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Four-Dimensional Yang–Mills Theory
as a Deformation of Topological BF Theory

A. S. Cattaneo,1 P. Cotta-Ramusino,2 3 F. Fucito,4

M. Martellini, 3 5 6 M. Rinaldi,7 A. Tanzini, 4 8 M. Zeni 3 5

Abstract

The classical action for pure Yang–Mills gauge theory can be formulated as
a deformation of the topological BF theory where, beside the two-form field
B, one has to add one extra-field η given by a one-form which transforms
as the difference of two connections. The ensuing action functional gives a
theory that is both classically and quantistically equivalent to the original
Yang–Mills theory. In order to prove such an equivalence, it is shown that
the dependency on the field η can be gauged away completely. This gives rise
to a field theory that, for this reason, can be considered as semi-topological
or topological in some but not all the fields of the theory. The symmetry
group involved in this theory is an affine extension of the tangent gauge group
acting on the tangent bundle of the space of connections. A mathematical
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analysis of this group action and of the relevant BRST complex is discussed
in details.
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1 Introduction

Among the open problems of quantum Yang–Mills (YM) theory, there is
certainly the absence of any proof of the property of confinement, which is
observed in nature for systems supposedly described by a YM Lagrangian,
and which is proved true only in lattice formulations of the theory.

The non perturbative dynamics of gauge theories has been discussed at
length in the literature from different point of views. More recently, some of
the authors of this paper observed [8, 9] that the presence of a two-form field
in the first-order formulation of YM theory might allow the construction of a
surface observable that is related to ‘t Hooft’s magnetic order operator [21].
A preliminary description of such surface observables can be found in [13, 7];
for a rigorous mathematical definition of these observables (in the case of
paths of paths), s. [11].

The study of first-order YM theory was originally proposed in [17] as a
way of taking into account strong-coupling effects (after some manipulations).
For a discussion of this topic and its development, s. [19] and references
therein.

Another aspect of first-order YM theory pointed out in [8] is its formal
relationship with the topological BF theory [20, 5].9 This suggested the
possibility of finding Donaldson-like invariants [14] inside ordinary (not su-
persymmetric) YM theory with a mechanism similar to that described in
[22].

The relation between YM and BF theory is actually more involved be-
cause the latter has less physical degrees of freedom than the former.

In this paper we establish the correct relation by using, as an interme-
diate step, a new theory—called BF -Yang–Mills (BFYM) theory—which
contains a new one-form field η whose role is to provide the missing degrees
of freedom.10

The first aim of this paper is to prove the classical and quantum equiv-
alence between YM and BFYM theory. Cohomological proofs of this were
considered in [18] and in [16]. In the present paper we give a different and
more explicit proof by fixing the gauge of the theory in three different but
equivalent ways, to which we refer as to the trivial, the covariant and the

9For the study of BF theory with observables, s. also [10].
10For an anticipation of some results of this paper by some of the authors, s. [16].
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self-dual gauge fixing.
The reason for considering three different gauge fixings is that each of

them provides a different setting for perturbation theory: In the trivial gauge,
we have an expansion identical to that found in first-order YM theory (s. [15]).
In the covariant gauge, the perturbative expansion around a flat connection
can be organized by using the same propagators as in the topological pure
BF theory (in the same gauge). Finally, the perturbative expansion in the
self-dual gauge in a neighborhood of anti-self-dual connections makes use of
the propagators of the topological BF theory with a cosmological term (in
the same gauge).

The relation between BFYM and the BF theories is then discussed in a
more formal way in the subsequent section by using the Batalin–Vilkovisky
(BV) formalism [2] (which is a generalization of the more familiar BRST
formalism [3]). In particular, we show that, after a canonical transformation,
it is possible to perform safely the limit in which the YM coupling constant
vanishes and obtain the pure BF theory plus the (covariant) kinetic term for
the extra field η.

In the last part of the paper the geometrical aspects of BFYM are dis-
cussed. The group of symmetries of the BFYM theory (for an extended
discussion, s. [12]) turns out to be an affine extension of the tangent gauge
group. The action of this group on the space of fields is not free, but a BRST
complex is obtainable directly from the action of the tangent gauge group on
the space of fields of the theory.

The situation has both similarities and differences with respect to the
case of topological gauge theories [4]. As in [4], the BRST equations are
obtained as structure equations and Bianchi identities for the curvature of a
suitable connection on the space of fields; but, differently from [4], the only
symmetry for the connection A is the gauge invariance, as in the YM theory.
Hence the BFYM theory can be seen as “semi-topological” (or topological in
the field η and non-topological in the field A).

2 Preliminaries

In this section we introduce YM theory both in its usual second-order and in
its first-order formulation. We prove the equivalence of the two formulations
and discuss the problems related to the weak-coupling perturbative expansion
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of the latter.
Then we will raise the issue of the topological embedding for a gauge

field theory and discuss some of its general properties. It will be the aim of
the following sections to prove that, through the topological embedding, it is
possible to define a weak-coupling perturbative expansion of first-order YM
theory around the topological BF theory.

2.1 Second-order YM theory

Let P → M be a principal G-bundle. The manifold M is a closed, simply
connected, oriented four-manifold and G is SU(N) or, more generally, a
simple compact Lie group. The standard (second-order) YM action is the
following local functional

SYM[A] =
1

4g2
YM

〈FA , FA〉 , (1)

where gYM is a real parameter (known as the YM coupling constant), and
FA is the curvature of the connection A. Here we consider the inner product
〈· , ·〉 defined on the space Ω∗(M, adP ) of forms on M with values in the
adjoint bundle adP and given by

〈α , β〉 =
∫

M
Tr (α ∧ ∗β), (2)

where ∗ is the Hodge operator on M . Even though the physical space–time
is Minkowskian, we assume we have performed a Wick rotation so that M is
a Riemannian manifold; viz., it has a Euclidean structure.

The gauge group (or group of gauge transformations) is, by definition,
the group G of maps g : P → G which are equivariant, i.e., which satisfy the
equation g(ph) = Adh−1g(p) for any p ∈ P and h ∈ G. Locally elements of G
are represented by maps M → G. Under a gauge trasformation g ∈ G, the
connection A transforms as

A → Ag = Adg−1A + g−1dg, (3)

while any form ψ ∈ Ω∗(M, adP ) transforms as

ψ → Adg−1ψ.
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The Yang–Mills action is gauge-invariant, i.e., is invariant under the action
of G. We denote the space of all connections by the symbol A. With some
restrictions, the group G acts freely on A and A → (A/G) is a principal
G-bundle.11

2.2 Classical analysis

A classical solution is a minimum of the action (modulo gauge transforma-
tions), i.e., a solution of the equation

d∗
AFA = 0. (4)

If we add a source J(A) to the action, then the equations of motion become
d∗

AFA + 2g2
YMJ ′ = 0.

A particular class of solutions, is given by the (anti)self-dual connections,
i.e., connections whose curvature is (anti)self-dual (i.e., satisfies the equation
FA = ± ∗ FA).

We will denote by MYM the moduli space of solutions of the YM equations
of motion modulo gauge transformations.

2.3 Quantum analysis

If we denote by A the space of connections, then the partition function is
defined as

ZYM =
∫

A/G
exp(−SYM). (5)

The way physicists deal with this quotient in the quantum analysis is by
introducing the BRST complex

−1 0 1
1 A
0 c hc c

(6)

(where each row has the same form-degree and each column has the same
ghost-number), and the BRST transformations:

sA = dAc, sc = −1

2
[c, c], (7)

11For instance we can consider only the space of irreducible connections and the action
of the group obtained by dividing G by its center. But in order to avoid cumbersome
notations we will keep on writing the quotient as A/G.
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sc = hc, shc = 0. (8)

Notice that the first equation is just the infinitesimal version of the action
(3) of G on A, while the second is the Maurer–Cartan equation for the group
G.

A (local) section A/G → A is chosen by introducing a gauge fixing, i.e.,
by imposing a condition like, e.g., d∗

A0
(A − A0) = 0 for A belonging to a

suitable neighborhood of A0. Correspondingly, one introduces a gauge-fixing
fermion ΨYM, i.e., a local functional of ghost number −1 given by12

ΨYM =
〈
c , d∗

A0
(A− A0)

〉
, (9)

where A0 is a background connection. In perturbative calculations, we work
in a neighborhood of a critical solution; i.e., we assume that A0 is a solution
of the classical equations of motion.

The original action is then replaced by

Sg.f.
YM = SYM + isΨYM, (10)

and the functional integration is performed over the vector spaces to which
the fields of the BRST complex belong (notice that the integration over the
affine space of connections is replaced by an integration over the vector space
Ω1(M, adP ) to which A−A0 belongs).

To perform computations, it is also useful to assign each field a canon-
ical (scaling) dimension so that the gauge-fixed action has dimension zero.
Since the derivative, the volume integration and the BRST operator have
respectively dimension 1, −4 and 0, we get the following table:

Dimension 0: c.

Dimension 1: A.

Dimension 2: c, hc.

Notice that the coupling constant gYM has dimension 0.

12This way of implementing a gauge fixing is known as the Landau gauge. A more general
gauge-fixing fermion implementing the same conditions is obtained by the replacement
ΨYM → ΨYM + λ 〈c , hc〉, where λ is a free parameter. By integrating out hc and setting
λ = 1, one recovers the Feynman gauge.

In this paper we will consider only Landau gauges.
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Perturbative expansion The perturbative expansion of YM theory around
a critical connection A0 is performed by setting

A = A0 +
√

2 gYM α. (11)

By also using the gauge fixing condition, the quadratic part of the action
then reads

1

2

〈
α , ∆̌A0

α
〉

+ i
〈
hc , d∗

A0
α
〉
− i 〈c , ∆A0

c〉 , (12)

where
∆̌A0

= ∆A0
+ ∗[∗FA0

, ], (13)

and ∆A0
is the covariant Laplace operator. The αα-propagator is given by

the inverse of ∆̌A0
.

2.4 The first-order formulation of YM theory

Now we consider the local functional

SYM′[A, E] = i 〈E , ∗FA〉+ g2
YM 〈E , E〉 , (14)

where FA is the curvature of the connection A and E ∈ B ≡ Ω2(M, adP ).
As for the canonical dimension, E is assigned dimension 2.

The first-order YM theory—which we will prove in a moment to be equiv-
alent to YM theory both at the classical and at the quantum level—is par-
ticularly interesting because of the new independent field E which allows the
introduction of new observables which depend on loops of paths on M (or on
the spanned surfaces) and could not be defined in ordinary YM theory [11].

The only symmetry of the theory corresponding to (14) is the gauge
symmetry. It acts on the space of fields A× B as in (3) plus

E → Adg−1E. (15)

The group G acts freely on the manifold A × B, which becomes a principal
G-bundle with the projection (A× B) → A being a bundle-morphism. As a
consequence, the gauge fixing on A is enough to completely fix the first-order
formulation of YM theory.
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Remark The presence of an i in the action (14) may look odd but is
necessary since the EF term is not positive definite. Notice that without
the Wick rotation (thus on a Minkowskian manifold), the factor i would
disappear from the action.

2.4.1 Classical equivalence

The critical points (which are not minima) of the action (14) correspond to
the solutions of the following equations of motion:

i ∗ FA + 2g2
YME = 0,

i ∗ dAE = 0.
(16)

By applying the operator ∗dA to the first equation, we see that, because of
the second equation, A must solve the YM equation (4). By the first equation
we then see that E must be equal to −(i/2g2

YM) ∗ FA. Thus, the space of
solutions of first-order YM theory is in a one-to-one correspondence with the
space of solutions of second-order YM theory. Moreover, this correspondence
is preserved by gauge equivalence. Therefore, the moduli spaces of the two
theories are the same.

The presence of an i is a bit disturbing since it requires an imaginary
solution for E. Moreover, it could seem that the factor i does not play any
role in the classical equations. However, if we add a source J(A) to the action
(14), the second equation is replaced by i ∗ dAE + J ′ = 0. The application
of ∗dA to the first equation gives the correct answer d∗

AFA + 2g2
YMJ ′ = 0 just

because of the i factor. Observe that if we were working on a Minkowski
space, then we would get the correct answer by removing the factor i (this
is because ∗2 keeps track of the signature of the metric).

2.4.2 Quantum equivalence

It is not difficult to see that a Gaussian integration over E yields
∫

(A×B)/G
exp(−SYM′[A, E]) O[A] ∝

∫

A/G
exp(−SYM[A]) O[A], (17)

where O is any gauge-invariant observable for YM theory.
Notice that the proportionality constant depends on gYM because of the

determinant coming from the E-integration. This dependence can be re-
moved if one defines the functional measure for E as already containing this
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factor. Anyhow, this constant factor is irrelevant since computing vacuum
expectation values involves a ratio, and we will not take care of it.

More explicitly, the integration can be performed by introducing the
BRST complex and the BRST transformations (7) and (8) plus

sE = [E, c], (18)

which corresponds to the infinitesimal version of the gauge transformation
(15).

Notice again that the presence of the i factor in the action is essential
to make the Gaussian integration meaningful and to get the correct answer
[instead of exp(+SYM)].

Finally, it is important to notice that B is a vector space, so it is not neces-
sary to fix a background solution E0 to perform the integration; therefore, the
equivalence between first- and second-order YM theories is non-perturbative.
However, one might also decide to fix a background solutions A0 of YM
equations and a background field E0 = −(i/2g2

YM) ∗FA0
and integrate in the

variable E−E0; the result will be an equivalence with YM theory expanded
around the same A0.

