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Abstract

The Riemannian geometry of coset spaces is reviewed, with emphasis on
its applications to supergravity and M -theory compactifications. Formulae
for the connection and curvature of rescaled coset manifolds are generalized
to the case of nondiagonal Killing metrics.

The example of the N010 spaces is discussed in detail. These are a subclass
of the coset manifolds Npqr = G/H = SU(3)×U(1)/U(1)×U(1), the integers
p, q, r characterizing the embedding of H in G. We study the realization of
N010 as G/H = SU(3) × SU(2)/U(1) × SU(2) (with diagonal embedding of
the SU(2) ∈ H into G). For a particular G-symmetric rescaling there exist
three Killing spinors, implying N = 3 supersymmetry in the AdS4 × N010

compactification of D = 11 supergravity. This rescaled N010 space is of
particular interest for the AdS4/CFT3 correspondence, and its SU(3)×SU(2)
isometric realization is essential for the OSp(4|3) classification of the Kaluza-
Klein modes.
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1 Introduction

Coset manifolds are a natural generalization of group manifolds, and play an im-
portant role in supergravity and superstring compactifications, and in the recent
AdS/CFT correspondences [1]. Indeed several of these correspondences have been
investigated in the context of compactifications of supergravity theories on anti-de
Sitter spaces times “internal” coset spaces G/H . Many results of the 80’s have
been reinterpreted and extended in the AdS/CFT framework, which has prompted
in particular a renewed interest in Kaluza-Klein mass spectra of the AdS × G/H
supergravity compactifications. For an exhaustive list of references on this subject
we refer to the introduction of [2]. Here we will cite only the papers dealing with
Npqr spaces (see later).

In this note we generalize some formulae of the Riemannian geometry of coset
manifolds to include interesting cases, as the N010 spaces in the manifest SU(3) ×
SU(2) invariant formulation. The general formulas of ref. [3, 4] are valid only for
diagonal Killing metric, and need to be extended for nondiagonal Killing metrics.
While it is true that the Killing metric can always be made diagonal by a redef-
inition of the group generators, it may happen that the G/H structure we want
to obtain prevents such a redefinition, and that we must live with a nondiagonal
Killing metric. For the geometry of the Npqr coset spaces, and their use in D = 11
supergravity compactifications, we refer to the original papers [5, 6, 7]. Recent
developments using Npqr geometry to derive Kaluza-Klein mass spectra and test
AdS4/CFT3 correspondence are found in [8, 9, 10].

We give now a short review of coset space geometry, beginning with a few
definitions. A metric space is said to be homogeneous if it admits as an isometry
the transitive action of a group G, transitive meaning that any two points of the
space are connected via the group action. For example the unit sphere S2 in R

3 is
isometric under the transitive action of SO(3). The subgroup H of G which leaves
a point X fixed is called the isotropy subgroup. Because of the transitive action of
G, any other point X ′ = gX (g ∈ G, g /∈ H) is invariant under a subgroup gHg−1

of G isomorphic to H . In the S2 example any point remains fixed under SO(2)
rotations around the axis passing through that point, so that SO(2) is the isotropy
subgroup.

It is natural to label the points X of a homogeneous space by the parameters
describing the G - group element which carries a conventional X0 (the origin) into X.
However these parameters are redundant: there are infinitely many group elements
g such that X = gX0, due to H - isotropy. Indeed if g carries X0 into X, any other
G element of the form gH does the same, since HX0 = X0. We are then led to
characterize the points of a homogeneous space by the cosets gH .

