,i) is a bona fide action of the Lie algebra L on the GCDA A*(P.3(P)), obtained
by tensoring by idS(L) the action {8,i} of L on A*(P,R). We examine the chenges in (A 0},
(A,12) through (A,16) brought about by the change 91—'911-82. Since g,u} is a zero
grade derivation, {A,9)} stays unchanged. Since 91, and 8, are mutually commuting

representation of the Lie algebra L, (A.12) is maintained.

9) We could thus consider GX¥ 3 (s,¥—rislp{¥) as n representation of the direct
preduct of the groups G and ¥, ’

We check (A,13), from which (A,16) follows: we have, from (1,30}, (1,31}

{1,41) Blulilv} - ifviot) = idS[L)e{GI(u)i(v) - H{v}e{ul}
= idsu_')@i([l!.v]) = il[u,v])

We examine (A,14): we have, from (1,21),{1,30):

{1.42) it)d + difu) = idgq @fita)d + ditu)
= ids{ueelu}

Finally we have from (1,29), {1,31)
{1,43) dé(u)} - 8luid = ids(m@{delu] - &luyd} = 0
hence (A,15) stays unchanged.

Remark. Defining Li£) and il£), € € Z(P) on A™(P,S{L)) as
{1,43) L{E) = idgp \@L(E)
i1,44) (€)= idg @iE)

we get an action of the Lie algebra X(M} on the GCDA A*P,S{L}) yielding the above
action (Gl,i) by composition with £ in (1,15).

[1.4).

Our next concern is the "descent” from SE{L)—vnlued to real differential forms by

means of elements of S$3{L}. Consider a “polynomial” P € S(L) of order k: taking its

covalue with & p-form 7 € AEEP.S(LH:

(1,43} {P(f)l(fl.--.,fpl(ﬂ = PT{Ey,... £ Nzl £yerfp € X(P), zZEP

14



{in other terms:

(1.438) P(i8a) = Pf)c, @ € APPR), £ € 8y L}

one gets an element of AP(PMR). We can thus view the gdual Sl“!Li-o_f Sy{L} as providing

lingar maps
(1,44} P: ALP,S(L) 3 7—=P(r) € ALPR),

with the properties

(1,45) Pod = do P
(1,46} Poife} = {{u)oP, w €L
{1,47) Poris) = ris)loPoAds, s € G

Proof. (1,45), {1,46) follows from (1,43}, (1,29}, (1,30}

11,48) Podif@a} = P{f@da} = Pifida
= d{Pifia} = deP{fen)

£1.49) Peiluff@a} = P{f@itu)a} = Piflilula
= i(u}{Pif}a) = i{u}ePifoa)

On the other hand, {1,47) follows from (1,33}, (1.43) (cf. (1,23}

(150} Porishfga) = P(Adsif}@R* )
= P(Adstf)sR2a
= RAP(Adsif)) a

= ris¥Pe Ads)if@d)
The 1-tensor part A*(P,L) of A%(P,S{L} deserves a special examination, since it
inherits from the Lie bracket of L a graded Lie algebra structure {(essential for expressing
the BRS relations)

15

[1.5). The L—valued De Rham complex (A*(P,L),4.[-]) as « DGL.
Recalling the identification

Af(p,s(L)) = AP(p,L) = L@AP(P,R}
(1,47} x-ueac:ox(fl.---.fp)- u(El.....tp)u
€ AP(r,L), o € AP(R.R), £,,....8, € (B

we define as follows the Schouten product {~] on A®PL): for X € APPRLY, u €

AYPL), p.g € M, £p.€ 0 € L we sot

(1,48) [AABKE 31oenr )

_ 1 1
= ?f ? % X(‘”[)\(f 01"""0‘9"““ u{nﬂ!""'e a(m'll
ot p+a

where [ . ] s.h.s. denotes a Lie bracket in L. Alternative specification:

a, 8 € A*(P,R)
{1,48a) [u@a A v@2] = luvig{as),

u,v, € L
With this definition, we have that {A®PL}dI(~D is & DGL. Moreover r, resp. p,
restricted to A*P,L) sre commuting representations of the group G, resp. b, by zero-grade
automorphisms of (AMP.L)dJ~]}. Correlatively, 8, resp.. p are commuting representations
of the Lie algebras L, resp. ¥ by gero grade derivations of {A%[~)} commuting with 4.
These facts are classical, A proof of the DGL property of {A*(P,L},d,]~]}) can be inferred
from (1, Theorem 1,8] with the replacement L——X{P), A= (P), V—E"(PIOL, pl¢)
= § eidL. d p—¢d. +—+[~]. We know from the preceding paragraph that rfs} and p(¥),
s €E G ¥ € Y, commute with 4.  Moreover (1,48a) shows that they commute with the
Schouten product: indeed we saw that R} and pl¥) acting on A*PR} commute with the

wedge product. And Ads commutes with the Lie bracket of L:

{1.49) [Ads{ul,Adslv)] = Ads{fuv]). s € G, uvE L



[1.6]. The groups G and ¥ as acting on sections.
We mentioned that A*PJR} can be considered as the set of €™ {P}-valued,

alternate, C¢”(P)-linear p-forms on X(P) and formulated the definitions (1,8} through {1,11)
and (1,14}, (1,17) in this context. We here give for completeness the corresponding

definitions of the representations r and p. Letting G and ¥ act on I(P}lm as follows:
(1,50 {ris)£}, = (R} £ _q s € G

z P 'm'l s 1
(151} o9, = (¥ Neyefyy  YED

the definitions {1,33), (1,35) are alternatively phrased as follows: obe has, for 7 €

AP(P,S(LY)

{1,33a) {r{s)THE 1""€p} = Adslf(r{s)f1.....r(s}€D)°Ra), sEG

(1.35a) (AOTHE .. €} = TIANE (08 Jov™ ] v €D

it then follows from

{1,52) M), = ¢ 1, u€EL s€EG
Ads™ " {u}

that one has

{1,53) ris)i{ul = ilAdsiu)iris}, u €L, s € G

10} On the right.

17

§2. The differential subalgebras. (A*.d,.), {Ag.d.%) and {Af.4L~D of real invariant, resp.
S{L} and L-valued Ad-equivariant differential forms.

The fixed point set, for the action of G, of the differential algebras of the last
sections, are differential subalgebras of direct relevance for gauge-field theory, We devote
this section to their description.

[2.1}. The QCDA (A®.d. %} of Ad-equivariant elements of A™(P,S{L)).
We say that 7 € A™P,S(L)} is Ad-equivariapnt whenever one has

21 {R:‘r = ads i7 for all s € @

toe. 7(z0.R 0,2, = ade™'7(2,2,), s € G, z € », z, € 1f
This is tantamount to requiring that
(2,1a} )7 = 7 for all s € G
{ef. 1,33), or else, if G is connected!?
{2,1b) #ujr = 0 for all u € L
Note that, since Ad acts trivially on the zero degree part AJPS(L) = A®PR)

condition (2,1} restricted to the latter simply means invariance of the real valued form o €
AP R):

11) Generally {2,1b) amounts to requiring (2,1a) for all & € G within the connected
component of the identity.