2.4.3 The perturbative expansion

The exact computation of a functional integral is a formidable task. Usually
one considers a perturbative expansion around a classical solution. YM the-
ory can be computed as an asymptotic series in gYM (i.e., in weak coupling)
after defining the integration variable as α = (A − A0)/(

√
2 gYM). In the

first-order formulation, perturbation theory requires choosing a background
for E as well and introducing the integration variable β =

√
2 gYM (E −E0).

The action will then contain the quadratic part

〈β , ∗dA0
α〉+

〈
2g2

YME0 , ∗(α ∧ α)
〉

+
1

2
〈β , β〉+ gauge fixing

plus terms of order gYM [notice that g2
YME0 = O(1)]. From the quadratic

part one reads the propagators and the Feynman rules leading to the usual
ultraviolet behaviour [15].

Another possibility, which is interesting exploring, is to consider the term
〈β , β〉 as a perturbation. In this way the propagators will resemble those of
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the topological pure BF theory defined by the action

SBF = i 〈B , ∗FA〉 , (19)

where the field B is just a new name for our E. Unfortunately, however,
the operator acting on (α, β) in this scheme is not invertible since its kernel
includes any pair (0, β) with β ∈ ker(dA0

). In the pure BF theory there is
no problem since the theory itself has a larger set of symmetries (s. Sec. 4)
and, therefore, an additional gauge fixing is required.

Another way of seeing our problem is the following: The pure BF theory
appears formally as the g2

YM → 0 limit of the first-order YM theory (after
renaming E as B). However, the number of degrees of freedom are reduced
in this limit and this shows that the limit is ill-defined.

The purpose of the next sections is to show that is possible to restore
the missing degrees of freedom by introducing an extra field, and that this
makes the above limit meaningful. The mechanism that will allow us to do
so is the so-called “topological embedding.”

Remark Notice that in the first-order YM theory one can define also a
strong-coupling expansion (i.e., an asymptotic expansion in 1/gYM) after in-
tegrating out the connection in (14) (notice that this integration is Gaussian).
For details, s. [17, 19].

2.5 The “topological embedding”

The so-called topological embedding refers to the idea of “embedding” a
topological into a physical theory.

The way we discuss such a scheme is partly related to the arguments
presented in [1]. The basic idea is to consider an action S[A] (or, more
generally, an action S[A, E]) as a functional of an auxiliary field η as well.
One then writes S[A, η], but it is understood that δS/δη = 0.

Of course, this gives the theory a huge set of symmetries, viz., all possible
shifts of η, so that η has no physical degrees of freedom. This is similar to
what happens in the topological field theories of the so-called cohomological
(or Witten) type where all fields are subject to such a symmetry. One might
also speak of semi-topological theory since it is topological, in the previous
sense, only in some field directions.
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In our case the new field η belongs to Ω1(M, adP ), so that the pair
(A, η) is an element of the tangent bundle TA. The Lie group TG, which
can be represented as the semi-direct product of G and the abelian group
Ω0(M, adP ), has a natural action on TA given by

(A, η)→ (Ag, Adg−1η + dAgζ), (20)

where Ag is defined in (3) and (g, ζ) ∈ TG [here ζ ∈ Ω0(M, adP )].
It is convenient to combine the TG-transformation with the translations

acting on the field η under which the theory is invariant; viz., we write the
transformation of (A, η) as

(A, η)→ (Ag, Adg−1η + dAgζ − τ) , (21)

where τ ∈ Ω1(M, adP ) represents the translation. In this way we can write
the group of the symmetries of the theory as the semidirect product of TG
with Ω1(M, adP ). In the following we will denote this group by Gaff .

Unfortunately, the action of Gaff given by (21) is not free. However, as
will be shown in detail in subsec. 5.4, this problem can be successfully dealt
with by considering the BRST complex defined by

sη = [η, c] + dAξ − ψ̃, (22)

where ξ and ψ̃ are new ghosts. For the BRST operator to be nilpotent they
must obey the transformation rules

sξ = −[ξ, c] + φ̃, sψ̃ = −[ψ̃, c] + dAφ̃, (23)

where φ̃ is a ghost-for-ghost (i.e., has ghost number 2) which transforms as

sφ̃ = [φ̃, c]. (24)

For further details on the space TA, on its symmetries and on the imple-
mentation of the BRST procedure, s. Sec. 5 and Ref. [12].

The quantization of such a theory requires a gauge fixing for this topo-
logical symmetry as well. The apparently trivial operation of adding a new
field on which the theory does not depend and then gauging it away can have
some interesting consequences:
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1. A trivial gauge fixing for η (i.e., setting η = 0) is always available
but if a non-trivial gauge fixing for η is chosen, this may introduce a
non-trivial measure on the moduli space. Heuristically we have

∫

TA/Gaff

exp(−S[A]) =
∫

A/G
exp(−S[A]) µ[A, M ], (25)

where13 µ is the outcome of the η-integration and depends on A and on
M and its metric structure through the chosen gauge fixing. Since one
expects quantization not to depend on small deformations of the gauge
fixing (in particular on small deformations of the metric of M), one
can argue that µ[A, M ] is a (possibly trivial) measure which, once inte-
grated over the space of critical solutions modulo gauge-transformations
(moduli space), gives a smooth invariant of M .

In particular we may choose as non-trivial gauge fixing an incomplete
one which leaves only a finite number of symmetries, and then introduce
a “topological observable” as a volume form.14

13 The quotient space TA/Gaff is not a manifold since, as we discussed before, the action
of Gaff is not free. However, a BRST structure and the relevant quantization for the Gaff

symmetry is available. This is the reason why we can still write, at the heuristic level, the
identity (25) between functional integrals.

14These are essentially the motivations of the approach of [1] where the following version
of the YM action

S[A0, Aq] =
1

4g2
YM

〈
FA0+gYMAq

, FA0+gYMAq

〉

is considered. This is equivalent to choosing S[A, η] = (1/4g2
YM) 〈FA , FA〉 by the change

of variable (with constant Jacobian)

A0 = A− η, Aq =
1

gYM

η.

Moreover, if one also considers the following change of ghost variables (with constant
Jacobian)

C0 = c− ξ, Cq = 1
gYM

ξ,

ψ0 = ψ̃ − [η, ξ], φ0 = 1
2
[ξ, ξ]− φ̃,

then the BRST transformations (7), (22), (23) and (24) become

sA0 = ψ0 + dA0
C0, sC0 = φ0 − 1

2
[C0, C0],

sψ0 = −dA0
φ0 − [ψ0, C0], sφ0 = [φ0, C0],

sAq = − 1
gYM

ψ0 + dA0+gYMAq
Cq + [Aq, C0], sCq = − 1

gYM
φ0 − [C0, Cq]− gYM

2
[Cq, Cq]
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2. When this procedure is applied the first-order formulation of YM the-
ory, the limit g2

YM → 0 becomes meaningful, as we will see in the
next sections. Moreover, a weak-coupling perturbation theory with the
propagators of one of the topological BF theories becomes available.

Before discussing the last point, it is better to rewrite the action SYM′[A, E, η]
of (extended) first-order YM theory by making the change of variables

B = E +
1√

2 gYM

dAη. (26)

This yields the action

SBFYM[A, B, η] = i 〈B , ∗FA〉+ g2
YM

〈

B − 1√
2 gYM

dAη , B − 1√
2 gYM

dAη

〉

,

(27)
which we will call BFYM theory since it is related to both the YM theory,
after integrating out B and η, and to the BF theory, in the limit g2

YM → 0;
in particular, this limit yields

SBFYM[A, B, η]
g2
YM

→0
∼ i 〈B , ∗FA〉+

1

2
〈dAη , dAη〉 , (28)

where we recognize the BF theory plus a non-topological term that restores
the degrees of freedom of YM theory. Notice that the presence of 1/(

√
2 gYM)

in (26) is designed so as to give the kinetic term for η the correct normaliza-
tion.

In the next section we will reconsider the equivalence of the BFYM and
YM theories and prove it explicitly by using three different gauge fixings.

In section 4 we will discuss the limit g2
YM → 0 and show that it is well-

defined in the present context.

3 The BFYM theory

In this section we discuss the theory described by the action (27), i.e.,

SBFYM[A, B, η] = i 〈B , ∗FA〉+ g2
YM

〈

B − 1√
2 gYM

dAη , B − 1√
2 gYM

dAη

〉

.

(which correspond to the BRST trasformation listed in [1]). In this way one recognizes the
topological set of transformations for A0 which is later reinterpreted as the background
connection.
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First we consider the equations of motion. They can be obtained directly
by looking at the stationary points of (27) or from the equations of motion
(16) of the first-order YM theory together with the change of variables (26).
In any case, the equations of motion can be written, after a little algebra, as

i ∗ FA + 2g2
YMB −

√
2 gYM dAη = 0,

d∗
AFA = 0,

dAFA = 0.
(29)

Notice that the third equation is just the Bianchi identity.
Then we come to the symmetries. They can be obtained starting from the

symmetries (3) and (15) of the first-order YM theory and from the topological
symmetry (21) for η together with the change of variables (26). Explicitly,
we have

A → Ag = Adg−1A + g−1dg,
η → Adg−1η + dAgζ −

√
2 gYM τ,

B → Adg−1B + 1√
2 gYM

[FAg , ζ ]− dAgτ,
(30)

with (g, ζ , τ) ∈ Gaff . The action of Gaff on the space of triples (A, η, B) is
again not a free action, but again, as it will be shown in a moment, a BRST
complex and the relevant quantization are available.

Notice that we have rescaled τ →
√

2 gYM τ so as to see the shift on η
as a perturbation of the tangent group action; this is consistent with the
limit g2

YM → 0 in (28). We will discuss this issue better in the next section,
where we also explain why the B-transformation becomes singular in this
limit. Notice that for the computations considered in this section all these
rescalings are irrelevant.

A further remark concerns the geometric interpretation of the field B:
since it transforms as dAη, it is natural to see it as an element of a the
tangent space TFA

B and not of B.
To quantize the theory we have to describe the BRST symmetry. Again

the BRST transformations for BFYM theory can be obtained from (7), (18),
(22), (23), (24) and (26). Explicitly they read

sA = dAc, sc = −1
2 [c, c],

sη = [η, c] + dAξ −
√

2 gYM ψ̃, sξ = −[ξ, c] +
√

2 gYM φ̃,
sB = [B, c] + 1√

2 gYM

[FA, ξ]− dAψ̃,

sψ̃ = −[ψ̃, c] + dAφ̃, sφ̃ = [φ̃, c].
(31)
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where c and ξ have ghost number 1 and belong to Ω0(M, adP ), ψ̃ ∈ Ω1(M, adP )
and has ghost number 1, and φ̃ ∈ Ω0(M, adP ) and has ghost number 2. No-
tice that we have rescaled (ψ̃, φ̃) →

√
2 gYM(ψ̃, φ̃) so as to see the shifts as

perturbations of the TG transformations on η and ξ.
To study the theory, both at the classical and at the quantum level,

we have to fix the symmetries (30). After having done this, our first aim
will be to prove that the gauge-fixed BFYM and YM theories are classically
equivalent, i.e., that their moduli spaces are in one-to-one correspondence
with each other. Our second aim will be to prove the quantum equivalence,
i.e.,

∫

(TA×TFA
B)/Gaff

exp(−SBFYM[A, η, B]) O[A] ∝
∫

A/G
exp(−SYM[A]) O[A].

(32)
As in (17), the proportionality constant will depend on gYM but will not
affect the vacuum expectation values, and we will not take care of it.

Notice that, as it was for the case in (25), the quotient (TA×TFA
B)/Gaff

is not a manifold since the action of Gaff is not free. The same argument of
footnote 13 applies here and a detailed discussion on how to deal with the
non-freedom of these group action is considered in subsec. 5.5.

The formal computation of the functional integral can be performed after
choosing a gauge fixing. In general, whenever we verify that some conditions
are a gauge fixing (at least in a neighborhood of critical solutions), we expect
the equivalence to be realized (in that neighborhood); for we can always go
back to the variables A, η, E by (26) and perform the Gaussian E-integration.
The η-integration should give at most some topological contributions since
η appears only in s-exact terms now. However, the change of variables (26)
becomes singular as gYM → 0, so we prefer to work the equivalence out by
using the variables A, η, B.

We will consider three different gauge fixings which we call the trivial, the
covariant and the self-dual gauge fixings. The last two of them will be dealt
with in the next two subsections, and the conditions under which classical
and quantum equivalence are true will be discussed. As for the trivial gauge
fixing, characterized by the condition η = 0 plus a gauge-fixing condition
on A, we see immediately that BFYM theory turns out to be equivalent to
the first-order formulation of YM theory which, as we proved in the previous
section, is equivalent to the second-order formulation.
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The other two gauge fixings are equivalent to the trivial one (when they
are defined), so we can be sure of the equivalence between BFYM and YM
theory in any of these gauges without any further computation. However,
we prefer to check the equivalence explicitly, for this treatment also produces
the correct framework to consider perturbation theory around BF theories.

Obviously a weak-coupling expansion as in first-order YM theory is al-
ways possible, and this is the only possibility in the trivial gauge. In the
covariant gauge, however, we will show that perturbation theory around a
flat connection can be organized in a different way so that the AB-sector and
the η-sector of the theory decouple in the unperturbed action and the AB-
propagator turns out to be the propagator of the topological pure BF theory
(in the covariant gauge). Finally, in the self-dual gauge, perturbation theory
around an anti-self-dual non-trivial connection (the only kind of connection
around which this gauge is well defined) can again be organized in such a
way that the AB-sector and the η-sector decouple in the unperturbed action;
moreover, the propagators in the AB-sector are recognized as those of the
topological BF theory with a cosmological term (in the self-dual gauge).