A homogeneous space is therefore a coset space G/H , i.e. the set of equivalence
classes of elements of G, where the equivalence is defined by right H multiplication
(g ∼ g′ if g = g′h, with g, g′ ∈ G and h ∈ H). Thus the two-sphere S2 can
be considered as the coset space SO(3)/SO(2). In general for an n-sphere Sn =
SO(n+1)/SO(n). The action of an element g′ ∈ G on the coset gH is simply given

1



by the coset g′gH .
Taking G to be a Lie group (as in our S2 example), we obtain coset manifolds,

endowed with a Riemannian structure as we will discuss. The Lie algebra of G can
be split as:

G = H ⊕ K (1.1)

where H is the Lie algebra of H and K contains the remaining generators, called
“coset generators”. The structure constants of G are defined by:

[Hi, Hj] = C k
ij Hk Hi ∈ H

[Hi, Ka] = C j
ia Hj + C b

ia Kb Ka ∈ K

[Ka, Kb] = C j
ab Hj + C c

ab Kc (1.2)

where the index conventions are obvious.
As discussed in ref. [11] (p. 251), whenever H is compact or semisimple (even if

G is not compact) one can always find a set of Ka such that the structure constants
C j

ia vanish. In that case the G = H+ K split, or equivalently the coset space G/H
is said to be reductive. For this reason we will deal in this note only with reductive
coset spaces. Another important observation is that when G/H is reductive the
structure constants C b

ia can always be made antisymmetric in a, b by an appropriate
redefinition Ka → N b

a Kb. The proof is simple: any representation of a compact H
can be made unitary by a suitable change of basis. Since the C b

ia generate a real
representation of H (namely the coset representation), this representation can be
made orthogonal, and consequently the C b

ia antisymmetric [11, 12].
An element g of G is specified by dimG continuous parameters, the Lie group

coordinates. For example we can exponentiate the Lie algebra as:

g = exp[yaKa] exp[xiHi] (1.3)

The G coordinates are ya, xi. It is clear that the cosets gH are characterized
by a subset of the group coordinates, i.e. by the dimG − dimH parameters ya

corresponding to the Ka generators.
Each coset, labeled by the y parameters, can be mapped into an element L(y)

of G, the coset representative. For example one can choose as coset representative:

L(y) = exp[yaKa] (1.4)

The whole geometry of G/H can be constructed in terms of coset representatives.
Under left multiplication by a generic element g of G, L(y) is in general carried

into an element of G belonging to another equivalence class, with representative
element L(y′), i.e. into an element of the form L(y′)h:

gL(y) = L(y′)h, h ∈ H (1.5)

where y′ and h depend on y and g, and on the way of choosing representatives. For
example, using the representative choice (1.4), gL(y) loses the exp(yK) form but
can be expressed (as any element of G) as exp(y′K) exp(xH) or L(y′) exp(xH). It is
clear that the geometry of G/H must be insensitive to the particular representative
choice, and indeed this is so (see later).
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2 Vielbeins, invariant metric, H-connection on

G/H

Consider the 1-form:
V (y) = L−1(y)dL(y) (2.6)

generalizing the left-invariant 1-form g−1dg of group manifolds. V (y) is Lie algebra
valued and can expanded on the G generators:

V (y) = V a(y)Ta + Ωi(y)Ti (2.7)

The 1-form V a(y) = V a
α dyα is a covariant frame (vielbein) on G/H and Ω i

α dyα is
called the H-connection.

Under left multiplication by a constant g ∈ G, the one-form L−1dL is not
invariant, but transforms as:

V (y′) = hL−1(y)g−1d(gL(y)h−1) = hV (y)h−1 + hdh−1 (2.8)

In particular its projection on the coset generators yields the transformation rule
of the vielbein:

V a(y′) = (hV (y)h−1)a = V b(y)D a
b (h−1) (2.9)

where the adjoint representation D B
A is defined by g−1TAg = D a

b (g)TB.
The infinitesimal form of (1.5) is obtained by taking:

g = 1 + εATA (2.10)

Consequently, also the induced h transformation is infinitesimal:

h = 1 − εAW i
A(y)Ti (2.11)

and the shift in y is proportional to εA:

y′α = ya + εAK α
A (y) (2.12)