18



ll:l:l = a for all 8 € G
(2,18} P
i.e. a(zs.ng,zzi) - u(z,zi). z € P, zi € T,» 8 € G.

We denote by A" (resp. A'.A:.AE. pk € W) the respective subsets of

Ad-equivariant forms in A*P,S(L)) {resp. in AF(P,SIL}, A*P.S ALY, AP(P.S (LD

Since the ri{s), s € G, are zero—grade automorphisms of the GCDA (A*(P.L)d,x)
commuting with all ol¥), ¥ € ¥, and leaving the degree k invariant, we have that A*
decomposes as

@y A" = 0AP = 0AL = @ A}
-] k [ 8

and is 8 sub—GCDA of {AMP.S{L}).dx] stable under the the action p of b thus also of £
{ns well as every component of Asj and containing AZ as a sub-GCDA isomorphic to the

GCDA {(A®P.R)d,.~)
We note that Ad-invariance allows to simplify the explicit expression of p(¥).

First note that, due to (1,35}, pi¥lr is given for 7 € AP(P,S(LY by the same algorithm as
for a real valued differential from {(cf. 1,13a):

(2.3) (ot¥nHzZ) = M 10N, 23, s € P Z, € TF

. -1 .
with (¥"')., given by (120} for ¥ = ', D € 2. Plugging {1,20) in (2,3) and using the

Ad-equivariance property (2,1} now yields the following explicit form of p(0) on A™
tpietDHrrce,z))
@A) = ade'®B iz cr () ade B a2y

TEA, OEZ, 2€P, 2, €T,

leading to

19

(p(n)'r)(z,zl.---.zp) - In(z),'r(z.zl.n—.zp)]

(2.5) - Elr(z.z,,..-.zi_,.(Lz)*edn(z.z,).zﬁl..-.‘zp)
i
TEA, DERL, = €P, 2, €T,

{for T € Ay ome should set Ad et® = id in (2,4) and omit the first term r.h.es of (2.5

Note that (2.4) reduces to

{2.4b} N

(p(etnf))(z.zi) = Ad etn(z)(p(z.zi)){?(z.zi))
TEN* DEX, 2€P, Z, € T,

on the subset hA* C A® of hor{zontal Ad-equivariant differential forms, singled out as

(2,6} Dk

hAE = (1T € AP; 1(u)r = 0 for all u € L)

{ ha* = @ hal
{equivalently, the Ad—equivariant ¥ € A® is horizontal whenever it vanishes as soon as one
of its arguments Is vertical i.e, tangent to the fiber). hA® iz 8 graded commutative
subalgebra of A* preserved by the actiop of ¥ as follows from (2,4h}). Warning: A* is not

[2.2). The set hA% of real vaiued horizontal G-invariant differential forms is & sub-GCDA

of {Aj.,d.~) stable under the action of ¥ and ispmorphic as a GCDA to the real-valued De

Rham complex A*(M,R).d,~) on the base.

We recall that the isomorphism ie given as follows:l

2}

12} One has da«-da' and u]Aquini because the pull back »* commutes with

d and with the wedge product.
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h € AR I ama' € AP(MB)
a'—aq = g*g'

2,7}
g’ d'(x,X,) = a{z,2,)

(any z € P and z, € T: with n{(z) = x, x*zz - Xi)
The fact that hAo is a sub-GCDA of Ay is seen as follows: remembering that {8,1) is an

action of the Lie algebra L on A*(P.R), Ao = nger u is closed for the wedge product
u

due to the derivation property of ifu), u € L; and closed for d, because, for a € Al {cf.
Appendix A, {A,14)) fluda = -di{u}a + Ofa)a = 0.

[2.3]. The DGL {(A}.4[~) of Ad-equivariant L-valued differential form.

Since the rs), & € G, are zero-grade automorphism of the DGL{A®(P,L).d.{~D
commuting with all s{¥), ¥ € B, we have that A, is 2 sub-DGL of {A*{P.L)d{~}} stable

mnder the action p of ¥ (thus alsc of 2)13’. The importance of Ay lies in the fact that it

contains as subset both & and -the set ® of connection ose-forms on P. Our identification
of £ with the smooth Ad—equivariant functions on P {cf. (1,5)) is now expressed as

2,8) z = A

We recall, on the other hand, that the set & of connection ons-forms on P is the subset
of 1 € Ai singled out by the following specification of the wvalue of a on vertical

veclors:

13) Note however that the replacement of {A,14) by {1,37) prevent hA} = (r €
A;; lutr = 0 for all u € L} — bhence in particular hA',‘ — to be stable under
d; hA‘; is merely closed for the product [~} (and hA™ for the product X).
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12,9 az2) = L7u 2. 2 € P T €T, with ma,2 = 0
slternatively

{2,9a} a(z,8u)) = v, u € L.

We recall that ® is an affine subspace of Ai modelied on Mi 14), The curvature of a

is
(2,10) P® = da + flanal,

it is an element of Af. The exterior covariant derivation determined by a is the map

D®: A3—A7 given by!®

{2,11) D% = dx + fa M) X € AL

We state for further reference the expression of {2,5) for 7 = a € &, and 7 = O €
£: we have

2,12) pi0la = -Ja~D) - dD, DO E L, 8 € &X
{where we used {2,9)) and
{2.13) L0y = [DAD'}, an ecx

14} ie. 82" € ®, 22" € R, A#)x' = 1 imply ha+)X'a’ = &; and a’-a € .
15} onlike d, D%, 2 € &, leaves hAl stable,
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We end up this section with a remark on the “descent” by means of the P € §%(L}
{cf. [1.4]): using (1,47) we see that, if P is Ad-equivariant, i.e. if P Ads = P, s € G, P
commuies with ris), 8 € G: for P € I, {8} we have

{2,14) Por{s) = rlsleP

bence P loaves A* invariant.
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§$3. The cobomology algebra {®*.5,~) of X.

Constructing the cohomology algebra of a Lie algebra is a standard procedure which
can be applied to any Lie algebra over an arbitrary abelian ring. We now describe this
construction jn the case where we need it: that of the Lie algebra £, taken a Lie algebra

over €7(M). We noted in [1.1] that £ = A? is a Lie algebra over £”(M) acting by
pointwise muitiplication —- abstractly the multiplication of elements of A? by those of Ag.

with the following identification of €¥(M} with Ag:

o . 0. a'(zx) = a(xz), 2 € P
3,1) €M) 3 a=2a €A, iff
i.e. a'(x) = a(z), z € P, xz = X%

We now cobnsider the direct sum

{3.2) = a e

where #% is the set of alternate ¢”(M)-valued a-forms ‘,16) on & (Co = %M
local in the following sense: the forms ¥ are of the type:

3.5} @: (0)....0q} € #X.(a times).xt— 8(D;0;....D0,) € E7M)

with 8 a €7(M}-velued C”(M)-linear u-forms on & and the Di‘ i=1,....q, linear

differential operators: ¥-= . " becomes a GCDA (#*.5,~) if equipped with the wedge
product

16} The subset of those ¥ obtained with operators Di of degree zero is a sub-GCDA

{#,5.~) of (#%,5.a).
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Py d (0, - - - 05 8

1 1
3,6) =gt 3t & x(ePl0, - a0, (0 cgur1yr oDy geny? 84, Cobomology of & relative to the representation spaces A{. The double complexes