3.1 The covariant gauge fixing

The covariant gauge fixing, which will be discussed explicitly in subsec. 5.6,
is characterized by a gauge-fixing condition on A together with

d∗
Aη = 0, η ⊥ Harm1

A(M, adP ), d∗
AB ∈ dAΩ0(M, adP ), (33)

where
Harmk

A(M, adP ) ≡ {ω ∈ Ωk(M, adP ) | ∆Aω = 0}, (34)

and
∆A ≡ d∗

AdA + dAd∗
A : Ω∗(M, adP )→ Ω∗(M, adP ). (35)

Notice that if b1[A] = dim Harm1
A(M, adP ) is not constant on the whole

space A, the covariant gauge fixing is consistently defined only in those open
regions where it is constant. In particular, we will denote by N the open
neighborhood of the space of connections where this is true (in particular
cases, N may be the whole A).

By consistency, on the shift τ in (30) we must impose the same conditions
as those which fix the TG symmetry on η, viz.,

d∗
Aτ = 0, τ ⊥ Harm1

A(M, adP ).
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Similarly, in the context of BRST quantization, the ghost ψ̃ is subject to the
same conditions

d∗
Aψ̃ = 0, ψ̃ ⊥ Harm1

A(M, adP ). (36)

Since we have Harm0
A(M, adP ) = {0} (which is a consequence of taking

A irreducible), this is actually a gauge fixing. Notice that there is a set of
interpolating (complete) gauge fixings between (33) and the trivial gauge
fixing, η = 0, which can also be written as

d∗
Aη = 0, η ∈ dAΩ0(M, adP ).

The interpolating gauge fixings are then given by

λd∗
AB + (1− λ)η ∈ dAΩ0(M, adP ),

with λ ∈ [0, 1].
One might also choose λ to be smooth but not constant on A. In particu-

lar, one could choose λ to be constant and equal to 1 in an open neighborhood
of the space of critical connections contained in the neighborhood N , and
constant and equal to 0 outside N . In this way one would obtain a gauge
fixing that is defined on the whole space A and restricts to the covariant
gauge fixing close to the critical connections.

3.1.1 Classical equivalence

Consider the equations of motion (29). The second and the third tell us that
A is a solution of the YM equations. The first implies that

d∗
A(2g2

YMB −
√

2 gYM dAη) = 0,

so that 〈
dAη , 2g2

YMB −
√

2 gYM dAη
〉

= 0.

On the other hand, the gauge-fixing conditions (33) imply that

〈dAη , B〉 = 0.

So we conclude that
||dAη||2 = 0.
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By the positivity of the norm (remember that we are in a Riemannian man-
ifold) we get then dAη = 0. Since the gauge fixing also imposes d∗

Aη = 0 and
requires η not to be harmonic, we conclude that

η = 0. (37)

Finally, inserting this result in (29) yields

B = − i

2g2
YM

∗ FA. (38)

Therefore, we have shown that a solution A of the YM equations com-
pletely determines a solution of BFYM equations in the covariant gauge
fixing.

Notice that this solution coincides with that obtained with the trivial
gauge fixing.

3.1.2 Quantum equivalence

To implement the covariant gauge fixing in the BRST formalism, we have
first to introduce the full BRST complex which generalizes (6). It is useful
to organize all the fields in the following tables where each row has the same
form-degree and each column has the same ghost-number:

−1 0 1
1 (A, η)
0 (c, ξ) (hc, hξ) (c, ξ)

(39)

−2 −1 0 1 2
2 B

1 ψ̃ hψ̃ ψ̃

0 φ̃1 hφ̃1
φ̃2 hφ̃2

φ̃

(40)

The BRST transformations are given by (31) together with

sc = hc, shc = 0, sξ = hξ, shξ = 0,

sψ̃ = hψ̃, shψ̃ = 0,

sφ̃1 = hφ̃1
, shφ̃1

= 0, sφ̃2 = hφ̃2
, shφ̃2

= 0.
(41)
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If harmonic one-forms are present, in order to implement the covariant
gauge fixing, (33) and (36), it is better to rewrite the BRST transformations
for η and ψ̃ displaying the harmonic contribution.

First we take an orthogonal basis ωi[A] of Harm1
A(M, adP ), with i =

1, . . . , b1[A] = dim Harm1
A(M, adP ). To be consistent with the scaling di-

mensions, we normalize this basis as

〈ωi[A] , ωj[A]〉 = δij

√
V , (42)

where V is the volume of the manifold M .
As a consequence of the fact that ωi[Ag] = Adg−1ωi[A], we get the BRST

transformation rule
sωi[A] = [ωi[A], c]. (43)

Then we add a family of constant ghosts ki and ri (respectively of ghost
number 1 and 2) and BRST transformation rules

ski =
√

2 gYM ri, sri = 0. (44)

Finally, we rewrite the BRST transformations for η and ψ̃ as

sη = [η, c] + dAξ −
√

2 gYM ψ̃ + kiωi[A],
sψ̃ = −[ψ̃, c] + dAφ̃+ riωi[A],

(45)

where a sum over repeated indices is understood. It is easily verified that
the BRST operator is still nilpotent.

To implement the gauge fixing, we have then to build the BRST complex,
i.e., add to (39) and (40) the following table:

−2 −1 0 1 2

k
i

hi
k ki

r1
i hi

r1
r2

i hi
r2

ri

(46)

where each column has the displayed ghost-number. We conclude by giving
the last BRST transformations, viz.,

sk
i

= hi
k, shi

k = 0,
sr1

i = hi
r1

, shi
r1

= 0, sr2
i = hi

r2
, shi

r2
= 0.

(47)
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Now we are in a position to write down the gauge-fixing fermion that
implements the conditions (33) and (36):

Ψ = ΨYM+

+
〈
ξ , d∗

Aη
〉

+ k
i 〈ωi[A] , η〉+

+
〈
φ̃1 , d∗

Aψ̃
〉

+ r1
i
〈
ωi[A] , ψ̃

〉
+

+
〈
ψ̃ , d∗

AB + dAφ̃2 + r2
i ωi[A]

〉
,

(48)

where ΨYM is a gauge-fixing fermion for YM theory like, e.g., in (9). Notice

that both d∗
AB and dAφ̃2 are in the orthogonal complement of Harm1

A(M, adP );
thus, to implement the second gauge-fixing condition in (33), we must take

ψ̃ in this orthogonal complement as well. This is accomplished by the last
term in (48).

The gauge-fixed action will then read

Sg.f.
BFYM = SBFYM + isΨ. (49)

Notice the double role played here by ψ̃, φ̃2 and r2
i: On the one hand,

we can see ψ̃ as the antighost orthogonal to the harmonic forms that allows
an explicit implementation of the gauge-fixing condition for B, viz.,

d∗
AB + dAφ̃2 = 0; (50)

on the other hand, we can see φ̃2 and r2
i as antighosts that implement on ψ̃

the same conditions as those satisfied by ψ̃, viz.,

d∗
Aψ̃ = 0, ψ̃ ⊥ Harm1

A(M, adP ). (51)

As in the case of YM theory, it is useful to assign a canonical dimension
to all the fields in such a way that the gauge-fixed action, the derivative, the
volume integration and the BRST operator have, respectively, dimensions 0,
1, −4 and 0. Therefore, we get

Dimension 0: c, ξ, φ̃, ki, ri.

Dimension 1: A, η, ψ̃, h
ψ̃
, ψ̃.

Dimension 2: B, c, ξ, hc, hξ, φ̃1, hφ̃1
, φ̃2, hφ̃2

, k
i
, hi

k, r1
i, hi

r1
, r2

i, hi
r2

.
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The explicit computation Our first task is to compute sΨ. This will
produce many terms which we can divide into two classes: terms that contain
a Lagrange multiplier (the h-fields) and terms that do not. The former will
impose the gauge-fixing conditions (33), (50), (36) and (51) (notice that—
and this is the advantage of working in the Landau gauge—we do not have
quadratic terms in the hs, so the h-integrations produce δ-functionals of the
constraints). In the computation of the latter, several terms will be canceled
after explicitly imposing these gauge-fixing conditions. In particular, all the
terms containing the ghost c (apart from those in sΨYM) are killed since the
covariant gauge-fixing conditions are G-equivariant; e.g., in the s-variation
of

〈
ξ , d∗

Aη
〉
, we will remove the term

〈
ξ , [d∗

Aη, c]
〉

by imposing d∗
Aη = 0.

Particular care has to be taken in the variation of the last line in (48) since

φ̃2 is not G-equivariant; the c-dependent part will then read (by adding and

subtracting dA[φ̃2, c])

〈
ψ̃ , [d∗

AB + dAφ̃2 + r2
iωi[A], c]− dA[φ̃2, c]

〉
.

The first term then vanishes by the gauge-fixing condition (50) of B, while the

last term can be rewritten as
〈
d∗

Aψ̃ , [φ̃2, c]
〉

and vanishes by the gauge-fixing

conditions (51) of ψ̃.
By imposing the gauge-fixing conditions, we can also simplify the action

SBFYM: the effect is to eliminate the mixed term in B and η.
Finally, we see that, thanks to the gauge-fixing conditions, we can always

replace d∗
AdA by the invertible operator ∆′

A defined as

∆′
A = ∆A + πHarmA

=

{
1 on ker(∆A) = HarmA

∆A on coker(∆A)
(52)

where πHarmA
is the projection to harmonic forms. Notice that ∆′

A = ∆A

on zero-forms since A is an irreducible connection. In the following, we will
denote by GA the inverse of ∆′

A and by det′(∆A) the determinant of ∆′
A.
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Therefore, the gauge-fixed action—after all these simplifications—reads

Scov. g.f.
BFYM = i 〈B , ∗FA〉+ g2

YM 〈B , B〉+ 1
2 〈η , ∆′

Aη〉+
+ i

(
sΨYM + 〈hξ , d∗

Aη〉+ hi
k 〈ωi[A] , η〉+

+
〈
hφ̃1

, d∗
Aψ̃

〉
+ hi

r1

〈
ωi[A] , ψ̃

〉
+

+
〈
h

ψ̃
, d∗

AB + dAφ̃2 + r2
i ωi[A]

〉
+

+
〈
h

φ̃2
, d∗

Aψ̃
〉

+ hi
r2

〈
ωi[A] , ψ̃

〉
+

−
〈
ξ , ∆Aξ

〉
− k

i
kjδij

√
V +

+
〈
φ̃1 , ∆Aφ̃

〉
+ r1

irjδij

√
V +

− 1√
2 gYM

〈
dAψ̃ , [FA, ξ]

〉
+

〈
ψ̃ , ∆′

Aψ̃
〉)

.

(53)

Notice that there is only one term which is singular as gYM → 0. However,
this singularity can be removed easily if one rescales ξ → gYM ξ and ξ →
ξ/gYM.

Now we can start integrating out fields in order to prove (32). We want
to point out that it is not necessary to choose a background for η and B since
they already belong to vector spaces.

Step 1 Integrate k
i
, ki, r1

i, ri.
The integration over the first two variables yields V b1[A]/2, while the inte-

gration over the last two of them yields V −b1[A]/2; therefore, the contributions
cancel each other.

Step 2 Integrate ξ, ξ, φ̃1, φ̃.
The first integration yields det ∆(0)

A , while the second yields (det ∆(0)
A )−1

and they cancel each other. Notice that there are no sources in ξ, so the
integration kills the term in ξ.

Step 3 Integrate ψ̃, ψ̃, h
φ̃1

, h
φ̃2

, hi
r1

, hi
r2

.

The integration over the first two fields yields det′∆(1)
A . Moreover, since

there are linear sources in ψ̃ and ψ̃, viz.,

i
〈
dAh

φ̃1
+ hi

r1
ωi[A] , ψ̃

〉
− i

〈
ψ̃ , dAh

φ̃2
+ hi

r2
ωi[A]

〉
,
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the Gaussian integration will give the following contribution to the action

i
(〈

h
φ̃1

, XAh
φ̃2

〉
+ hi

r1
hj

r2
δij

√
V
)

, (54)

where
XA = d∗

AGAdA : Ω0(M, adP )→ Ω0(M, adP ). (55)

Notice that there are no other terms since GAωi[A] = ωi[A] and d∗
Aωi[A] = 0.

Now the integration over h
φ̃1

and h
φ̃2

yields det XA (we will show shortly

that XA is invertible), while the integration over hi
r1

and hi
r2

yields V b1[A]/2.
Therefore, the net contribution of this step is given by

det′∆(1)
A det XA V b1[A]/2.

Step 4 Integrate η, hξ, hi
k.

The first integration yields (det′∆(1)
A )−1/2; moreover, the linear source in

η, viz.,
i
〈
dAhξ + hi

kωi[A] , η
〉

,

produces the following contribution to the action:

〈hξ , XAhξ〉+ hi
kh

j
kδij

√
V .

Then the hξ-integration yields (det XA)−1/2, while the hi
k-integrations yield

(4V )−b1[A]/4.
Therefore, the net contribution of this step is given by

(det′∆(1)
A det XA)−1/2 (4V )−b1[A]/4.