The y dependent matrix W i
A(y) defined in (2.11) is called the H-compensator, and

the y-dependent differential operator

KA(y) ≡ K α
A (y)

∂

∂yα
(2.13)

is the Killing vector on G/H associated to the G-generator TA. The explicit ex-
pressions for the H-compensator and the Killing vectors are simply obtained by
rewriting the transformation rule (1.5) for infinitesimal g:

TAL(y) = KA(y)L(y) − L(y)TiW
i

A (y) (2.14)

3



After multiplying on the left by L−1(y) and projecting on the K and H generators
we find:

K α
A (y) = D a

A (L(y))V α
a (y) (2.15)

W i
A (y) = Ω i

α (y)K α
A (y) − D i

A(L(y)) (2.16)

where V α
a (y) is defined as the inverse of the G/H vielbein V a

α .
The infinitesimal form of the vielbein transformation (2.9) reads:

V a(y + δy) − V a(y) = −εAW i
A (y)C a

ib V b(y) (2.17)

δyα = εAK α
A (y) (2.18)

easily derived by observing that the C A
iB are the generators of the adjoint repre-

sentation of H , and C a
ij = 0.

For reductive algebras C a
ib can be made antisymmetric in a, b: then eq. (2.17)

implies that the left action of G on V a(y) is equivalent to an SO(N) rotation on
V a(y) (N = dim G/H). Then the “natural” coset metric

gαβ = δabV
a
α V b

β (2.19)

is invariant under the left action of G. Another G left-invariant metric is obtained
by replacing the Kronecker delta in (2.19) with the Killing metric γAB ≡ C C

AD C D
BC

restricted to G/H
gαβ = γabV

a
α V b

β (2.20)

Notice that both these invariant metrics are insensitive to the choice of coset rep-
resentative. Indeed replacing L(y) by L(y)h just rotates the vielbein as in (2.17).

Transformations that leave the metric invariant are called isometries. From the
preceding discussion we know that the isometries of G/H manifolds include the
left action of G. However one can study also the right action of G on the coset
representative:

L(y)g = L(y′)h (2.21)

Then one finds that N(H)/H is the right isometry group of G/H , where N(H) is
the normalizer of H in G, i.e. the set of elements g ∈ G such that gHg−1 = H . One
is led to conclude that the full isometry group of G/H must include G×N(H)/H :
however this is not always true, as argued in ref.s [3, 4]. Some left U(1) Killing
vectors may coincide with some right U(1) Killing vectors: then the actual isometry
is reduced to G′ × N(H)/H where G = G′× (common U(1) - factors).

3 Rescaled Riemann connection and curvature

In general the two metrics (2.19),(2.20) of the preceding Section are not the only
G-invariant metrics on G/H . As discussed in various ref.s (see for example [3, 11,
4]) whenever C b

ia is block diagonal in some subspaces S1, S2, ... of K, then the

4



vielbeins spanning these subspaces can be independently rescaled without loss of
left G symmetry. This is easily understood from the transformation rule (2.17),
which remains unaltered when the vielbeins belonging to the same subspace Si are
rescaled by a common parameter ri. Therefore the number of rescaling parameters,
i.e. the number of parameters necessary to specify the particular G-invariant metric,
is equal to the number of irreducible blocks of C b

ia . This matrix describes how H
acts on the subspace K: if it acts irreducibly, the coset is called isotropy irreducible,
and only the trivial rescaling V a → rV a (same r for all V a) is G-symmetric. If
G/H is isotropy reducible, we have an independent parameter for each irreducible
subspace Si. These rescalings must be real and nonsingular, but are otherwise
unconstrained. We derive now the expressions for the Riemann connection and the
curvature corresponding to the rescaled vielbeins.