(43
ars
01 P .ou+‘ e “\:‘-d.s’- 'A:*.D.s'n The GCDAs t'ﬁ.bux)n (.Aoobix,! (.A.A.N,, “AO-A"‘L
The DGLs (*A{,8,[AD Ay, A LA
and the coboundary operator (of Lie algebra cohomology):

Having at hand all prereguisites, we now come te our subject proper, a combination

B9(Dg.--.0,) = ::Z (_1)14-_1,({0“0’]'00.__..6““_.63.___011) of the structures in sections 2 and 3. The matching is obtained by a canonical
0g1<3%a construction available whenever one has a representation p of a Lie algebra (over some

3.7 Qgs---a0 €
£ =0 on o7 abelian ring) on a module over this ring. In our case the Lie algebra is ¥, the ring

&”M), the = (M}-module A®* and the representation is »p ({(direct sum of the

Bxplicitly, 8 is a lin tor of illing
@ linear operator of grade 1 fulf restrictions of o to the component AE). The additional structure of A®, resp. A} as

(3.8 2 GCDAs {and of A} as a DGL) produces interesting extra features: products x and [»], a
v °“=10
double complex and associated total complex, GCDA and GDL structures, the BRS
a a transformations, etc. We now describe this "Chevalley cohomology™ which is "local” by
(3,9} Eway) = (EPlny + {-1) RABy, P E &, y €

construction.

. From here on we use the shorthands A* = A*P.S(LD, A® = AP(PS(LY, AE =
For the proof of these classica]l facts we refer to, e.g. [1, Corollary 9] {case A = V =

£° M. AP(P,S (L) lin particular AZ = AP(P,R), AY = AP(P.L}); end the corresponding shorthands

for A replaced by A.

[4.1]. The double complex {A™*.d,5).

Consider the tensor product over & (M) = Ag 17

17} All the subsequent temsor products are over e”M). It is tempting at this

point te work with tensorproducts over £“(M). However, one can, alternatively consider
the purely slgebraic theory where tensor products are over €. The subsequent results are

then maintained, with appropriate replacements of E”(M} by €. On the other hand the
present construction can be meade replacing &® by °; {see footnote 16} with maintenance

of all results.
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(4,1} A% = ATQe"

18) in other terms A" is identified with the A®-valued Grassmann space over the
algebraic dual L* of L.

doubly graded as the direct sum of subspaces

4,2) AP = APge? ap €ENW

themselves splitting into subspaces

4.3 AP% = ADoe” Mence A== = @{a** = @ Alee)
k k P.a

{a is the "ghost pumber”, p the degree of form, k the tensor typel. The elements of

A® are interpreted ms A®-valued multilinear forms on !13’. according to the
identification

UE“.
U0, ,+..-,0) = {0 e Q0T
14,4) U= 180 = ! a R B
for all Dl,...,DuEl
T € A*

We now turn A** into a double complex with horizontal differential 4 and wertical
differential =:

a ghost number

4,5 . l

p degree of form

This arises by setting
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. v g aro
duN0;,... = dU{n,,....0_%,
{4,6) (dU)Dy,....04) (Ui, J){Qi“.”npe Py

and on the other handls)

(30)(0g,+00a0y) = -(*1)P{1§0<-1)‘pcoi>U<no..--.ni.-.-.ou)
P S G S Iad I TA T TV Y5 1Y PO - JI: IR T 3
4.7 0<1<iga
UE ML a2 15 By ..-.0, €2

Caxd(0p) = =p(Og). X € A*°

{in fact sU = -[-1)Ps pU, with 3 » the coboundary olperat,or of the cohomology of ¥
relative to the representation space A*). With these definitions A™* {in fact each AQ*,
k € W, acquires the structure of a double complex i.e., we have
d2
4.8 s? = 0

sd + dg = 0O

= 0

The corresponding total complex ({*A,A) is defined as follows: the {single) total grading is

4,9

A (=A%) = @7
n pd

with "p = D A
a+p=n

and the total derivative is

(4,10} A=d+s

19) The minus sign r.h.s. of (4,1} is to ensure the traditional minus signs r.h.s. of
“the B.R.S. relations cf. Section 5 below,

29

fulfilling
{4,88) a2 =0

{note that d,5 and A are of grade 1 for the total grading). Proof of these facts: (4.8): 42

= dzeidg. = (. Last line {4,8): the coboundary operator Sp commutes with d since

acting "internally” {on the arguments of U) whilst d acts "externally” {on the value of U} -
the factor —{-1'° then turns commutstion into anticommutation. Second line (4,8): s is
known to be a coboundary operator: for a proof we refer to e.g. [1, Corollary 9].

[4.2]. The GCDAs (A*.2,x) and (AJ.A.x}

We now introduce a bilinear product x on A*®. We set

. ap' [T E AT, 1€ AP
14.11} (1@P)x{7'@¥"} = -1)7F «{TX17)@lw~9'), a

®E A, ¥ € &
alternatively

(UXYI (00 e e Oy )

a+t+a
- (-1)0at L
{4,11a) O D N N I . 1L 2 AL PN S ) 54+ PRI « JP PO I
a+ A
T q‘
L&A, VER, O,e0-.0__.,€FX

We now have that (*p,4,x) is a

GCDA with {*Ag.A,x) as a sub-GCDA2Y This is proven as

follows: the fact that (*A,x} is a graded—commutative algebra is proven in Appendix A, cf
{A,30}, (A,31). We already proved that A is of grade 1 and square zero. Now d and s, and

hence A, sre derivatives for the product x.

20) .“0 is ,\3* equipped with the total grading (4.9}
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We check that for d: given U € aP9 V € a9, Rg-Ogey € & we

have, from (4.6), since d is a graded derivasion for x:

4.12) dUXVHDy,-...Q gy g

=ttt £ xie-
O€Lg4 s

U0 e O ) X O i1y Ogiar ) *
1%00, 4B ) X VIO, geqyeOg(as o)

= (1 Y1) OUGUNTHA, O, ) *+ 1P EIDURAVID, .0 g

The proof for s is obtained as follows invoking Theorem (1,8}vi) of [1}: denoting by ¥

the product on A** obtained by discarding the factor (-1)‘:["'I r.h.a. of definition (4,12a),
the fact that piol), O € &, is a derivation of (A%x) implies that Bp is & derivation for

the product v. We then have, for U € MWL ve 298

4.13) oUxW) = 175 (UvV)

1!

0T ey + +-110vs W

-t bEmey + 1P 09Uy

sUxV + (-1 UxsV

Note that, since d and s preserve the tensor type, gach (A}*.d.3) is a double complex

with total complex tl‘klA}_. Moreover {:AD.A,!&! js & sub—GCDA of ("A,Ax}. The fact
that *A, is closed for the product x stems from the fact that A% is closed for X.
And *hy is stable under A (in fact under ¢ and s) because the latter preserve the tensor

type.