Step 5 Integrate B.
Apart from an irrelevant gYM-dependent factor, the Gaussian B-integration

with source
i
〈
B , ∗FA + dAhψ̃

〉

gives the following contribution to the action

1

4g2
YM

(
〈FA , FA〉+

〈
hψ̃ , ∆′

Ahψ̃

〉)
, (56)

the mixed terms disappearing because of the Bianchi identity.
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Step 6 Integrate h
ψ̃
, φ̃2, r2

i.
The h

ψ̃
-integration with quadratic term given in (56) and source

i
〈
hψ̃ , dAφ̃2 + r2

iωi[A]
〉

yields (det′∆(1)
A )−1/2 plus the contribution

g2
YM

(〈
φ̃2 , XAφ̃2

〉
+ r2

ir2
jδij

√
V
)

.

Then the remaining integrations yield (det XA)−1/2 and (4gYM4V )−b1[A]/4.
Therefore, the net contribution of this step is

(det′∆(1)
A )−1/2 (det XA)−1/2 (4gYM4V )−b1[A]/4.

The operator XA is invertible In order to complete all the steps in
the functional integration, we still have to prove that the operator XA is
invertible.

Let us represent the space Ω1(M, adP ) as the sum of three orthogonal
subspaces: the vertical subspace VA = dAΩ0(M, adP ), Harm1

A(M, adP ), and
ĤA ≡ HA .Harm1

A(M, adP ) where HA = ker d∗
A is the horizontal subspace.

Here horizontality and verticality are defined with respect to the connection
form on A given by

GA d∗
A : Ω1(M, adP )→ Ω0(M, adP ).

The operator ∆(1)
A : ĤA⊕VA → ĤA⊕VA is injective and satisfies the following

relation: 〈
η1 , ∆(1)

A η2

〉
= 〈(dA + d∗

A)η1 , (dA + d∗
A)η2〉 .

Hence both ∆(1)
A and its inverse GA are (formally) self-adjoint and positive.

We can consider the (formal) “square root” G1/2
A and have, for any ζ ∈

Ω0(M, adP ),

〈ζ , XAζ〉 = 〈dAζ , GAdAζ〉 = ||G1/2
A dAζ ||2.

Hence XA is invertible.
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Conclusions Collecting all the contributions, we get YM as the effec-
tive action. All the determinants cancel each other and the only net con-
tribution of all the integrations is a factor (2gYM)−b1[A]. However, b1[A] is
constant in the neighborhood N . If this neighborhood does not coincide
with A, one can choose an interpolating gauge that smoothly connects the
covariant gauge in the interior of N with the trivial gauge outside. This ends
the proof of (32) in the covariant gauge.

3.1.3 The perturbative expansion

As we have remarked after eqn. (53), a suitable rescaling of ξ and ξ removes
any singularity as gYM → 0. This allows weak-coupling perturbation theory.

To start with, one has to consider the fluctuations α, e and β of the fields
A, η, B; viz.,

A = A0 + qα,
η = η0 + e,
B = B0 + 1

qβ,
(57)

where q is a free parameter, and (A0, η0, B0) is a critical point of the action:
i.e., A0 is a critical connection, η0 = 0 and B0 is given by (38). On the
fluctuations, the covariant gauge fixing reads

d∗
A0

e + O(q) = 0, e ⊥ Harm1
A(M, adP ),

d∗
A0
β + q2 ∗ [α, ∗B0] + O(q) ∈ dAΩ0(M, adP ) + Harm1

A(M, adP ).
(58)

[Recall that q2B0 = O(1).]

The general case The quadratic part of the gauge-fixed action (53) reads

i 〈β , ∗dA0
α〉+

1

2

(
q

gYM

)2

〈FA0
, α ∧ α〉+

(
gYM

q

)2

〈β , β〉+
1

2

〈
e , ∆′

A0
e
〉

plus the gauge-fixing terms. Therefore, we see that the αβ- and e-sectors
decouple. Since we have both a term in gYM/q and one in q/gYM, we must
take q ∼ gYM (a convenient choice is q =

√
2 gYM).

Perturbative expansion around a flat connection If the connection
A0 is flat, then B0 = FA0

= 0 and there are no terms in q/gYM in the
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quadratic part of the action. Therefore, we can also take gYM 0 q 0 1 and
consider (gYM/q)2 〈β , β〉 as a perturbation. More precisely, we take

i 〈β , ∗dA0
α〉+

1

2

〈
e , ∆′

A0
e
〉

+ gauge-fixing terms (59)

as unperturbed action. This is possible since the quadratic form in (59) is
non-degenerate. In fact, the kernel is determined by the conditions

dA0
β = 0, d∗

A0
β + dA0

φ̃2 = 0.

(Notice that b1[A0] = 0 if A0 is flat.)
Applying dA0

to the second equation we get ∆A0
β = 0. The kernel is

therefore empty if there are no harmonic two forms (and in general is finite
dimensional).

The propagators can be computed easily. The αβ propagator (i.e., the
inverse of ∗dA0

on its image) is the same as in pure BF theory in the covariant
gauge, as is clear by comparing (59) with (101); viz., it is the integral kernel
of (generalized) Gauss linking numbers.15 The ee-propagator is the same as
the propagator for the fluctuation of the connection in YM theory, as is clear
by comparing (59) with (12).

The perturbative expansion will then be organized as a formal double
expansion in q and (gYM/q). Notice that the theory is however independent
of q; in fact, a rescaling q → tq can be reabsorbed by the rescaling α →
α/t, β → tβ, h

ψ̃
→ h

ψ̃
/t. This reflects the analogous independency on the

coupling constant found in pure BF theory in any dimension.
It is conceivable that quantization might break this symmetry if we con-

sider B-dependent observables. (The equivalence with YM theory rules out
this possibility when we consider only YM observables.)

3.2 The self-dual gauge fixing

Preliminaries The space of two-forms can canonically be split into the
sum of self-dual and anti-self-dual forms [denoted by Ω(2,+)(M, adP ) and
Ω(2,−)(M, adP )] which satisfy P+ω = ω and P−ω = ω respectively, where

15Recall that in four dimensions we have linking numbers between spheres and loops as
opposed to the standard linking numbers between loops in three dimensions
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the projection operators P+ and P− are defined as

P± =
1 ± ∗

2
. (60)

By using one of these projection operators (whatever follows is true by
replacing self-duality by anti-self-duality everywhere), we can define a new
operator DA on the complex Ω∗(M, adP ). Ω(2,−)(M, adP ) as

DA :=






dA : Ω0(M, adP ) → Ω1(M, adP )√
2P+dA : Ω1(M, adP ) → Ω(2,+)(M, adP )√

2dA : Ω(2,+)(M, adP ) → Ω3(M, adP )
dA : Ω3(M, adP ) → Ω4(M, adP )

(61)

Then we can define the elliptic operator

∆̃A = D∗
ADA + DAD∗

A, (62)

and prove the following identities for this deformed Laplace operator on forms
of various degrees:

∆̃(0)
A = ∆(0)

A ,

∆̃(1)
A = ∆(1)

A − ∗[FA, ],

∆̃(2)
A = 2DAD∗

A = 2D∗
ADA = 2P+∆(2)

A P+.

(63)

Since we are considering only irreducible connections, the (deformed) Laplace
operator is invertible on zero forms.

We will denote by H̃armA(M, adP ) the (finite) kernel of ∆̃A. Notice that

H̃arm
0

A(M, adP ) = Harm0
A(M, adP ) = {0},

H̃arm
1

A(M, adP ) ⊃ Harm1
A(M, adP ),

H̃arm
2

A(M, adP ) = P+Harm2
A(M, adP );

(64)

As in the case of the ordinary covariant Laplacian, see (52), we can define
the invertible operator

∆̃′
A = ∆̃A + π

H̃armA
=

{
1 on ker(∆̃A) = H̃armA

∆̃A on coker(∆̃A)
(65)

27



and its inverse G̃A.
Finally, if A is a non-trivial anti-self-dual connection (i.e., P+FA = 0),

then we assume that

DA : Ω1(M, adP )→ Ω(2,+)(M, adP )

is surjective, or equivalently, that

ker(D∗
A) = {0}; D∗

A : Ω(2,+)(M, adP )→ Ω1(M, adP ). (66)

Notice that (66) is verified for a dense set of (conformal classes of) metrics
for G = SU(2) [14].

For any σ ∈ Ω1(M, adP ) we have

D∗
A+tσ = D∗

A + tQσ,

where the A-independent operator Qσ is defined by:

Qσϕ ≡
√

2 ∗ [σ,ϕ]. ϕ ∈ Ω(2,+)(M, adP ).

This implies that for t sufficiently small D∗
A+tσ is also invertible and that

there is neighborhood of the space M− of anti-self-dual connections—which
we will denote by N—where the property (66) holds. We take N to be the
inverse image of a neighborhood of the moduli space. By (66) it follows that

∆̃(2)
A is invertible if A ∈ N , so H̃arm

2

A(M, adP ) = {0}.
If A is an anti-self-dual connection, then H̃arm

1

A(M, adP ) = TAM−;

therefore, for A in a neighborhood of M−, dim H̃arm
1

A(M, adP ) = dimM− =
m−. Moreover, D2

A = F+
A = 0 : Ω0(M, adP ) → Ω(2,+)(M, adP ). This im-

plies that

(Im D∗
A

⋂
coker D∗

A)
⋂

Ω1(M, adP ) = {0} if A ∈M−.

Therefore, (66) is an injection from Ω(2,+)(M, adP ) to ker D∗
A

⋂
Ω1(M, adP ).

By continuity this property will hold in a neighborhood of M−. We will
denote by N ′ the intersection of this neighborhood with N and with the

neighborhood where dim H̃arm
1

A(M, adP ) is constant.
Therefore, the neighborhood N ′—which we will use in the rest of this

section—is characterized by the following two properties:

1. DA : (ker D∗
A

⋂
Ω1(M, adP ))→ Ω(2,+)(M, adP ) is surjective if A ∈ N ′;

2. dim H̃arm
1

A(M, adP ) = m− if A ∈ N ′.
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The definition of the self-dual gauge fixing Now we are in a position
to define the self-dual gauge fixing (for further details, s. subsec. 5.6) in
terms of a gauge-fixing condition on the connection A ∈ N ′ together with
the conditions

D∗
Aη = 0, η ⊥ H̃arm

1

A(M, adP ), P+B = 0, (67)

and, by consistency,

D∗
Aτ = 0, τ ⊥ H̃arm

1

A(M, adP ). (68)

In the context of BRST quantization, the last conditions will imply

D∗
Aψ̃ = 0, ψ̃ ⊥ H̃arm

1

A(M, adP ). (69)

Also in this case we have gauge fixings which are interpolating between
(67) and the trivial gauge fixing η = 0. In fact, the trivial gauge fixing can
be written as

D∗
Aη = 0, η ⊥ H̃arm

1

A(M, adP ), DAη = 0.

The interpolating gauge fixings can be then written as

λP+B + (1− λ)DAη = 0,

with λ ∈ [0, 1].
Again one might also choose λ to be smooth but not constant on A. In

particular, if we choose λ to be constant and equal to 1 in an open neighbor-
hood of M− contained in the neighborhood N ′, and constant and equal to 0
outside N ′, we obtain a gauge fixing that is defined on the whole space A and
restricts to the self-dual gauge fixing close to the anti-self-dual connections.

3.2.1 Classical equivalence

First we observe that an anti-self-dual connection solves the YM equations
of motion. Then we see that the self-dual part of the first equation of (29)
reads

DAη = 0,
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which together with the gauge-fixing conditions implies

η = 0; (70)

therefore, we get

B = − i

2g2
YM

∗ FA. (71)

Notice that this solution is the same as those obtained with the trivial and
the covariant gauge fixings.

3.2.2 Quantum equivalence

To implement the self-dual gauge fixing, we have to introduce a BRST com-
plex which is slightly different from that used for the covariant case.

More precisely, we have to replace the pairs (ψ̃, φ̃2) and (h
ψ̃
, h

φ̃2
) re-

spectively by the self-dual antighost χ+ (with ghost number −1) and by
the self-dual Lagrange multiplier h+

χ (with ghost number 0). Notice that the

number of degrees of freedom is preserved; in fact, ψ̃ is a one-form with ghost

number −1 (so four fermionic degrees of freedom), while φ̃2 is a zero-form
with ghost number 0 (so one bosonic or, equivalently, minus one fermionic
degree of freedom); this gives three fermionic degrees of freedom which is
consistent with the fact that χ+ is a self-dual two-form with ghost number
−1. A similar counting holds for the other fields.

The BRST transformation rules for the antighosts and the Lagrange mul-
tipliers are the same as those described in the case of the covariant gauge
fixing; as for the new fields, we have

sχ+ = h+
χ , sh+

χ = 0. (72)

To deal with the harmonic one-forms of the deformed Laplace operator,

we introduce an orthogonal basis for H̃arm
1

A(M, adP )—which we still denote
by ωi[A], i = 1, . . . , m−—and normalize it as in (42).

As in the case of the covariant gauge fixing, we introduce new constant
ghosts ki and ri, together with their antighosts and Lagrange multipliers,
with BRST transformation rules given by (44) and (47). Moreover, we rewrite
the BRST transformations for η and ψ̃ as in (45).
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The self-dual gauge fixing is eventually implemented by choosing the fol-
lowing gauge-fixing fermion:

Ψ = ΨYM+

+
〈
ξ , D∗

Aη
〉

+ k
i 〈ωi[A] , η〉+

+
〈
φ̃1 , D∗

Aψ̃
〉

+ r1
i
〈
ωi[A] , ψ̃

〉
+

+ 〈χ+ , B〉 ,

(73)

The canonical dimensions of the old fields are the same as in the case
of the covariant gauge fixing, while the new fields χ+ and h+

χ have both
dimension two.