Recall the Cartan-Maurer equation for the one-form V = L−1dL:

dV + V ∧ V = 0 (3.22)

which follows immediately from the definition of V . In components the Cartan-
Maurer equation becomes:

dV a +
1

2
C a

bc V b ∧ V c + C a
bi V b ∧ Ωi = 0 (3.23)

dΩi +
1

2
C i

ab V a ∧ V b + C i
jk Ω

j ∧ Ωk = 0 (3.24)

After a rescaling
V a → raV

a (3.25)

the above equations become:

dV a +
1

2

rbrc

ra

C a
bc V b ∧ V c +

rb

ra

C a
bi V b ∧ Ωi = 0 (3.26)

dΩi +
1

2
rarbC

i
ab V a ∧ V b + C i

jk Ω
j ∧ Ωk = 0 (3.27)

For a G-symmetric rescaling we can replace rb

ra
C a

bi by C a
bi in the first equation.

The flat coset metric will be chosen in the following to be ηab = ηab = −δab,
yielding a G-invariant metric gαβ = ηabV a

α V b
β .

A (torsionless) connection Ba
b on G/H can be defined by the equation

dV a + Ba
b ∧ V b = 0 (3.28)

Combining (3.28) with (3.26) yields

Ba
b = −

1

2

rbrc

ra

C a
bc V c − C a

bi Ωi + K a
bc V c (3.29)
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where K a
bc is symmetric in b, c, and is determined by the requirement that Ba

b be
antisymmetric in a, b (Riemann connection):

Ba
cη

cb = −Bb
cη

ca (3.30)

Then:

K a
bc =

ra

2
ηad

(

rc

rb

ηbeC
e

dc +
rb

rc

ηceC
e

db

)

(3.31)

and the antisymmetric connection is given by:

Ba
b =

1

2

(

−
rbrc

ra

C a
bc +

rarc

rb

ηbgC
g

dc ηad +
rarb

rc

ηcgC
g

db ηad

)

V c − C a
bi Ωi (3.32)

This connection is G-invariant, meaning that parallel transport commutes with the
G-action. Indeed the most general form of a G-invariant connection on G/H is
given by

Ba
b(y) = C a

ib Ωi(y) + J a
c bV

c(y) (3.33)

where J a
d b is an invariant tensor of the subgroup H [12], i.e. δJ a

c b = C d
i cJ

a
d b −

C a
i dJ

d
c b +C d

i bJ
a

c d = 0. The connection in (3.32) has this form, and it is not difficult
to prove that the term multiplying V c is H-invariant. In fact each of the three
terms within parentheses in (3.32) is H-invariant, as one can show by using Jacobi
identities and ra

rb
C b

ia = C b
ia .

The Riemann curvature is defined in terms of Ba
b by:

Ra
b ≡ dBa

b + Ba
c ∧ Bc

b ≡ Ra
b deV

d ∧ V e (3.34)

Substituting the connection (3.32) in the curvature formula, using the Cartan-
Maurer equations (3.26) and (3.27) for dV a and dΩi, and Jacobi identities for
products of structure constants, we determine the curvature components:

Ra
b de =

1

4

rdre

rc

C
a

bc C c
de +

1

2
rdre C a

bi C i
de +

1

8
C

a
cd C

c
be −

1

8
C

a
ce C

c
bd (3.35)

with
C

a
bc ≡

rbrc

ra

C a
bc −

rarc

rb

C b
ac −

rarb

rc

C c
ab (3.36)

These formulae generalize those of ref. [3, 4] (holding only for diagonal Killing
metric) and those of [11] (for unrescaled vielbeins). The connection B allows the
definition of a covariant derivative D. For example the zero-torsion condition can
be written as DV a = 0. Taking the exterior derivative of the zero-torsion condition
(3.28) and of the curvature definition (3.34) yields the Bianchi identities:

Ra
b ∧ V b = 0 (3.37)

dRa
b + Ra

c ∧ Bc
b − Ba

c ∧ Rc
b ≡ DRa

b = 0 (3.38)
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What are the symmetries of the indices in the curvature components Ra
b cd ? An-

tisymmetry in a, b, and in c, d is manifest. Furthermore, from (3.37) we deduce:

Ra
b cdV

b ∧ V c ∧ V d = 0 ⇒ Ra
[b cd] = 0 (3.39)

i.e. the cyclic identity. Using all these index symmetries one can also show that
Rab

cd = ηbeRa
e cd is symmetric under ab ↔ cd interchange.