[4.3]. The DGL (*4,.8.[~D.
The case k = 1 deserves special attention. We define a bilinear product on AY™

by setting

31

X E A%, p € a9

4.14) [A8P~udy) = (-1)““[%:1!@{%«&»{ a
wE &, yE &

equivalently

(ARBICO, 4 -vea0g, ) = (D% g7 T xCo)

a+ 8
{4,142} (A, s e 20, )AB(O, (gyyys BRI Y

o q8
AE AT, BE AT, nl.-...ud”ez

Then (:A]‘A,[Aﬂ becomes a &21’.

Proof. The fact that ('Al.lnll is a graded Lie algebra is shown in Appendix Aliv)
ef. {(A.34). A preserves AY and is of sguare zero and total grade 1. On the other hand
d and s, and thus A, acts as derivations of ZA4 for the product [~]. For d this follows
from [A,2Nii) in Appendix A. The proof for s is again obtained by invoking Theorem
[1.8)ivi} of [i} denoting by D the product on A obtained by discarding the factor -1n"
r.h.s. of definition (4,14a), the fact that p(0), O € X is a derivation of {(A}.[~]) implies

that ap is a derivation of A}. We then have, for A € Allm. Be Aq‘.

4.15) s{AnB] = (17" M5 (AcE)

it

_{_mybrqtag _na
{-1} (SpAl'JB + (-1} AL‘IBpV}
= -l e 1M A)np + (1P MANeR

= [sAnB] + (-1)°* Y[AnsB]

e e

21} 'Al is A" equipped with the total grading {4.9).
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[44]. Action r of G on A" = *A. The operators &(u} and ifu), u € L, on A"
Commutation and derivation properties.

On A*™ = A"@¢*(= *A) we define the action r of the group G, and the operators .25 Blalflv) - 6v)6(w) = Sfuvh, uv €L
Biu. xiuh u € L, by tensoring with idgs: 4,26) B - )6 = ifluv), wy € L
(4,16) Mgl = rgiidg., £ €C {,2m ftuid - d 6} =0, u€L
4.17) | o(u) = olu)@id ., uw €L {4,28) ffujifu) - Hu)B{u}) =0, uvEL
4.18) o) = H0Bidg, B E L ,29) ituld + d ite) = idg @FGidge

ilu)a+ai{e) = ) - Adu@idAoeid’,
alternatively, for U € A™, 0y....,0, € X

Moreover, we have

{4,16a) UKD, .....0 ) = rlghUD,,...0,0

{4,30) Tolpo re™ = Ble) v E L
{4,17a) {6{IUND,y.....0n) = ealU{ny,...a.)

and the following invariance, resp. derivation properties in (*A.x):
{4,18a) i{o)UNO,.....0.) = ila{Ul0,....0 0

4,31) rigHUxV} = (Mg)UixirlglV), UV € *a, g € s
{note that rig), & € G, preserves the ghost number, the degree of the form, and the tensor
type). {4,32) SluUxV) = (e{u)U}xV + Uxg{u)V, UV, € *A, u € L,

We then have the following commutation rules

{4,33) MUV} = [{HuUIxV + ~1)"UxiuV, U € PA, VE *A, v € L

4,19 ojs + s ifuy =6, v€L
- and in (*Ap -1

14,20} Qlups -3 Ha) =0, we€EL

{4,34) r(g)lA~B] = [r(g)A~r(g)B], ABE€ *A, g € G
14,21} rgls - srigl=0, g€ G

14,35} @{u)[A~B] = [6lu}]A~B] + [A~B(u)B], ABE "A, uEL
(4,22} Hgd -d gl =0, g€G

3 ~ = [i ~ — 1P Ani n .

4.23) HelA - @) =0, g € G (4,36} Hulf A~B] = [itu)A~B} + {-1}[A~i{w)B], A€ "A, B € *"A nel
{4,24) ilolitv) + ifv)itu) = 0, uv € L

i3
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Properties (4,19), {4.20) and i4,21) are due to the fact that s acts "internally” whilst i{u),

6{u) and rigl act "externally"?‘z’. Property (4,22} through (4,29) follow from the
corresponding properties in "A, resp. "Ay via tensoring with idgs {immediate from [1.3Nii},

{iii). We check the derivation properties (in particular the fact that properties (4,33},
(435) hold wrt the total gradiog) With U = 78¢ € APge? U = 7'8¥ €

Ap‘eiu', we have U x U' = (-llup'(TXT'}ﬁVAP']. hence

4,37 MUXT) = (1) HOITINT' + TXBRIT'IBPAY')
= LowITIOP) x (T'8¥) + (169) x (WIT18¥)
= {(G4)UxT + Ux @)y’

and
(4,38) i) WU = D% furxr' + C1PTMATIBPAP)
= ()PP Gyrew't x (T'0w)
+ (-1)3P 4P a0 Iy gu)utifulp@e’)
= UK + (-1 Ui
d with A = xew € APgeS, A = ew € AP'@e”. thue AxA =

1197 OO IBIPAY),

22) This implies commutativity of ilu) #s) and rig) with 3. turned into

anticommutativity for the odd grade i(u} by passing from 3 5 to s.

a5

{4,39) SlullAnA'l = DO O ANT + AT 8 (wa¥')
= [RWMEPAL'EP] + DBRAsIN8Y]
= [Bl)AAA] + [A~BlUIAT)

and

{4,40) ituMA~A']l = (-1)np'([i(u)ka)u'] + (—1)D[kni(u})-'“ @ ly ¥')
- 1T epn o] + =110 I gp iin ep']
= fifulAn~AT] + =17 CAnilu}A’]

[4.5]. The Ad-squivarisnt double complex {AR*.d.3), GCDAs (*A.a.x} and (*AgAx)
and DGL (“Ay.al~D-

With p.ax € N we now consider the fixpoints sets

(4,41) AP% = U € AP rg)lU = U for all g € G)

= AP@e”
equivalently, for G connected,
(4.41a) | AP9 = (U € ARY, 60U =0 for all w € L)
with the bigraded spaces

4.42) : At = & AR%, A= o N7
P,8 p.d
(4P = ?&Eu) and the graded spaces

(4,43) 2, =0 AL A =6"h

where n is the "total grading”
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(4,44) "h,= ® A% A= @ APC

p+a=n pta=n
We now have that (AX*.d.5), kK € MW pesp, {A*%d.5} are sub-double gomploxes of the
double complexes {Af*.d,5) resp. [(A®*.d,5); that (*AAx), resp. Ehpax)  are
sub-GCDAs of the GCDAs (*A,A x), resp. Chpd,xk and that t‘laﬁs["n is a sub-DGL

of the DGL{*A,A[~]}. These facts immediately result from the commutation of rig) and 4,5
cf. {4.21), {4,22)); the commutation of r{g) and A,x {cf. (4,23}, (4,31)); and the additional
commutation of rfg) with [~] {cf. {4.34)), ¢ € G. Moreover, with BA%Z* the gt of

invariant horizontal real differential forms on P:

hAZ* - o hab®
14,45 naPQ o 229 aap.
o =~ (FE€ AO 3 1(u)F = 0 for all u € L)
and
(4,46) Bhg = @ ARC

prawn

we¢ have that (A7*.d,5) is & sub-bicomplex of {A3*.d.8) and b*AjAxX) is 2

sub-GCDA of LAWA‘xl ({this follows from the facta that bA%* is stable under both s and
4, owing to (4,19} and {4,29) (remember that &{u) vanishes on A®®),

Remark. On A** we have also an action (8,]) of the Lie algebra £, given as
follows: for U € A%, 0, ﬂl....,Oj € &

{4,47) {B{O!UND],...,QD)

a
= plONU(D;.....0 ) + iElUml.....ni__l.[rx,ni].l:'i_l....,nﬂ}

4:48) (MOUAQy,....0, 4} = U(Q1.04....0_y)

3z

For a proof of these facts see e.g. {1) Theorem [1.8{i) {ii}.