The explicit computation As in the computation with the covariant
gauge fixing, the gauge-fixed action SBFYM + isΨ can be simplified if one
imposes the gauge-fixing conditions explicitly. At the end we get

Ss.d. g.f.
BFYM = −i 〈B− , P−FA〉+ g2

YM 〈B− , B−〉+
+ 1

2 〈η , ∆Aη〉 −
√

2gYM 〈B− , P−(dAη)〉+
+ i

(
sΨYM + 〈hξ , D∗

Aη〉+ hi
k 〈ωi[A] , η〉+

+
〈
hφ̃1

, D∗
Aψ̃

〉
+ hi

r1

〈
ωi[A] , ψ̃

〉
+

〈
h+

χ , B+
〉

+

−
〈
ξ , ∆Aξ

〉
− k

i
kjδij

√
V +

+
〈
φ̃1 , ∆Aφ̃

〉
+ r1

irjδij

√
V +

− 1√
2 gYM

〈χ+ , P+[FA, ξ]〉+
〈
χ+ , DAψ̃

〉 )
,

(74)

where B± are the self-dual and anti-self-dual components of B.
Notice that there is only one term which is singular as gYM → 0. However,

this singularity can be easily removed if one rescales ξ → gYM ξ and ξ →
ξ/gYM.

Now we can start integrating out the fields.

Step 1 Integrate k
i
, ki, r1

i, ri.
As in the case of the covariant gauge fixing, this integration gives no

contribution.

Step 2 Integrate ξ, ξ, φ̃1, φ̃.
Again, this integration does not contribute.
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Step 3 Integrate χ, ψ̃, h
φ̃1

, hi
r1

.
The relevant terms in the action can be written as

i

2
〈X , MX〉 ,

where X is the vector

X =





ψ̃
hr1

χ+

h
φ̃1




∈ Ω1 ⊕Rm− ⊕ Ω2,+ ⊕ Ω0,

and M is the anti-hermitean operator

M =





0 −ωA −D∗
A −DA

ω
∗
A 0 0 0

DA 0 0 0
D∗

A 0 0 0



 . (75)

The scalar product is defined as in (2) on Ω∗(M, adP ) and is the ordinary
Euclidean scalar product on Rm−

.
The operator ωA : Rm− → Ω1(M, adP ) is defined by

ωAhr1
=

m−∑

i=1

ωi[A] hi
r1

,

and its adjoint ω
∗
A : Ω1(M, adP )→ Rm−

acts as

(ω∗
Aψ̃)i =

〈
ωi[A] , ψ̃

〉
.

The functional integration will then produce the Pfaffian of M which, as
we will prove in App. A, is given, up to an irrelevant constant, by

Pf(M) ∝ (det(∆(0)
A −RA) det′∆̃(1)

A det ∆(2,+)
A )1/4 V m−/8, (76)

where
RA = D∗

Aπcoker(DA)DA : Ω0(M, adP )→ Ω0(M, adP ). (77)

Notice that the operator

∆̂A = ∆A −RA : Ω0(M, adP )→ Ω0(M, adP ) (78)

is invertible for A ∈ N ′ (s. App. B).
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Step 4 Integrate h+
χ , B.

First notice that, since self-dual and anti-self-dual two-forms are orthog-
onal, the integration over B can be replaced by an integration over B+ and
B− with Jacobian equal to 1.

The (h+
χ , B+)-integration is then trivial. The B−-integration with source

〈
B− , P−(−iFA −

√
2gYM dAη)

〉

yields a constant term depending on gYM (of which we do not care) plus the
following contribution to the action

1

4g2
YM

〈
P−FA , P−FA

〉
− i√

2 gYM

〈
P−FA , P−(dAη)

〉
−1

2

〈
P−(dAη) , P−(dAη)

〉
.

Therefore, at this stage we get the following effective action:

1

4g2
YM

〈
P−FA , P−FA

〉
+

1

4

〈
η , ∆̃′

Aη
〉
+i

〈

η ,
−1

2gYM
D∗

AP+FA + DAhξ + hi
kωi[A]

〉

+isΨYM,

where we have used the fact that
√

2d∗
AP−FA =

√
2d∗

AP+FA = D∗
AP+FA.

Step 5 η, hξ, hi
k.

The η-integration yields (det′∆̃(1)
A )−1/2 plus the following contribution to

the action:
1

4g2
YM

〈
P+FA , Z̃AP+FA

〉
− 1

gYM

〈
hξ , D∗

AG̃AD∗
AP+FA

〉
+
〈
hξ , X̃Ahξ

〉
+hi

kh
j
kδij

√
V ,

where

X̃A = D∗
AG̃ADA : Ω0(M, adP ) → Ω0(M, adP ),

Z̃A = DAG̃AD∗
A : Ω(2,+)(M, adP ) → Ω(2,+)(M, adP ).

(79)

Even though DA does not commute with GA (unless A ∈ M−), these two
operators are identity operators as long as A ∈ N ′. For details, s. App. B.

The hi
k-integrations yield (4V )−m−/4, while the hξ-integration produces

(det X̃A)−1/2 = 1 plus the contribution

− 1

4g2
YM

〈
P+FA , ẐAP+FA

〉
,

where

ẐA = DAG̃ADAD∗
AG̃AD∗

A : Ω(2,+)(M, adP )→ Ω(2,+)(M, adP ). (80)

As long as A ∈ N ′, this operator is null as proved in App. B.

33



Conclusions Putting together the determinants coming from steps 3
and 5 we find a net contribution

J [A] =
(det(∆(0)

A − RA))1/4 (det ∆(2,+)
A )1/4

(det′∆̃(1)
A )1/4

. (81)

In App. B, we show that J [A] = 1 if A ∈ N ′. Moreover, Step 4 and Step 5
reconstruct YM action in the form

SYM[A] =
1

4g2
YM

〈
P−FA , P−FA

〉
+

1

4g2
YM

〈
P+FA , P+FA

〉
.

Therefore, we have proved the equivalence between BFYM and YM theory
(for A ∈ N ′) by using the self-dual gauge fixing. More explicitly, we have
shown that
∫

(TN ′×TFA
B)/Gaff ,self−dual

exp(−SBFYM[A, η, B]) O[A] ∝
∫

N ′/G
exp(−SYM[A]) O[A].

(82)
If we choose a gauge fixing that restricts to the self-dual gauge in the

interior of N ′ and to the trivial gauge outside, we can extend the equivalence
to the whole A.

3.2.3 The perturbative expansion around an anti-self-dual con-

nection

Again we can consider fluctuations around a background as in (57). Since we
assume the connection not to be flat, we will have both terms in q/gYM and
in gYM/q, so we must take q ∼ gYM. It is convenient to choose q =

√
2 gYM.

The gauge-fixing conditions (67) on the fluctuations simply read

d∗
A0
η + O(gYM) = 0, η ⊥ H̃arm

1

A0
(M, adP ), β+ = 0.

The quadratic part of the gauge-fixed action (74) reads

−i 〈β− , dA0
α〉+ 〈FA0

, α ∧ α〉+ 1
2 〈β

− , β−〉+
−〈β− , dA0

e〉 − i 〈FA0
, [α, e]〉+ 1

2

〈
e , ∆̃′

A0
e + ∗[FA0

, e]
〉

,

plus the gauge-fixing terms. Unlike in the case of the covariant gauge fixing,
the αβ- and e-sectors do not decouple. However, if we perform the change
of variables

α′ = α− ie, e′ = e, β ′ = β, (83)
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the quadratic part of the action turns out to be

−i
〈
(β ′)− , dA0

α′
〉
+〈FA0

, α′ ∧ α′〉+ 1

2

〈
(β ′)− , (β ′)−

〉
+

1

2

〈
e′ , ∆̃′

A0
e′
〉

, (84)

plus the gauge-fixing terms. Now the α′β ′- and e′-sectors decouple. Moreover,
for the α′β ′-sector we recognize the propagators of the topological BF theory
with a cosmological term in the self-dual gauge, see. (106), whereas the e′e′-
propagator turns out to be same as the propagator for the fluctuation of the
connection in YM theory [thanks to (13) and to the second equation of (63)].

4 The relation with the topological BF the-

ories

In the previous section, studying perturbative BFYM theory in the covariant
gauge around a flat connection or in the self-dual gauge around a non-trivial
anti-self-dual connection, we have discovered that a sector of the theory cor-
responds to the topological BF theory (pure or, respectively, with a cosmo-
logical term) in the same gauge.

In this section we will recall the properties of the topological BF theories.
The main problem with these theories is that the symmetries are described
by a BRST operator that is nilpotent only on-shell. Therefore, one has to
resort to the BV formalism which we briefly introduce in subsection 4.1.

We also want to discuss the relations between the BFYM and the BF
theories before starting perturbation theory. In the case of the self-dual
gauge, this relation simply relies on the fact that 〈B , B〉 = −〈B , ∗B〉 when
B is anti-self-dual.

The case of the covariant gauge fixing with a flat background connection
is however more intricate, for it is related to the limit gYM → 0 which is
ill-defined as discussed at the end of Sec. 2.4. We have already observed that
in this limit the BFYM theory formally reduces to the topological pure BF
theory plus a dynamical term for η, s. eqn. (28).

We have also observed that this limit is well-defined after fixing the gauge.
However, we would like this limit to be meaningful for the theory even

before a gauge is chosen.
Dealing with the theory defined by (28) presents some difficulties. In

fact, the term 〈dAη , dAη〉 has a different symmetry on shell (the TG action)
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and off shell (only the G action). Of course, one has to consider the larger
symmetry if one wants to quantize the theory. The on-shell symmetry for η
can be made into an off-shell symmetry of the whole theory by setting

sB = [B, c]− dAψ̃ + ∗[dAη, ξ].

However, now the BRST operator is nilpotent only on shell. (Notice that
this is a problem affecting pure BF theory as well.)

Another way of seeing the problem is to perform the limit g2 → 0 in
BFYM theory. We meet the following difficulties:

1. There is no way of getting in the limit the previous BRST transforma-
tion on B.

2. If we consider the BRST transformations as in (31), we get, in the limit,
the correct on-shell symmetry for η but a divergent transformation for
B.

3. If we try to avoid this problem by rescaling ξ →
√

2 gYM ξ, we get
a well-defined transformation for B, but the transformation for η is
correct only off shell now; this leads to contradictions when we try to
quantize the theory. In fact, if we decide not to fix the gauge for η we
get in trouble when the curvature vanishes; on the other hand, if we
want to gauge fix it, we have to introduce the antighost ξ, but then
we get in trouble since the ξ-dependent terms in the gauge-fixed action
are killed. (Of course, if we first fix the gauge and then let gYM → 0,
we do not have any problem.)

4. If we also decide to rescale η →
√

2 gYM η, the quadratic term in η
disappears from the action. This means that the symmetry on η is
given, as we correctly obtain, by the whole Gaff action. However, now
B can be shifted by dAψ̃′ with no relation between ψ̃ and ψ̃′. That is,
we have to introduce new ghosts.

The solution to these problems is again in the use of the BV formalism.

4.1 The BV formalism

In the BV formalism, one considers the Z-graded algebra of polynomials in
the fields {Φi} of the theory. We will denote by ε(K) the grading—i.e., the
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ghost number—of the monomial K. As a shorthand notation, we will simply
write εi for the ghost number of the generator Φi. Moreover, each field is given
a Grassmann parity by the reduction mod 2 of the ghost number (if half-
integer-spin particles are present, then their Grassmann parity is increased
by one).

To each field Φi is then associated an antifield Φ
†
i which is completely

equivalent to Φi under all respects but the ghost number; i.e., Φ
†
i is a section

of the same principal or associated bundle as Φi and is given ghost number
by

ε(Φ
†
i ) = −εi − 1. (85)

4.1.1 BV antibracket and Laplacian

Given two functions X and Y of the variables {Φi, Φ
†
i }, one defines the BV

antibracket as

(X , Y ) := X

〈 ←−
δ

δΦ
†
i

,

−→
δ

δΦi

〉

Y −X

〈←−
δ

δΦi
,

−→
δ

δΦ
†
i

〉

Y (86)

and the BV Laplacian as

∆X =
∑

i

(−1)εi

〈 −→
δ

δΦ
†
i

,

−→
δ

δΦi

〉

X. (87)

Notice that both the antibracket and the Laplacian increase the ghost number
by one.

We remark that the two previous operations are not independent: in fact,
the BV antibraket can be written in terms of the BV Laplacian and of the
pointwise product of functions.

4.1.2 Canonical transformations

The BV formalism is defined modulo canonical transformations, i.e., trans-
formations of the fields and antifields that preserve the BV Laplacian and,
consequently, the BV antibracket.
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A canonical transformation can be obtained by introducing a generating

functional F (Φi,
˜
Φ
†
i ), with ε(F ) = −1, such that

Φ̃i =

−→
δ

δ
˜
Φ
†
i

F, Φ
†
i =

−→
δ

δΦi
F. (88)

In the BV context, there is no analogue of Liouville’s theorem in classical
mechanics, and, in general, the volume form is not preserved by canonical
transformations.

Notice that rescalings of the form Φi → λiΦi, Φ
†
i = Φ

†
i /λi are canonical

transformations, their generating functional being F =
∑

i λ
i

〈

Φi ,
˜
Φ
†
i

〉

.