4 The geometry of the N010 coset manifolds

We apply here the formulae of the preceding Section to the coset manifolds N010.
These coset spaces are a special case in the class of the Npqr coset spaces defined
by the quotient:

Npqr =
G

H
=

SU(3) × U(1)

U(1) × U(1)
(4.40)

where the p, q, r are integer and coprime, and specify how the two U(1) generators
M, N of H are embedded into G:

M = −
√

2

RQ

(

i

2
rp
√

3λ8 +
i

2
rqλ3 −

i

2
(3p2 + q2)Y

)

(4.41)

N = −
1

Q

(

−
i

2
qλ8 +

i

2
p
√

3λ3

)

(4.42)

Z = −
1

R

(

i

2
p
√

3λ8 +
i

2
qλ3 + irY

)

(4.43)

with
R =

√

3p2 + q2 + 2r2, Q =
√

3p2 + q2 (4.44)

and Z is the remaining U(1) generator in the coset. The generators of G = SU(3)×
U(1) are taken to be − i

2λ and − i
2Y , λ being the Gell-Mann matrices. For a detailed

account of the geometry of these Npqr coset manifolds we refer to the original papers
[5, 6], where symmetric rescalings, connection and curvature are given explicitly.
The cosets Npqr for p = 0, q = 1, r = 0 have as isometry group SU(3) × SU(2)
(coming from G × N(H)/H). As already observed in [5], the N010 cosets can also
be realized as:

N010 =
SU(3) × SU(2)

SU(2) × U(1)
(4.45)

where the SU(2) in the denominator is diagonally embedded in G = SU(3)×SU(2).
In this formulation the full isometry of N010 comes from the left action of G. We
now study the geometry of N010 realized as in (4.45).

The generators of SU(3) and SU(2) are taken respectively to be − i
2λ and − i

2τ , λ
being the Gell-Mann matrices and τ the Pauli matrices, with commutation relations:

[λi, λj ] = 2i fijkλk, [τm, τn] = 2i εmnrτr (4.46)
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where the nonvanishing components of the completely antisymmetric structure con-
stants fijk are f123 = 1, f147 = f165 = f246 = f257 = f345 = f376 = 1

2 , f458 = f678 =
√

3
2 .

The U(1) in the denominator of (4.45) is given by the hypercharge − i
2λ8. Thus

the H + K generators are:

H-generators:

HN = −
i

2
λ8, Hi = −

i

2
(λ1 + τ1, λ2 + τ2, λ3 + τ3) (4.47)

K-generators:

Ka = −
i

2
(λ1 − τ1, λ2 − τ2, λ3 − τ3), KȦ = −

i

2
(λ4, λ5), KĀ = −

i

2
(λ6, λ7) (4.48)

The H + K basis is reductive, and the nonvanishing structure constants are:

C K
HK : C Ḃ

NȦ
=

√
3

2
εȦḂ, C B̄

NĀ =

√
3

2
εĀB̄, C b

ia = εiab, C B
iA = fiAB (4.49)

C K
KK : C B

aA = faAB, C c
AB =

1

2
fABc (4.50)

C H
KK : C i

ab = εabi, C N
AB = fAB8, C i

AB =
1

2
fABi (4.51)

C H
HH : C k

ij = εijk (4.52)

with A = (Ȧ, Ā) = 4, 5, 6, 7. The Killing metric in this basis is diagonal on the
coset directions and on the H directions:

γab = −5δab, γAB = −3δAB (4.53)

γNN = 3, γij = −5δij (4.54)

and has nondiagonal components along HK directions:

γia = γai = −δai (4.55)