[4.6). Alternative definition of {(*A,A,x).

We now describe a different way of looking at *A, which will be technically useful
and has also some conceptual interest.

Since A* was defined as the tensor product S{L)®AJA, the space *A is the double

tengor pro«iuctzs)

(4.49) {“ o 3A° et
' AP% = s (L) @ AP %
k k £ Ao~y
on which the product x is defined ez follows: we have
14,50) @ne¥) x (8@ = (-1 URIBINAEIBIP v,

f,5 € S(L)
n € AL, £ € A}
veE e, g

23) Written without parentheses according to associativity of tensor product.
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This can be written siternatively
{4,50a) Heinee) x &de0¢) = HvDIBln8PInEsy])

where the wedge product of the rhs. is the gkew product of the GCDAs ®Ay, and ¢°,
naturally included in *A as *Ag (cf. (A,17) in Appendix A). We could thus have constructed
(*h.A.x) by assembling the algebras {S(L),~). (Aﬁ.d.r\) and (#*,5,~) as follows: first

build the skew temsor product {'J\O,A} of graded commutative slgebras
(4,51) Ay = ALB,
with corresponding grading

{4.52} Bpg s @ADL L8 &
and skew tensor productz‘)

nE AL & EAD
4,53) 1nePIn(E @) = (-1 URAEIRPAY) { M o
wE S, JyE .

then build the tensor product

.54 A = S(L) @"Ag

24) A in A is not the skew tensor product of derivatives d end &, The latter

is d-l-so = A-p~, see below.

39

with preduct

f,8 € s(L)
{4,55) {{@5)x(g8T) = (fa)@{S~T), E ’
5.T, € *A,

We obtain in this way the graded commutative algebra {*A,~) embedded as such in the

graded commutative algebra{®A.x). We recapitulate our operators: they are all totally split
tensorially

{4,56) rls) = Adseﬂ:eid... s €EG

4,57} ol¥) = idg BalNIGidy., ¥ E

14,58) o0} = idgy @(0)Bidge, 0 € ¥

14,59) d = idg; 946id 4.

{4,60) 3 = idS(L)a(-n"ea

(4.61) ifu) = idg@ifuiBidys. u €L

(4,62) Blu) = Adugid, oBidys + idg001IBidgs, u € L
(4.63%% P = POid, iy,

25) See below 4.7) for a study of P on *A.
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except for the operator pa in

{4,64) A=d+ s+ pa
given by

{4,65) pa = idsﬂ_‘)@p/\
with

(4,66) (p~la@viing,....0 )
o € A*

-~

o :
= I 1900 0g)e(0a, | @ € ¢°
im
Ogs---sF, € 2

Note that the product [~] on ‘Al = LOAE is given by

u,v € L

IN = ST},
4,87) 1{u@SI~tv@T)] = [0, vIRISAT} ES’T € *A,

[4.7]. Covariant derivatives. A-copnections.
Appendiz B applied to the DGL ("Ay,8,[~]) yields a linear assignment, to each B €

lAl, of his "covariant derivative”

(4,68) 3B = A+ [Bae)
with square
(4,69) (282 = (3Ba.)

where the "curvature® of B, B e 2;\1, given by

41

{4,70) sB = aB + }[B-B)
fulfills a "Bianchi identity”
471 2B3B = ¢

Now we have a uniqug graded derivation [agsin denoted ‘.'DBl of (*A,x) restricting to

203 on :AP and to A on :'\0 {in fact the latter is the sum of A and of the unigue

graded detivation restricting to [B~-] on ""1 and to zero on 'AO)ZB’. ﬂB is given I_sz'”

2%Ca x...xa)
i~1

4.72) k Kok B
- igl(—l) ApXeeonAL XBUA KA xxAy

ni
A; € L

QB thus defined on *a fu].t'illa:zm

4,73) (B2 = ¥Ba.]
{4,74) 6 +2® _ 2B.6() = [GuiBr-] uwelL
4.75) itwye2B + 98- i) = ofu) + fitwiBn-) - idps@Adugidge. u € L

26} Generally, for A € p"‘l' p even (resp. p odd), there is a unigue derivation {resp.

graded derivation) of (*A,x) restricting to [A~-] on 'Al and to zero en 'Ao.

27) one bas also the same formula with [Be-) instead of 3B.
28} with the understanding that [A~+] is the extension described in footnote 7
above,
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Proof. {4,73) both sides are derivations, coinciding on *Ag and “Ay.

(4,74} {resp. (4,75} both sides are graded derivations (resp. derivations) vanishing on
*AD and coinciding on 'A]; as results by combining (4,27} with {4,32) rewritten as {4,76)

(resp. (4.29) with (4,38) rewritten as {4,77)
4,76} glulo[B+] - [BreleBlu) = [BwBa), B E 1Ay

4,77 e [Br+) + [Ba-loi(u} = [itw)Bar), v € L

Let us call A-connections the elements of 1A1 fulfilling

,78) iwa = u € %
Let A be a A-connection: we have the commutation rules
14,79) olwp? - pPom =0, vEL
{4,80) iwoh + 2Riw) = o), v € L

showing that ﬁA preserves *A and b.*A. Moreover, in that case FhA belongs to thl.

{in fact :\\‘)A preserves A for all A € *A,).
1

Proof. if A € 'A]. gu)A = 0, ensuring (4,79}, which in turn implies
#Mp ¢ *A.  If in addition WA = u (requiring that A € 1a,). we have [fitwAn-]
= lun+) = id54@AdUBid e, honce (4T5) then reduces to (4.80), which implies 3*h"A C

h*A.
We end up this section with a discussion of the “descent from *Ay to *Ag by
means of poMomials P € 8y(L).