4.1.3 The implementation of symmetries

Suppose we have an action S[ϕ], where by ϕ we denote the classical fields
(i.e., the zero-ghost-number fields that appear in the action). The study of
the on-shell symmetries allows the construction of the BRST complex (i.e.,
the whole set of fields Φi) together with the BRST operator s. In many
cases, this operator turns out to be nilpotent also off shell, and the BRST
formalism is enough to quantize the theory. However, there are situations
(e.g., in the BF theories) where this is not true. In these cases, the BV
formalism provides a useful generalization of the BRST formalism.

First of all one has to look for the BV action, i.e., a functional SBV[Φ, Φ†]
that solves the master equation

(
SBV , SBV

)
= 0, (89)

and reduces to the classical action S when the antifields are turned off, viz.,

SBV[Φ, 0] = S[ϕ]. (90)

In particular, one looks for a proper solution of (89); i.e., one requires the
Hessian of SBV evaluated on-shell to have rank equal to the number of fields.

There is a theorem that states that, under some mild assumptions on
S, there exists one and only one (up to canonical transformations) proper
solution SBV to the master equation (89) with boundary conditions (90).
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Thanks to the master equation and to the properties of the BV an-
tibracket, the operator σ defined by

σX := (SBV, X) (91)

turns out to be nilpotent. The boundary condition (90) then ensures that,
up to possible terms in the antifields, σ acts on the fields as s.

If the BRST operator s is nilpotent also off shell, one can write the BV
action as

SBV[Φ, Φ†] = S[ϕ] +
∑

i

〈
sΦi , Φ

†
i

〉
. (92)

In this case σ = s on all fields.

4.1.4 The BV quantization

The quantization of the theory then proceeds by fixing the gauge. This is
achieved, as in the BRST formalism, by introducing a gauge-fixing fermion
Ψ[Φ]. Now, however, the gauge-fixed action is defined by

Sg.f.[Φ] = SBV[Φ, Φ†]
∣∣∣∣
Φ
†
j =i δ

δΦj Ψ
. (93)

If SBV has the form (92), then this procedure gives Sg.f. = S + isΨ, as in the
BRST formalism.

The condition that SBV should be a proper solution of the master equation
makes perturbative quantization possible and—if ∆S = 0—independent of
small deformations of Ψ.16 Moreover, the vacuum expectation value of a

functional O(Φ, Φ†) such that σO = 0 turns out to be independent of small
deformations of Ψ as well.

16Usually one can choose ∆S = 0. However, the quantum corrections due to renormal-
ization generally break this condition.

To deal with this case, one has to consider the quantum BV action SBV
h̄ (Φ,Φ†) which

satisfies the quantum master equation
(
SBV

h̄ , SBV
h̄

)
+ 2h̄∆SBV

h̄ = 0

and the boundary condition

SBV
0 (Φ,Φ†) = SBV(Φ,Φ†).

Notice that to a BV action there might correspond no quantum BV action; in this case
the theory is said to be anomalous.

39



4.2 Applications of the BV formalism

The theories we have considered in this paper—viz., first- and second-order
YM theory and BFYM theory—have a BRST operator that closes also off
shell; therefore, up to canonical transformations, they can be written as in
(92). Explicitly, we have

SBV
YM = SYM +

〈
dAc , A†〉−

〈
1
2 [c, c] , c†

〉
+

〈
hc , c†

〉
;

SBV
YM′ = SYM′ +

〈
dAc , A†〉 +

〈
[E, c] , E†〉−

〈
1
2 [c, c] , c†

〉
+

〈
hc , c†

〉
;

SBV
BFYM = SBFYM +

〈
dAc , A†〉 +

〈
[η, c] + dAξ −

√
2 gYM ψ̃ , η†

〉
+

+
〈
[B, c] + 1√

2 gYM

[FA, ξ]− dAψ̃ , B†〉+

+
〈
−1

2 [c, c] , c†
〉

+
〈
−[ξ, c] +

√
2 gYM φ̃ , ξ†

〉
+

+
〈
−[ψ̃, c] + dAφ̃ , ψ̃†

〉
+

〈
[φ̃, c] , φ̃†

〉
+

∑
i

〈
hi , c

†
i

〉
,

(94)
where, in the last line, we have denoted by hi and ci the Lagrange multipliers
and antighosts.

The canonical transformation ξ →
√

2 gYM ξ, ξ† → ξ†/(
√

2 gYM) seems to
remove all the singularities from SBV

BFYM. However, in the gYM → 0 limit the
BV action turns out not to be proper. As a consequence, if we fix the gauge
with Ψ as in (48), we do not get the kinetic term for ξ, ξ and quantization
becomes impossible.

4.2.1 The pure BF theory

The pure BF theory is described by the action

SBF = i 〈B , ∗FA〉 , (95)

When the theory is not anomalous, fixing the gauge as in (93) with SBV replaced by
SBV

h̄ yields a theory whose perturbative quantization is independent of small deformations
of Ψ.

Moreover, the quantum master equation implies that the operator σh̄ defined as

σh̄ = σ + h̄∆

is nilpotent. Then one can show that the vacuum expectation value of a functional

Oh̄(Φ,Φ†) such that σh̄Oh̄ = 0 is independent of small deformations of Ψ.
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and its symmetries are encoded by the following BRST transformations:

sA = dAc, sc = −1
2 [c, c],

sB = [B, c]− dAψ̃,
sψ̃ = −[ψ̃, c] + dAφ̃, sφ̃ = [φ̃, c].

(96)

Notice that s2 3= 0 off shell; as a matter of fact, s2 vanishes on all fields but
on B where one gets

s2B = −[FA, φ̃].

The BV action can be written as

SBV
BF = SBF +

〈
dAc , A†〉 +

〈
[B, c]− dAψ̃ − 1

2 ∗ [B†, φ̃] , B†〉+

+
〈
−1

2 [c, c] , c†
〉

+
〈
−[ψ̃, c] + dAφ̃ , ψ̃†

〉
+

〈
[φ̃, c] , φ̃†

〉
+

∑
i

〈
hi , c

†
i

〉
,

(97)
where the sum is over the same antighosts and Lagrange multipliers as in
BFYM but ξ and hξ. It can be shown that (97) is a proper solution of the
master equation.

Notice that the BV action is not linear in B†. This implies that the
operator σ on B acts in a different way than the operator s; viz.,

σB = [B, c]− dAψ̃ − ∗[B†, φ̃]. (98)

On all other fields, σ = s. Notice that σ2 = 0 since

σB† = −[B†, c]− ∗FA.

Quantization in the covariant gauge The covariant gauge fixing for
pure BF theory is defined exactly as in BFYM theory (33) and is quantisti-
cally implemented by the same gauge-fixing fermion (48) (of course, forget-
ting of the conditions on η) using (93). After some algebra we can write the
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gauge-fixed action as

Scov. g.f.
BF = i 〈B , ∗FA〉+ i

(
sΨYM+

+
〈
h

φ̃1
, d∗

Aψ̃
〉

+ hi
r1

〈
ωi[A] , ψ̃

〉
+

+
〈
hψ̃ , d∗

AB + dAφ̃2 + r2
i ωi[A]

〉
+

+
〈
h

φ̃2
, d∗

Aψ̃
〉

+ hi
r2

〈
ωi[A] , ψ̃

〉
+

+
〈
φ̃1 , ∆Aφ̃

〉
+ r1

irjδij

√
V +

+ 1
2

〈
dAψ̃ , ∗[dAψ̃, φ̃]

〉
+

〈
ψ̃ , ∆′

Aψ̃
〉)

.

(99)

As is usual in theories whose BRST operator is nilpotent only on shell, a

cubic term appears in the ghost–antighost variables, viz.,
〈
dAψ̃ , ∗[dAψ̃, φ̃]

〉
.

This term is however killed by the φ̃1φ̃ integration since there are no sources

in φ̃1. Recall that also in (53) the term
〈
dAψ̃ , [FA, ξ]

〉
was irrelevant since

the ξξ integration killed it. Therefore, the gauge-fixing terms in (53) are
the same as those which appears in (99) plus the terms related to the gauge
fixing on η. Explicitly, we have

Scov. g.f.
BFYM = Scov. g.f.

BF +g2
YM 〈B , B〉+1

2
〈η , ∆′

Aη〉+is
(〈
ξ , d∗

Aη
〉

+ k
i 〈ωi[A] , η〉

)
.

(100)

Perturbative expansion The equations of motion of BF theory are FA =
dAB = 0. Therefore, A is a flat connection. In the covariant background, we
also have B = 0 (if there are harmonic two-forms, we have to require B to
be orthogonal to them).

If we then consider fluctuations around a critical background (i.e., FA0
=

B0 = 0) as in (57), we get the quadratic action

i 〈β , ∗dA0
α〉+ gauge-fixing terms, (101)

which corresponds to the αβ part of (59). Notice that (101) is completely
independent of the parameter q.
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4.2.2 The BF theory with a cosmological term

This theory is described by the action

SBF,κ = i 〈B , ∗FA〉+ i
κ

2
〈B , ∗B〉 , (102)

where κ is a coupling constant known as the cosmological constant. The
symmetries are encoded in the following BRST transformations:

sA = dAc + κψ̃, sc = −1
2 [c, c]− κφ̃,

sB = [B, c]− dAψ̃,
sψ̃ = −[ψ̃, c] + dAφ̃, sφ̃ = [φ̃, c].

(103)

Again, s2 is not nilpotent off shell and its failure is given by

s2B = −[FA + κB, φ̃]

(notice that [ψ̃, ψ̃] = 0). The BV action reads

SBV
BF,κ = SBF,κ +

〈
dAc + κψ̃ , A†〉 +

〈
[B, c]− dAψ̃ − 1

2 ∗ [B†, φ̃] , B†〉+

+
〈
−1

2 [c, c]− κφ̃ , c†
〉

+
〈
−[ψ̃, c] + dAφ̃ , ψ̃†

〉
+

〈
[φ̃, c] , φ̃†

〉
+

∑
i

〈
hi , c

†
i

〉
,

(104)
and the only field on which σ acts in a different way is still B. σB is still
given by (98), and its nilpotency is ensured by

σB† = [−B†, c]− ∗(FA + κB).

Quantization in the self-dual gauge The self-dual gauge is defined by
putting B+ = 0 and again is well defined in the same hypotheses of Sec.
(3.2). Its quantum implementation is obtained by (93) with the gauge-fixing
fermion (73) (forgetting of η). The gauge-fixed action then turns out to be

Ss.d. g.f.
BF,κ = −i 〈B− , P−FA〉 − iκ

2 〈B
− , B−〉+

+ i
(
s0ΨYM + κ

〈
ψ̃ , δΨYM

δA

〉
+

〈
h

φ̃1
, D∗

Aψ̃
〉

+ hi
r1

〈
ωi[A] , ψ̃

〉
+

〈
h+

χ , B+
〉

+

+
〈
φ̃1 , ∆Aφ̃

〉
+ r1

irjδij

√
V + κ

〈
φ̃1 , ∗[ψ̃, ∗ψ̃]

〉
+ κ r1

i
〈
ψ̃ , δ

δA

〈
ωi[A] , ψ̃

〉〉
+

+ 1
2

〈
χ+ , [χ+, φ̃]

〉
+

〈
χ+ , DAψ̃

〉 )
,

(105)
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where s0 is s at κ = 0.
Notice that [ψ̃, ψ̃] vanishes, yet [ψ̃, ∗ψ̃] does not. This means that we

have a source in φ̃1; hence, the φ̃1φ̃-integration will produce a term which is
quartic in the ghost variables (vix.,

〈
[χ+,χ+] , ∗GA ∗ [ψ̃, ∗ψ̃]

〉
).

Therefore, differently from the covariant case (100), the BFYM theory
and the BF theory with a cosmological term in the self-dual gauge have
quite different vertices. However, we can still relate their quadratic parts.

Perturbative expansion We consider fluctuations as in (57) with q =√
κ, A0 an anti-self-dual-connection and B0 = −FA0

/κ (notice that this is a
solution of the equations of motion in the self-dual gauge). In this case, the
quadratic action reads

−i
〈
β− , dA0

α
〉

+ i 〈FA0
, α ∧ α〉 − i

2

〈
β− , β−

〉
+ gauge-fixing terms.

By making the change of variables

α′ = e
iπ
4 α, β ′ = e−

iπ
4 β,

we get

− i
〈
(β ′)− , dA0

α′
〉

+ 〈FA0
, α′ ∧ α′〉+ 1

2

〈
(β ′)− , (β ′)−

〉
+ gauge-fixing terms,

(106)
which is exactly the α′β ′ part of (84).

4.2.3 From BFYM to pure BF theory as gYM → 0

We want to find a canonical transformation that lets the symmetries of
BFYM theory become similar to those of BF theory. First we compute

the action of σ on B† in BFYM theory getting

σB† = −[B†, c]− ∗FA +
√

2 gYM dAη − 2g2B.

Then we see that, if we make the change of variables

B → B̃ = B +
1√

2 gYM

∗ [B†, ξ], (107)
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we get

σB̃ = [B̃, c]−dAψ̃−∗[B†, φ̃]+∗[dAη, ξ]+ [[B†, ξ], ξ]−
√

2 gYM ∗ [B̃, ξ]. (108)

The transformation (107) can be obtained as a canonical transformation
generated by

F (Φ,
˜
Φ†) =

∑

i

〈

Φi ,
˜
Φ
†
i

〉

+
1

2
√

2 gYM

〈
˜
B† , ∗[˜B†, ξ]

〉
. (109)

Notice that, on all other fields than B and on all antifields but ξ†, the

transformation is the identity; on ξ† we have

ξ† → ˜
ξ† = ξ† − 1

2
√

2 gYM

∗
[
B†, B†

]
.