By inspection of the C K
HK structure constants we see that these are antisymmetric

in the two coset indices, and that there are two isotropy-irreducible subspaces,
spanned respectively by the vielbeins V a (a = 1, 2, 3) and V A (A = 4, 5, 6, 7). We
can therefore construct G-invariant metrics depending on two independent rescaling
parameters, α = ra and β = rA. Applying the general formulae of the preceding
Section we find the Riemann connection 1-form :

Ba
b = −εbiaΩi (4.56)
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Ba
Ḃ

= −
β4

8α

(

δa1εḂĀV Ā + δa2δḂĀV Ā + δa3εḂȦV Ȧ
)

(4.57)

Ba
B̄ =

β4

8α

(

−δa1εB̄ȦV Ȧ + δa2δB̄ȦV Ȧ + δa3εB̄ĀV Ā
)

(4.58)

BȦ
Ḃ

=
1

8α

[

(−4α2 + β2)V 3 − 4α(
√

3Ω8 + Ω11)
]

εȦḂ (4.59)

BĀ
B̄ =

1

8α

[

(4α2 − β2)V 3 − 4α(
√

3Ω8 − Ω11)
]

εĀB̄ (4.60)

BȦ
B̄ =

1

8α

[

(−4α2 + β2)(δȦB̄V 2 + εȦB̄V 1) − 4α(δȦB̄Ω
10 + εȦB̄Ω

9)
]

(4.61)

and the corresponding Riemann curvature components:

Rab
cd = α2δab

cd , Rab
ȦḂ

=
1

32
γδ1

[aδ
2
b]εȦḂ, Rab

ĀB̄ =
1

32
γδ1

[aδ
2
b]εĀB̄ (4.62)

Rab
ȦB̄

=
1

32
γ(−δ1

[aδ
3
b]δȦB̄ + δ2

[aδ
3
b]εȦB̄) (4.63)

RaȦ
bḂ

=
β4

128α2
δa
b δ

Ȧ
Ḃ

+
1

64
γ δ1

[aδ
2
b]εȦḂ (4.64)

RaĀ
bB̄ =

β4

128α2
δa
b δ

Ā
B̄ −

1

64
γ δ1

[aδ
2
b]εĀB̄ (4.65)

RaȦ
bB̄ = −

1

64
γ δ1

[aδ
3
b]δ

Ȧ
B̄, RaĀ

bḂ
=

1

64
γ δ1

[aδ
3
b]δ

Ā
Ḃ

(4.66)

RȦḂ
ĊḊ

= β2

(

1 −
3

64

β2

α2

)

δȦḂ
ĊḊ

, RĀB̄
C̄D̄ = β2

(

1 −
3

64

β2

α2

)

δĀB̄
C̄D̄ (4.67)

RȦḂ
C̄D̄ =

β2

2
δȦḂ
C̄D̄, RȦB̄

ĊD̄
=

β2

8

[(

1 −
3

16

β2

α2

)

δȦ
Ċ
δB̄
D̄ + εȦĊεB̄D̄

]

(4.68)

with γ ≡ β2(8 − β2/α2). The Ricci tensor is:

Rab =

(

α2 +
1

32

β4

α2

)

δab (4.69)

RAB =
3

4
β2

(

1 −
1

16

β2

α2

)

δAB (4.70)

Note 4.1 : only the squares of the rescalings appear in the curvatures. On the
other hand the connection depends on α and β2: the sign of β has therefore no
influence on the geometry, whereas different signs of α yield different spaces.

5 AdS4×N010 as compactification of D = 11 super-

gravity

As observed in the early eighties [13], a nontrivial solution of the D = 11 supergrav-
ity field equations is given by setting the gravitino curvature to zero, and taking
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the bosonic curvatures as:

Rmn = −24e2δmn, Rab = 12e2δab, Fmnpq = eεmnpq (5.71)

all other curvature components vanishing. The indices m, n, p, q run on 4-spacetime
and a, b on the internal 7-dimensional space; Rmn and Rab are the corresponding
Ricci curvatures, in our conventions Rmn = Rq

m qn, and Fmnpq is the curl of the
antisymmetric three-index tensor.