[4.8].
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Let P be an Ad-equivarisnt polynomial of degree k on L: P € Ly{L). Setting

(4.81) Pire®) = PIT)@®, » E A%, ¥ € &%,

(4.81a) PUND,,...0 ) = PUD,...00 UE€ A% 0.0, €%

defines a8 linear map: P: :Ak—':l\o which preserves the ghost number and the degree of

form, commutes with the action of G:

{4.82) Por(s) = rle}oP, s € G

{hence maps *A into Ag) and fulfills

{4.83) Pos = soP

(4.84) Ped = deP

{4.85} Ped = AoP, uw€L
(4.86) Podlu} = Blu}eP, u € L
{4.87 Peifu} = ifujeP, u € L
and

(4,88 Po2? = AcP. A€l
(4,89) Polan+1=0, A€y

Proof. (4.83) through {4.87} resuil at sight from {(4.38) through (4,66) (remember
that PrAdu = O since P € L (L} {4.88) follows from (4,85) and (4,89) which immediately
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follows from the

Lemma. Let u € L, f € S{L), 8T € Ay we have

4,50 [{ugSI~I@T)] = Adu{f}R{S~T)
indeed PeAdu = O then implies Pel{u@¥)~+} = 0. -

Proof of the Lemma. Dencte the r.hs, of {4.91} by 3 gif@T}, we want to bave
by = [lu@8)~=]). This holds on Ay by definition cf. (4,68); and trivially on e To

prove that it holds everywhere, it thus suffice to check that g is a derivation of the

same type as [{ueS)M}zg). We bave ideed, for 8 € “Ao, T € nAD

4.91) (5, gf@TN=I"@T) + 1)@ 3,5t 8T

(AU )B(S~THX(CAT} + (-1 (EGTHAd(LIB(S~T )}
(Al EWHSATAT') + (1P Adulf N@HS~T~T')
{Adu(f)] T+ AdOE HSATAT')

Aduff A)QSAT~T" = 8 HIQTIx({'T")

It

29) <f. (B,8) in Appendix 8.
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$5. The BRS reolations.

We npow exhibit the BRS relations as realized geometrically within the double
complex (AY*,d,s) equipped with the product [~l].

As we noticed in section 1, the set @ of comnection one-forms is contained in Ai.
embedded in A}* as A}O = A:w.

On the other hand, let w be the "tautological form™ on £ (equal to the identity
map).

(5.1} wi) =0 0Ee

Remembering that we identified X with Ao, we see that w as given by (5,1) appears as
1

an element of A?l = A?BL. Hence A1™* accomodates both a and w

a € al?
(5.2) 5
w € A

We therefore may consider sa, sw, dw, [a~w] and [wew] in AY* C A*: in this sense

we then have the BRS relations

sa = ~du - [arw]
15,3} {

W = -%lm'-w]

Proof of these relations by definition (cf. {4,7)), sa € A** is given by
5.4} (sa)(0) = plO)a = -dii~[a~0], D € 2
(cf. (2,12)}, whilst, also by definition (cf, (4,6a), (5,1}

{5.5) (dwit)) = dlOl} =dD, DE 2

46



and {cf. {4,12a))

(5,6} [arwli) = [a~wlDl = la~0],

proving. the first line in {4.3). -As for the second, we have, by definition of sw €

02
Ay

57 swl0g0y) = -(plOghal0y} - AOATY ~ W(0p.04)
= - (ologlo, - #10;105 - (0040
= ~{ing~ay] - {0)~0g] - {0504}
= ~{0g~0]

{we used {4,7) and {2,13}}. On the other hand

5.8)  [wnwK0y.0p) = [wlOglawi0))) - [0 )awtngh
= !Donnll - [OIADOI = ZIBOAOII

proving the second line in (5,3}

Remark The "ghost”  arising in the physical literature is an anticommuting

*field” wi{x} with values linear maps f—L. Specifically, assuming the principal bundle P
trivial {so that £ consists of smooth maps 0: M—L} and choosing a base eq in L {with

dual base €% in the dual L* of L), we have, for £t € M

(5,9 wix) = Tw(xle,
a
ie.,
(5.9 <wixho> = Ewltnove,, 0E€Z,
a

where wl(x) € #* is the dual base of the “base” 5.8e, of 0O = C (MGL in the
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following sense

5,10

<w¥(x),5,80 > = 83blx-)

xy € M.

In the physical literature, the operator s is defined by requiring

5,11}

win) = 35 0’ txeu ",

where the fg\, are the structure constants of L:

5.1

xEM

.
legeyl = Efl"r"‘u

these relations implying

{5,13)

sulx) = ~§wix)wixl,

in the sense that one has, for Og. 04, € I

{5,13a}

has

{5,14)

x €M,

{suwlxiHOg.0q) = FHuHOg)ptxia;).

The relation betwesn our w = id; and the above "ghost” is given a&s follows: one

a0 = wlDlix) = olx),

xEMDEZL

Indeed, for 0 = f@u, { € c*M), u € L, one bas, from {5.9a} and (5.10}

{5.15)

{wlboHfgu) = TuixNfgue
a

= sl [fis dy & Tu’e geg
a
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A,Q
= Bu 8, 5i{x-
EIdyﬂyIP Q5tx-y)

= of(x)+ue = fixln
a

L]

{f@u)ix).

Furthermore, if one extends the correspondence (5,14) to elements ¢ € A
requiring that

(5.16) WRMDy,...00) = $(0y,....05)x)

one obtains (5,13) by eguating the evaluation of both sides of (5,7) for x € M.
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a0

by

§6. Cohomology of # with values jn local functionals of connection one-forms.

This section describes the cohomology which accomodates anomalies as elements of
the first cohomology group. This cobomology arises from a construction analogous to the

one described in section 4, but using a different representation space of the Lie algebra
of the gauge group B. We denote by r1°°(a) the set of maps from Of into the reals

obtained as follows: v € I‘l“(ﬂ} whenever

6.1) via) = [ta),
M

where C is a smooth g-chain in M and ¥ is a map

16,2} a € a— AYME)

such that, for all a8’ € O
6,3 Supp{¥{a}-Fi{a'}} & Suppla-a'),

where Supp refers respectively to AMMR) in the left hand side and hA](P,L) in the right
hand side {due to Ad-equivariance, the M-support is well defined on hAilP.L)). We further
define a representation Py of ¥ on eloc(m {and an accompanying representation of X}, by

setting

(6.:4) (¥ 7HB) = vip¥ Va)

30) We call such maps v local functionals on . Note that our definition of
locality encompasses the case where a and &', instead of being connection one-forms, are
sections of a smooth fiber bundle over M (not necessarily vectorial), the support on the
left hand side staying unchanged, whilst the support on the right hand side is now defined
as the closure of the complement of the set {x€M: alx) = a'{x)}.
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8.5) to l0ivia) = FE1 g Yiole™ Da)

We now consider the cohomology of £ with values in the representation space rl"‘"*(a)
{another example of the general procedure aiready encountered in section 4). On thbe space

loc loe a
* = A, T () =T ()@ =
6.6) { r 8 er

re = A%z, r'% @ = r'°cmnes?

direct sum of the TI°®{}valued alternate multilinear forms on #, we consider the

coboundary operator L given as follows: for v € re

®7  (3,7N0g....00)

- 2 i ~ i+ ~ o~
= E Y plaghriag,...0;....0,) + ogtggé;‘ v{{0,,0;1.0.....00, 0. A g}

One has 52 = 0, (F%5) then defines a cobomology denoted H*,r'*°N).

According to Wess-Zumino compatibility anomalies are element of H’(x.r’“lun.
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87, The homotopy formuls.

This section describes an algorithm (analogue to the usual Cartan Chern Weil

homotopy formuia) which provides a means to classify anomalies [12].