Therefore, in the following we will drop all the tildes but on B̃ and
˜
ξ†.

We can now rewrite the BV action for BFYM theory in the new variables:

SBV
BFYM = S̃BFYM +

〈
dAc , A†〉 +

〈
[η, c] + dAξ −

√
2 gYM ψ̃ , η†

〉
+

+
〈
[B̃, c]− dAψ̃ − 1

2 ∗ [B†, φ̃] + ∗[dAη, ξ] , B†〉+

+
〈

1
2 [[B

†, ξ], ξ]−
√

2 gYM ∗ [B̃, ξ] , B†〉+

+
〈
−1

2 [c, c] , c†
〉

+
〈
−[ξ, c] +

√
2 gYM φ̃ , ξ†

〉
+

+
〈
−[ψ̃, c] + dAφ̃ , ψ̃†

〉
+

〈
[φ̃, c] , φ̃†

〉
+

∑
i

〈
hi , c

†
i

〉
,

(110)
where S̃BFYM is the BFYM action evaluated at B̃. Notice that now the BV
action does not have singular terms in the limit g2

YM → 0; moreover, the BV
action is still proper in the limit.

Notice that, if we instead rescaled ξ →
√

2 gYM ξ,
˜
ξ† → ˜

ξ†/(
√

2 gYM)—in
order for the BV transformation (108) of B̃ to become, in the limit g2

YM → 0,
the same as the BV transformation (98) on B in pure BF theory—we would
not get a proper BV action in the limit.

The same problems would be encountered if we decided to rescale also
η →

√
2 gYM η unless we introduced the required new ghosts.
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The partition function of BFYM at gYM = 0 Consider the (gYM = 0)-
BFYM action

SBV,0
BFYM = S̃0

BFYM +
〈
dAc , A†〉 +

〈
[η, c] + dAξ , η†

〉
+

+
〈
[B̃, c]− dAψ̃ − 1

2 ∗ [B†, φ̃] + ∗[dAη, ξ] +
1
2 [[B

†, ξ], ξ] , B†〉+

+
〈
−1

2 [c, c] , c†
〉

+
〈
−[ξ, c] , ξ†

〉
+

+
〈
−[ψ̃, c] + dAφ̃ , ψ̃†

〉
+

〈
[φ̃, c] , φ̃†

〉
+

∑
i

〈
hi , c

†
i

〉
,

(111)
Notice that the equations of motion impose A to be flat. Therefore, to
quantize theory, it is convenient to choose the covariant gauge-fixing fermion
Ψ defined in (48).

After fixing the gauge, we have at our disposal the rescaling ξ → ε ξ, ξ →
ξ/ε. Since the partition function does not depend on the parameter ε, we
can as well let ε→ 0. This way the η, ξ, hξ, ξ fields decouple from the others,
and their contribution to the partition function turns out to be

det ∆(0)
A

(det′∆(1)
A det XA)1/2

.

The B integration then selects the flat connections. The partition function of
BF theory is the analytic torsion which is trivial in even dimension; moreover,
notice that XA = 1 if A is a flat connection. Therefore, we have

ZBFYM|g2
YM

=0 =
∫

A∈M0

det ∆(0)
A

(det′∆(1)
A )1/2

, (112)

where M0 is the moduli space of flat connections.
Notice that YM theory in the limit g2

YM → 0 leads to the same result.

5 Geometry

In this section we discuss the geometrical meaning of the set of fields appear-
ing in (39) and (40) and of the BRST equations (31).17 The situation is as
follows:

17To simplify the notations, we will take
√

2 gYM = 1 throughout this section.
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1. In a topological gauge theory one deals with a connection c on the bun-
dle of gauge orbits A → A/G, considers the corresponding connection
A + c on the G-bundle P ×A and obtain the BRST equations as the
structure equations and Bianchi identities for the curvature of A + c
[4].

2. In a non-topological Yang–Mills theory one considers the fiber immer-
sion jA : G → A and the pulled-back connection j∗Ac. This is just the
Maurer Cartan form on G; the resulting structure equations for the cur-
vature of A+ j∗Ac give the classical BRST equations[6]. It is customary
to use the same symbol c also for the pulled-back connection j∗Ac: in
Yang–Mills theory this is the ghost field.

3. In a full topological theory that includes the field η ∈ Ω1(M, adP ), one
has to consider the tangent bundle TA where there is a (free) action of
the tangent gauge group TG. In complete analogy to point 1. above, one
should consider a connection on TA and explicitly spell the structure
equations and Bianchi identities for the corresponding connection on
the TG-bundle TP × TA.

4. In a semi-topological theory that includes the field η, one should not
follow the analogy of point 2. above, i.e., consider the TG-orbit in TA;
instead one should take into account the pulled-back bundle j∗ATA
where jA : G → A is the fiber immersion. The BRST equations will
then be given as the structure equations and the Bianchi identities for
a curvature on the bundle TP × j∗ATA.

In this way the connection A is allowed to move only in a given G-orbit,
as in the Yang–Mills theory, and the only symmetry that the theory
requires for the field A is gauge invariance. On the contrary, in the
bundle j∗ATA the field η may be any element of Ω1(M, adP ) ≈ TAA;
this means that the symmetries of the theory include the translation
invariance for such an η.

In other words, the theory is topological in one field-direction (η) and
non-topological in another field-direction (A).

The last framework is the one that suits the theory described in this paper.
Another way to see this is to start with the action (30) of the group Gaff
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on pairs (A, η) ∈ TA. Such an action does the required job: it gauge-
transforms A and acts on η by translations. Unfortunately, such an action is
not free, so the quotient space is not a manifold. In order to turn around this
problem, one has to consider exactly the bundle j∗ATA and obtain the BRST
equations in the way mentioned above (point 4.) and discussed in details in
the following pages.

It is exactly in the framework of point 4. discussed above that the field
B ∈ Ω2(M, adP ) can be included in the BRST equations by keeping the
BRST operator nilpotent.

Dealing with the tangent gauge group and with the tangent bundle of the
space of connections means taking first-order approximations. These rela-
tions can be made clearer if we consider paths (straight lines) of connections
on the bundle P I×AI , where AI ≡Map([0, 1],A) and P I is defined similarly.

Finally, in this section we are going to discuss the geometrical aspects of
the gauge-fixing problems of our theory.

5.1 Tangent gauge group

Let P be any G-principal bundle over a closed oriented manifold M . The
tangent bundle TG of any Lie group is a Lie group itself which is isomorphic
to the semidirect product G×s Lie(G) of the Lie group with its Lie algebra.
The product of two pairs (g, x), (h, y) ∈ G×s Lie(G) is defined as

(a, x)(b, y) ≡ (ab, Adb−1(x) + y). (113)

Its Lie algebra is the semi-direct sum of two copies of Lie(G) with commu-
tator

[(x1, y1), (x2, y2)] ≡ ([x1, x2], [x1, y2] + [y1, x2]). (114)

The tangent bundle TP is a TG-principal bundle with base space TM . The
action of TG on TP (obtained as the derivative of the G-action on P ) is
given as follows

TP × TG 5 (p, X)(g, x)⇀ (pg, (Rg)∗X, +i(x)pg) ∈ TP, (115)

where Rg denotes the (right) multiplication by g ∈ G and i(x)p denotes the
fundamental vector field corresponding to x ∈ Lie(G) evaluated at p ∈ P.
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A connection A on P is defined as a Lie(G)-valued one-form on P with
special properties. First of all, we require its equivariance, viz.,

Apg ((Rg)∗X) = Adg−1 (Ap(X)) , X ∈ TpP.

Moreover, we require it to be the identity on fundamental vector fields:

Ap(i(x)p) = x, ∀x ∈ Lie(G).

A smooth map p : [a, b]2 ⊂ IR2 → P, with p(0, 0) = p ∈ P , defines an
element of the double tangent

(

p, p′, ṗ,
dp′

dt

)

∈ TTP,

where (t, s) ∈ [a, b]2 and the prime denotes the derivative w.r.t. s, while the
dot denotes the derivative w.r.t. t.

There is a canonical involution

α : TTP → TTP, α

(

p, p′, ṗ,
dp′

dt

)

=

(

p, ṗ, p′,
dṗ

ds

)

.

Now we consider the evaluation map

ev : A× TP → Lie(G)

and its derivative

ev∗ : TA× TTP → Lie(G)× Lie(G)

which has the following property

Theorem 1 For any (A, η) ∈ TA, the one-form on TP given by

[p]⇀ev∗(A, η;αP [p]) =

(

Ap

(
p′
)

,
d

dt

∣∣∣∣
t=0

Ap(0,t)(p
′(0, t)) + η

(
ṗ
))

(116)

defines a connection on TP .
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For the proof, s. [12]. In this way we can identify the tangent bundle TA as
a subset of the space of connection on TP . It can be seen easily that it is a
proper subset [12].

The gauge group G is the space of equivariant maps

G = MapG(P, G) 5 g⇒g(pa) = a−1g(p)a, ∀a ∈ G.

We have the following:

Theorem 2 The tangent gauge group TG is a proper subgroup of the group
of gauge transformations for TP .

Proof Let (ψ,χ) ∈ G ×s Lie(G). Notice that for any (p, X) ∈ TP and
(g, x) ∈ G×s Lie(G) we have the equation

ψ−1dψ [(pg, (Rg)∗X + i(x)|pg)] =
Adg−1[ψ−1dψ(X)] + x− Adg−1 Adψ−1(p) Adgx.

This shows that the map

(ψ,χ) : TP−→G×s Lie(G)

given by (
ψ(p),ψ−1dψ(p, X) + χ(p)

)
∈ G×s Lie(G)

is a gauge transformation for TP . Notice that the above map is given by the
derivative of the evaluation map ev : P × G → G.

For any one-form η ∈ Ω1(M, adP ) and for any (ψ,χ) ∈ G ×s Lie(G), the
map

(p, X)⇀
(
ψ(p),ψ−1dψ(p, X) + χ(p) + η(p, X)

)

is also a gauge transformation on TP , thus showing that the inclusion TGP ⊂
GTP is proper.

Q.E.D.

In the proof of the previous theorem we showed explicitly that the group
Gaff (the semidirect product of TG with the abelian group Ω1(M, adP )) is
also a subgroup of GTP .
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Remark 1 From the discussion above we conclude that TG acts freely on
TA and this action coincides with the restriction of the action of the gauge
group of TP (GTP ) on the space ATP of connections on TP .

Remark 2 The group Gaff acts non-freely on TA as in (21). The group Gaff

is a subgroup of GTP , but the action (21) is not given by the restriction of
the action of GTP on ATP .

5.2 Paths on a principal bundle

For any manifold X we denote by XI the space of smooths paths Map(I, X)
where I = [0, 1]. If P (M, G) is a principal bundle, the group GI acts freely
on P I and the bundle P I(M I , GI) is a principal bundle.

A path in A ≡ AP defines a connection on P I . In this way we identify
AI with AP I .

There is a natural bundle homomorphism

P I → TP, p(t)⇀ (p(0), ṗ(0)) (117)

which corresponds to the group homomorphism

GI → G×s Lie(G), g(t)⇀
(
g(0), g−1(0)ġ(0)

)
. (118)

Under the homomorphisms (117) and (118), a connection A(t) is sent into(
A(0), Ȧ(0)

)
∈ TA.

If we have a connection c (a.k.a. as a gauge fixing) on the bundle of gauge
orbits A→ A/G, then A + c is a connection on the bundle

P ×A
G 9→ M × A

G . (119)

In fact the one-form on P ×A given by

(A + c)(p,A)(X, η) ≡ A(X)p + c(η)(A,p) (120)

is a connection on P ×A which is G-invariant, i.e., descends to a connection
on the principal G-bundle (119).

Forms on P ×A have a bi-degree (k, s) where k is the order of the form
on P and s is the order of the form on A, a.k.a. the ghost number.
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By taking the tangent bundles of (119) one obtain the bundle

TP × TA
TG

9→ TM × TA
TG

. (121)

By considering the relevant path spaces, one has the bundle

P I ×AI

GI
9→ M I × AI

GI
. (122)

If c(t) is a path of connections in A→ A/G, and A(t) is a path of connections
in A, then a connection on (122) is given by

A(t) + cA(t)(t), (123)

where we have explicitly represented the dependency of the connection c(t)
on the point A(t) ∈ A.

As particular paths we can take straight lines,

A(t) = A + tη, η ∈ Ω1(M, adP ), c(t) = c + tĉ, (124)

where ĉ is an assignment to each connection A ∈ A of a map ĉA : Ω1(M, adP ) 9→
Ω0(M, adP ) with the property of G-equivariance,

ĉAg (Adg−1τ) = Adg−1 (ĉA(τ)) ,

and of tensoriality,
Im (dA) ⊂ ker(ĉA).

In physics, ĉ is an infinitesimal variation of the gauge fixing. It is convenient
to rewrite the connection given by (124) as

A + tη + cA+tη + tĉA+tη = A + cA + t (η + ξA,η) +
+∞∑

n=2

tnξ(n)
A,η. (125)

In the previous expression we have:

1. identified the tangent bundle TA with A × Ω1(M, adP ) [forms on A
can then be evaluated on elements of Ω1(M, adP )];
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2. defined

ξ(n)
A,η(τ) ≡

1

n!

dn

dtn

∣∣∣∣
t=0

cA+tη(τ) +
1

(n− 1)!

d(n−1)

dtn−1

∣∣∣∣
t=0

ĉA+tη(τ), τ ∈ Ω1(M, adP ),

and set ξA,η ≡ ξ(1)
A,η.