Then all spaces of the type AdS4× (7-dimensional Einstein space) are a solution
of the supergravity equations, Einstein space meaning a Riemannian manifold with
Ricci tensor proportional to the metric. A classification of all 7-dimensional G/H
Einstein manifolds was derived in the eighties in [14], thus providing a class of
D = 11 supergravity solutions (for their use in the more recent G/H M-branes
see [15]). The coset manifolds N010 studied in the preceding Section are part of
this classification, although they were studied as particular instances of the Npqr

spaces, in the SU(3) × U(1) - isometric formulation. Two inequivalent Einstein
metrics were found, and the corresponding Einstein spaces were denoted by Npqr

I

and Npqr
II [5, 7, 6].

What can we say about Einstein metrics in the N010 cosets discussed in this
paper ? As easily seen from the expression of the Ricci tensor in (4.69), (4.70) the
rescalings

α2 = 4e2, β2 = 32e2 (5.72)

or

α2 =
100

9
e2, β2 =

160

9
e2 (5.73)

both bring the Ricci tensor in the Einstein form Rab = 12e2δab. We denote by N010
I

and N010
II the corresponding Einstein coset spaces, since these coincide with the

Npqr
I and Npqr

II for p = 0, q = 1, r = 0, as one can easily prove by comparing the
Riemann curvatures.

Finally, we can investigate the supersymmetry content of the AdS4 × N com-
pactifications. We recall that the independent supersymmetry charges preserving
the AdS4 × N vacuum are in 1-1 correspondence with the number of spinors η
satisfying the equation:

(d +
1

4
BabΓab − eV aΓa)η = 0 (5.74)

which is just the requirement that the supersymmetry variation of the gravitino
vanishes in the AdS4 × N background (see for ex. [16, 4]). The integrability
condition for (5.74) is

(Rcd
ab + 4e2δcd

ab)Γcdη = 0 (5.75)

Substituting into (5.75) the Riemann tensor of eqs. (4.62)-(4.68) with the rescalings
α2 = 4e2, β2 = 32e2 yields four independent spinors η satisfying (5.75), while for
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the rescalings α2 = 100
9 e2, β2 = 160

9 e2 only one spinor η exists. Then one has to
check whether these spinors also satisfy (5.74). Whereas the sign of α is irrelevant
in the integrability condition (since the Riemann curvature does not depend on
it), it becomes important in the supersymmetry variation (5.74), and we find the
following:

N010
I : α = 2e, β = ±4

√
2 e, N = 3 supersymmetry (5.76)

Ñ010
I : α = −2e, β = ±4

√
2 e, N = 0 supersymmetry (5.77)

N010
II : α = −

10

3
e, β = ±

4

3

√
10 e, N = 1 supersymmetry (5.78)

Ñ010
II : α =

10

3
e, β = ±

4

3

√
10 e, N = 0 supersymmetry (5.79)

where we have denoted by Ñ the spaces obtained by reversing the orientation of
N010, i.e. by taking V a → −V a or equivalently α, β → −α,−β. Thus changing
signs in α is equivalent to reverse the orientation, since the sign of β has no influence
on the geometry.

Note 5.1: in Ref. [8] the N010
I space corresponds to the rescaling α = −2e, due

to a sign difference in the structure constants of G.
Note 5.2: the Killing spinors satisfying eq. (5.74) are not constant in the

SU(3) × SU(2)/SU(2) × U(1) realization of the N010 spaces. On the other hand
they are constant in the Npqr = SU(3)×U(1)/U(1)×U(1) spaces of [5], where for
p = 0, q = 1 the isometry is promoted to SU(3)×SU(2) because of the right action
of N(H)/H = SU(2).
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