With a € & and w considered as belonging to ]A {cf. 15,2)) we aet31)

7.1 Asa+w

and consider ¥'A and ' as defined in (4.71), (4,69) for the element tA of 1, t €
[0,11. We then have the limiting values

704 . 5% - o
7.2
.2 ?lA = F* = F® = da + %[aha!
and the relation
(7.3} 2tha = foyth

Proof. The first Lne of (7.2) is obvious. The second follows from the BRS

relations: indeed

(1.4) A = [desdlavw) + Flatwnatatul

= F2 + 50 + i[wﬁw] + sa + dw + [anu]

where we used the fact that [arw] = [wna] in the GDL (A}*.Af~D

31} A is thus a A-connection in the sensé of [4,71.
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On the other hand we have

(7,5) FA = tan + jt3AnA)
where {6,3}
(1.6) A5t = aa + [tAnA) = 2tAA

From {4,53}, (6,3), the Bianchi identity {4,52), and the fact that (*A,A.x) is a GCDA, we
have that

.7 pthaxFthxstiy  xFth)

'f-isft‘as?t‘“x...x?m

H

{ fotharths xsth

Applying P on the left and_ integrating w.r.t, t from 0 to 1. we obtain, using {(4,88) and
{7.,2)

(7.8) kaj‘P(AxS’tAs..‘x?m)dt = P(Fex...xF%)
2]
{i.e.)
{7.88) ' 2Q%-1 = pypayek)
with
1
(7.9) Q%1 = k{P{Axsmx...xS‘tAldt.

Writing Qm‘-1 as sum of homogeneous elements for ghost number and degree of form:
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.30 Q-1 = Q21 , Ql2K-2 4 Q225-3 4, oZk-1.0,

relation (6,8a) yields

component 2k,0 : dQZk-:'O - 0

e 2K-1,1 : .sz-l.0+d02k-2,l - 0

— o 2k-2,2 : #q2%" 20 leqe?% 32 1 g
0,ik . .QO.Zk-l - F2

We are particularly interested in the third relation which furnishes a means of computing
anomalies. Assume the principal bupdle P to be trivial, and let o: M—E be a smooth
section of P. Applying the pull back by o, which commutes with d, we obtain choosing k
so that 2k-2 = d, the dimension of M, the following vanishing d-form M

(r.12) o020 00 + dte=a®* I Hap0p = 0. 0y0; € 2.

If we nssume M compact without boundary (euclidean situation), Stokes theorem then

implies
7,13) [orusa®2MHog0m = 0. 040 € 2
M
Let
(7.14) ane) = fora®2ho
]
1
= for “[Qtzk*z,zmm
M
with
{7.15) q = AxsAEN 4 = e,
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We row show that (7,13), which also reads (cf. 4,84}
) 1

(7,138) . Io'i!;P(stk'z)(n)dt. =0,
. - M

in fact implies the "Wess-Zumino compatibility”

{7.16} . . (ara:(ng.nl.a) =0, 0p0; € £,

in other words the fact that the cohomology class [0 of & is an element of the
cohomology required for anomalies:

(7,168} fx) € H e, riocan.

FRor checking (7,16} we note that one has
(7.17) Q%101 = xFUe(r-D)tlt-THanwlxa) (@t (k-2)
* this stemming from

a0 ,'w.
(7,18} (FA 1) e ee-[anw)
. (gA530,2 o pta u gp% 4 %t(t-l)lﬂ“‘]

Prom this follows

(1.19) Q%2+ 1) = (XF* (k-1 Dlanlxel X (FE2(E-2)
= o2%* % Y
hence
53

200 ploQZ*"2 Mo

2k-2,1 2k-2,1

=q} 0.0La) + F51ymg @272 Houste ™ Mha)

Therefoi'e

2y ©Q2%"2'iag.0p = 0F* 7 ag0)la)

- - -\Q
+ i g @2 T Mo ate 0)0p-q2% 1+ gy pte” Llalh

= 2k-2,1

= -30; {Q.a)

1

- Relation 6,14} then results from the fact that 5. commutes with the operation Io‘!dtP.
. . 5

" ae follows by linearity.

[7.2). Remark.
From (6.8a) it follows that AQ%%! is a basic form:

(7.22) owaQ® 1 = a1 -0, welL
This raises the gquestion of whether this also holds for QZk_z'l. which would yield ab

intrinsic d-form q' on the base such that QZk'z'1 = g*q’ (cf. 2,7} without recourse fo a
section o* of P {so without the assumption that the latter is triviall. However this does

not arisesz'. the form QZk"z'l is by definition Ad-equivariant

32) Ko moré that in the case of the Chern-Simons form TP. What we have here is
an analogy to the Chern-Simons situation, with the replacement a=—tA (cf. [9])
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(7,23 swe?*21 =g, vweL

however QZl"z'1 is not horizontal. Indeed, we conclude from (7,17}, taking account of

i(ulw = 0

t{u)a = ul

24
.24 i(u)F 2 = i(u)(tF? + it(t-l)[aﬁa]}

= t(t-1)[ul~a)}
that one has

1(u)q€k‘2"

7.2 = -ty
= {~wxfulaa] + (-Dfulxwlxa + (k-1ano)xa} x (Fraysk-1)
+ (k-2Hx P k-1t -1an wixa}xlul ~alx(ptay -1}

In particular, for X = 2

(7,26} i(\:l)QE“-2 o1 o _wx[ulxal + lulewlsa + [a~wlxa

= [ulrfwxa)] - 2wxfulral + [arw]xwe

Upon application of P the first term r.h.s. vanishes {cf. {4,90), but the two following terms
persist, yielding a non vanishing result.

It is easy to find a substitute for QZk’] whose terms QS'Zk'l" are basic,

horizontal, replacing the family tA by the family tA + (1-t)8, where & iz a fixed
backgound connection on P, which then need not be assumed to be trivial {8). The
algebraic constructions of this paper have to be generalized as will be done in forthcoming
article [14].
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Appendix A. Graded differential algebras.

[A.1). Definitions. {il A GDA (graded differential algebra) is a graded reesl vector

space M = 2 @", equipped with a bilinear product OXE—@; and a linear operator
nEM

d: i—+® {the derivative), with the properties

{A.1) a0 caP*?, pqeEmM

(a.2) d® co?l, pew

A,3) dlab} = Da*b + {(-1Pdasb, a€® b€ &P, pe N
Ad) & =0

iy A GCDA (graded-commutative differential glgebra)aa} is a GDA @ with an
associated and "graded-commutative” product:

{A.5) a-(bc) = (a-ble, abc € &
{A.6) bea=(-1P"%-b, acal,bea’d pgemwn

fiii) A DGLSS) {differential graded Lie algebra) is a GDA with product 1) a "graded
Lie bracket":

A7 b-a = --1)"a-b a € af, b € ad

{A,8) (-1 a-(b-c} + (-1)%Pbr{c-2) + {-1)™c+{a-b} = 0;

acoP. beo? ccaf

33) In concrete examples as those encountered in the text, it it natural to denote
the product of a GCDA by a wedge-like symbol, and that of a DGL by a bracket-like
s¥mbol.
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(iv) Let L be s Lie nlgebra and O be a GDA. An action of L on O is a pair (6.1}
34}

of linear maps from L to the linear operators of M with the properties

a(wa? c af, p €M

a9 @{ud(a+b) = @ludasb + a=8(ulb, a,b €E @, u €L
1(u)aP c aP',  p €M, 1(wl o= 0, wWEL

{A,10) ? P
s{ud(ash) = i{uda-b + (-1 a=i{udb, a € 0F, b €&

and

(A11} iw2=90 uw€EL

(A,12) aliuy]) = e - ov)gl), uwvEL

{A.13) olwilv) - iviow = ifuvl), wv €L

(A14) @lu} = ifo)d + difu}, vw€L

Note that these properties imply
(A, 15) gluld = defu} (= diluld), o € L

{A,16} glukifu) = ituldn), wE L

(In fact {A.12) follows from (A.14) and the fact that a2 = o

34) (A,9) states the fact that &u) v € L, is a O-grade derivation of O and (A,10)
that ita}, u € L, is 2 ~I-grade graded derivation of 0.

39

|A.2). Skew tensor products of GDAs.

Let @ = & &Pd,«} and ¥ = | ® ¥%.5.0} be twe raalam GDAs. Their skew
PEM aEcmM

product as graded algebras is the usual tensor product of vector sapces
{A17) o= gy

equipped with the bilinear skew product determined by

a€cm, bea’

(A.18) (ae¥)aIb8e) = (-1 a- biBivev). { "
$E ¥, 4y EV¥

and the grading

{A,19) "= I afge”
pra=n

We furthermore consider the following operators on Ii:

(A.20) D=d+a
where35!

{A,21) d=det,
(A,22) o = t-1%s

35) Or for that matter complex.
36) Using the same symbol for d acting on @ and d = dei, acting on O should

cause no confusion.
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where {ul)a denctes the grading in relation of O

2p

id n O
(A.23) -2 = { °

-id on ®IPH1,

pEMN

and @ r.h.s. of (A,21), (A,22)} denotes a standard tensor product of linear operators:as)
(A.24) - (AGBHaBy) = (A2)@(By), a € O, y € ¥

We recall that these definitions imply the following facts:

{i) With the product {(A,18) and the grading (A.19) I is a graded algebra, i.e.

™ c o™B amog N,

i) d and ¢ are graded derivations of II of grade 137). Moreover d and o
anticommute: )

{A.25) ' do + 0d = 0

Consequeatly, D is a graded derivation of U of grade -1 and vanishing square
(A.26) pé =0,

making (I, 5,.+} a GDA.

(i) If (0,d,+) and (¥,3.0} are GCDA, {n,D,a) is a GCDA.
{iv) If {0,d,-} is a DGL and {¥,3,2} is a GCDA, (m,D.A)} is a DGL. .

37) A linear operator L on O is of grade . r € N whenever LI® C LI™T, o €
] (llk = {0}, k < 0. It is a graded derivation wherever [{a-8) = (Laj-2 +

{-11"a<L2, a€ WP, 2 € o

38) In fact, (A,21} and (A.,22) could be written d = d@l‘,. o = 1,85, with @

a graded tensor product of operators. °
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{4,27)

{A,28)

{A,29)

{A,30)

(A.31)

Proof. {i}: obvious.
i) Wehave, forac ol bea% ve v% ye v'

d2@0)abee)) = (~1)dla- bigiwa vl

= (~-1)%%da-b + (-1)Pa- dbl@(Re¢)

1) Ngagpiabee) + (-1 D a00)41dboy)
id{a@rNabey) + -1 Hagrladibey)

13

oliagwialbewll = {-1) olia- bialwayh
= ()" a. bglovay + (-1)%Peoy)
= (IR g op)abey) + (-1)0TTHE IV L g0 gy
= {olageiaibgy) + -1 Yagw)Acibay)

do{a@e) = (-1Pda@3%) = {~1Pida@Bw)
= 1P aldagw) = -od(agw)

{iii} We have, for a,b®,y as above and c € T, 8 € ¥*

(@) AlbYIAICOE) = (-1)%(2@¥)alib- cl@lv s O))
= AT L gipege 8)
= (-ppfrralarrhrat By, L eipo g )ialcge)
= (1) 99 M ge) AbYIAICHE)

(b@s)atagw) = (-11*Pib- al@iv o %)
= BRI E A higipe )
= (-1)| % 20 g0y atbey)

(iv) Let ab,c.w.¢.6, be as above. For the commutation of a@® and b&y, we

have the same computation as in (A,31), with the alteration that, now, bea = —{~1)"%a:+p,

whence an overal minus sign, leading to (A, 7). We check (A,8): we have
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320 NPT g0 Atibav) Alces)
= (1) HE YR AT on)b - c)Bly o 61
-~ (_1)(D+ﬂ-l(l‘+YH mc(qﬂ')(, ebec)BlYoyod)

= (I ATHYR P EY g b c)@(wo v o 8}

Since ag+Ar+vp is invariant under circular permutation, the graded Jacobi identity for 0

is a consequence of that for O, given that (—1)“7100&08 is invariant under circular
permutations, & straightforward consequence of the GCDA nature of ¥.

Remark. i} The proef of {i} applies to the more general situation where d and 3
are graded derivation of O, resp. ¥, of odd grade p, resp. ¢. Defining d¢ and o on the
skew product 0 as in (A,21), (A,22) the latter are still mutually anticommuting derivations
of W, of respective grades p and q.

Indeed, in the proofs (A.27), (A,28), {A.29), no use is made of the fact that dz = {,
52 = 0, and the grede of d and & erters only through its parity.
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Appendix B. "Covarisnt derivatives” in DGLa,
Propositiop.  Let (L = 2NL‘“'. 4[] be a GDL. For a € LY, F% € L@
111

and the map DY 1—~L are defined as follows:

(B,1) P = da + jlanal

(8.2} DIN = dh + [aa))

We then have that

(i} D% is & graded derivation of L
(B.,3) DI Apl = [DNIAp] + 1PAAD%), % € LM, peL,
whose square is given by

(B.4) %% = [FS0). M €L

{ii} We have the Bianchi identity
B85 pIF® = 0.
{ifi) The map [a~-1:
(B.7} A E L—{aaxlE L

is a graded derivation of L; in fact D iz the sum of d and [t~-] {generally for a €

Lh" lan-] is a derivation of order p in the sense that

(B.8) Janihanll = (@adlog] + C1PPDAlaamll X € 1Pl w € LY

Proof. (i) d is by definition o graded derivation of {{L.~J): thus the first assertion
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in (i) is & consequence of (iii}, which in turn follows from the following special case of the

graded Jacobi identity: for % € L, u € L9, o € LW

{B.9) DM@ aoap]) + -DPPIAlaal + )P un{aall]

with the commutation properties

{8,10) (unal = ~-1"anul

(B,11) lunfaanil = A-13PHa Xl

implying

(8,12) (Galannl] = Maaklagl ¢ 1PPDAlangll, X € LO),

We now check (A,4): we have, taking now n = 1

(8,13) (DY2 = ddrHaar] + afdh + [eA]
= [da.-\)d + [(IAIEAX]}

however, using (A,10}

{B.14} [a~la~x]] = %{IGAIGA)\.]] + ([[ana]ar} - [@alaak)}

= jllanalarl.

{iil We have

(B,15) DUT = dF? + a~F® = dida + la~al) + [anlda + glanall

= }ldand] - 3landa] - [arda) = 0.

where |da~a] = =[dada], due to the commutasion rule, and [anla~ag)] = 0, to the
graded Jacobi identity.
{iv} immediate from (B.,4) and {B,5).
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