As will be shown in a moment, the pair (A + c, η + ξ) can be seen as an
honest connection with values in the Lie algebra of the tangent group TG.

First we notice that an infinite-dimensional version of (1) implies that the
pair (c, ĉ) defines a connection on the TG-bundle TA. Explicitly we have:

Theorem 3 When we identify the double tangent bundle TTA with A ×
Ω1(M, adP )×3, then the connection on TA represented by (c, ĉ) is a map

A×Ω1(M, adP )×3 5 (A, η, τ, σ)⇀ (cA(τ), ξA,η(τ) + cA(σ)) ∈ Lie(G)⊕sLie(G).

Now we look again at the bundles (121) and (122).
Given the natural inclusions

P → TP, p⇀(p, 0), P → P I , p⇀[p(t) = p],

we establish from now on the following

Convention 1 We will generally assume that the forms on TP × TA we
are going to consider are restricted to forms on P × TA and that the forms
on P I ×AI we are going to consider are restricted to forms on P ×AI .

Moreover, we assume

Convention 2 We consider only elements in TTA ≈ A × Ω1(M, adP )×3

that have 0 as fourth component.

We conclude that the Lie(G)-valued form

(A + c, η + ξ), (126)

whose explicit expression is given by

(A + c, η + ξ)p;A,η(X, τ) = (Ap(X) + cA(τ), ηp(X) + ξA,η(τ)) ,

with p ∈ P, X ∈ TpP and (A, η, τ) ∈ A×Ω1(M, adP )×2, represents a connec-
tion on the bundle (121) provided that conventions 1 and 2 are understood.
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5.3 Curvatures

As is customary in topological (cohomological) field theories [4], the BRST
equations are nothing but the structure equations and the Bianchi identities
for the connections of some bundles of fields.

We start by recalling the expression of the curvature of the connection
(120). It is given by

FA + ψ + φ, (127)

where the three terms above are forms of degree (2, 0), (1, 1), (0, 2) in the
product space P ×A, the second number being the ghost number.

More precisely:

1. ψ is minus the projection of Ω1(M, adP ) on the horizontal subspace;

2. φ is the curvature of the connection c on the bundle A→ A/G.

.
The structure equations and the Bianchi identities in this case read

δA = dAc− ψ, δc = −1
2 [c, c] + φ, dAFA = 0,

δψ = dAφ− [ψ, c], δφ = [φ, c] δFA = [F, c]− dAψ,
(128)

where we have denoted by δ the exterior derivative on A, a.k.a. as the BRST
operator. The total derivative for (k, s)-forms on P ×A is given by

dtot = d + (−1)kδ. (129)

The commutator of forms of bidegree (k, s) is assumed to satisfy the equation

[ω(k1,s1)
1 ,ω(k2,s2)

2 ] = (−1)k1k2+s1s2+1[ω(k2,s2)
2 ,ω(k1,s1)

1 ].

In this way the total covariant derivative satisfies the same sign-rule as (129),
namely it is given by dA + (−1)kδc.

Equations (128) are the field equations for the topological field theory
considered in [4].

Next we consider the curvature of (125). It is given by

FA+ψ+φ+t
(
dAη + ψ̃ + φ̃

)
+t2

(
ψ̃(2) + φ̃(2) +

1

2
[η + ξ, η + ξ]

)
+o(t2), (130)
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where the forms ψ̃ and φ̃ are defined as

ψ̃ ≡ dAξ + [η, c]− δη,
ψ̃(2) ≡ dAξ(2),
φ̃ ≡ δξ + [c, ξ].
φ̃(2) ≡ δξ(2) + [c, ξ(2)] = δcξ(2)

(131)

Accordingly the curvature of the connection (126) is given by the first-order
term of (130), i.e., by the Lie(G)⊕s Lie(G)-valued form

(F + ψ + φ, dAη + ψ̃ + φ̃). (132)

The structure equations and the Bianchi identity for (132) and (130) are the
natural generalization of (128). They are spelled out explicitly in [12]. Here
we are concerned with the geometrical interpretation of the BRST equations
considered in Sec. 3, and this requires a restriction to the G-fiber in the
bundle TA→ TA/TG.

5.4 Restriction to the G-fiber

In order to obtain the standard BRST equation from (128), we need to
consider the fiber imbedding

jA : G → A, jA(g) = Ag, (133)

and the pulled-back bundle

P × G → M × G. (134)

The connection A+ c (120) on P ×A is pulled back to (134). It is customary
(and unfortunately confusing) to denote the pulled back connection by the
same symbol A+c. This means that in this case c is just the Maurer–Cartan
form on G. The curvature of the pulled-back connection is simply FA, and
the structure and Bianchi identities become

δA = dAc, δc = −1

2
[c, c], dAFA = 0, δFA = [FA, c]. (135)

These are the standard BRST equation for the Yang–Mills theory and the
connection A + c on (134) gives the geometrical interpretation of the set of
fields and ghosts appearing in (6) [6].

Let us apply now a similar fiber imbedding to the bundle TP ×TA. Two
choices are possible:
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1. consider the fiber imbedding of the full tangent gauge group TG, i.e.,
the bundle: TP × jA,ηTG → TM × jA,ηTG

2. consider only the fiber imbedding (133) and restrict the tangent bundle
TA to the image of jA. This means considering the pulled-back bundle

TP × j∗A(TA)→ TM × j∗A(TA). (136)

The first alternative would lead us to dealing with the Maurer–Cartan form
on TG. But we are in fact interested in the second alternative since we
want the field η to be generic and not restricted to be tangent to the G-
orbit. Hence, from now on, only the second alternative will be considered:
this means that in the connection (A + c, η + ξ) the form c becomes the
Maurer–Cartan form on jA(G).

Taking always into consideration convention 1, the corresponding curva-
ture becomes

(FA, dAη + ψ̃ + φ̃). (137)

The Bianchi and structure equation for (137) are

δA = dAc,
δη = −ψ̃ + dAξ + [η, c],
δFA = [FA, c],
δ(dAη) = −dAψ̃ + [FA, ξ] + [dAη, c],
δc = −1

2 [c, c],
δξ = φ̃− [c, ξ],
δψ̃ = −[ψ̃, c] + dAφ̃,
δφ̃ = [φ̃, c].

(138)

The connection (A + c, η + ξ) for (136) gives the geometrical interpretation
of the set of fields and ghosts appearing in (39) and (40) (but for the field
B).

The analogous construction for the connection (125) implies the following
steps:

1. take the map

j∗A(TA) ≈ G × TAA → AI ,
(g, A, η) ⇀ (A + tη)g;

(139)
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2. pull back the connection (125) to the bundle

P I × G × TAA;

3. consider only constant paths in P I , according to convention 1.

At this point the formal expression of the connection is the same as in (125),
i.e.,

A + c + t (η + ξ) +
+∞∑

n=2

tnξ(n), (140)

but now c is the Maurer–Cartan form.
The relevant curvature is

FA + t
(
dAη + ψ̃ + φ̃

)
+ t2

(
ψ̃(2) + φ̃(2) +

1

2
[η + ξ, η + ξ]

)
+ o(t2). (141)

Computing the structure and Bianchi identities for (141) will give again
(138) and some other transformation laws for the fields ψ̃(n), φ̃(n), ξ̃(n) which
we do not discuss here (s. [12]).

5.5 Including the field B

In four-dimensional BF quantum field theories, the field B behaves like a
curvature but does not depend on the connection. It is then represented by
an element of Ω2(M, adP ).

Now we show that such a field can be incorporated into the field equations
(138). By incorporating we mean that the BRST double complex with oper-
ators (d, δ) can consistently be extended to a double complex with operators
(d, s) that includes the space Ω2(M, adP ) in a such a way that:

1. s extends δ, so that s2 = 0;

2. the gauge equivariance is preserved, and

3. the field equations are preserved.

We use here the same notation of section 2.; viz., we set

B ≡ Ω2(M, adP ),
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and consider the tangent bundle

TB ≈ Ω2(M, adP )× Ω2(M, adP ).

The group TG acts on the cartesian product TA× TB as follows:

(A, η; C, E) · (g, ζ) =
(Ag, Adg−1η + dAgζ ; Adg−1C, Adg−1E + [ Adg−1C, ζ ]) ,

(142)

yielding a principal TG-bundle.
Since the projection A × B 9→ A is a morphism of G-bundles, the con-

nection c on A is also a connection on A × B, and the connection (c, ξ)
[determined by the pair (c, ĉ)] on TA is also a connection on TA× TB.

Moreover, (A + c, η + ξ) is a Lie(TG)-valued connection on the bundle

TP × TA× TB
TG 9→ TM × TA× TB

TG , (143)

where again we intend to apply conventions 1 and 2.
Forms on TP × TA× TB will be characterized by three indices (m, n, p)

which represent the degree with respect to the three spaces TP , TA, TB.
The middle integer n is again the ghost number.

The pair (C, E) ∈ TB is a Lie(TG)-valued (2, 0, 0)-form that is constant
on TA.

If we neglect the forms of degree (m, n, p) with p > 0, we find that,
under the action of the total covariant derivative dtot

(A+c,η+ξ), the pair (C, E)
is transformed into

(dAC + [c, C], dAE + [η, C] + [c, E] + [ξ, C]) ,

where we have used the fact that the pair (C, E) is constant on the space
TA.

Now we are ready to consider the possible extensions of the BRST op-
erator δ to TB that satisfy the requirements 1, 2 and 3 above. In order
to take into account requirement number 2, we have to consider covariant
derivatives, so we set

s(C, E) ≡ ([C, c], [C, ξ] + [E, c]); (144)

i.e., (dA − s)(C, E) coincides, up to forms of positive degree in the TB-
component, with dtot

(A+c,η+ξ)(C, E).
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If the (2, 2, 0) component of

(
dtot

(A+c,η+ξ)

)2
(C, E) = [F(A+c,η+ξ), (C, E)] = ([FA, C], [FA, E]+[dAη+ψ̃+φ̃, C])

(145)
is zero, then we may add to our field-equations (138) the transformations
(144) and obtain a consistent BRST algebra that includes the elements
(C, E) ∈ TB.

It is a matter of simple calculations to check the following

Theorem 4 A consistent BRST algebra that includes pairs (C, E) ∈ TB
and extends (138) is possible only for pairs (0, E) for any E.

If we perform the change of variables

dAη + E = B (146)

and replace δ with s in (138), we obtain the following set of equations:

sA = dAc,
sη = −ψ̃ + dAξ + [η, c],
sFA = [FA, c],
sB = −dAψ̃ + [FA, ξ] + [B, c],
sc = −1

2 [c, c],
sξ = φ̃− [c, ξ],
sψ̃ = −[ψ̃, c] + dAφ̃,
sφ̃ = [φ̃, c],

(147)

which are immediately recognized as the equations (31).
The change of variables (146) implies that B is a tangent vector in TFA

B.
Accordingly its transformation under the group TG is as follows:

B · (g, ζ) = Adg−1B + [FAg , ζ ]. (148)

5.6 Gauge fixing and orbits

The fields of our theory are triples (A, η, B), where (A, η) ∈ TA and B ∈
TFA

B. This space of fields can be described conveniently by means of the
curvature map

K : A→ A× B, K(A) = (A, FA), (149)
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which descends to a map

K :
A
G
→ A× B

G
.

The space of fields [i.e., the set of triples (A, η, B)] coincides then with the
set of elements of the pulled-back bundle

K∗(TA× TB).

By taking into account the TG-invariance, the space of orbits of the theory
is given by

K∗(TA× TB)

TG ≈ K∗(HA× TB)

G , (150)

where by HA we denote the bundle of horizontal tangent vectors of TA with
respect to a given connection on A → (A/G). The above diffeomorphism is
induced by the linear map

[A, η, B]TG ⇀ [A, ηH , B − dAη
V ]G,

where the superscript H and V denote the horizontal and vertical component.
The general Gaff -invariance of the action (27) implies the following further

translational invariance:

K∗(HA× TB) 5 (A, η, B)⇀(A, η + τ, B − dAτ), τ ∈ HA. (151)

Relatively to this translational invariance, two different gauges are possi-
ble:

1. η = 0;

2. B ⊥ dA(HA); i.e., d∗
AB ∈ Im(dA).

We can therefore identify the space of gauge-fixed fields as

K∗
2TB
G ≈

(
HA. Harm1

A(M, adP )
)
⊕ B̂

G , (152)

where K2 : A → B denotes the second component of K, and B̂ is a vector
bundle over A defined by:

B̂A ≡ {B ∈ Ω2(M, adP ) | d∗
AB ∈ Im(dA)}.
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Let us finally come to the self-dual gauge. Here we consider the operator
DA : HA→ Ω(2,+)(M, adP ) [s. (61)], and assume the following condition:

Im(DA) = Ω(2,+)(M, adP ). (153)

We know that (153) is satisfied when A is an anti-self-dual connection.
By the same argument discussed in subsec. (3.2), we conclude that, if A is
a connection such that (153) is satisfied, then there is a neighborhood of A
in which the same condition is satisfied as well; so the set of connections for
which (153) is satisfied is an open set.

On such an open set there is another way of fixing the translational in-
variance (151). If we set

B+ = 0⇔B ∈ Ω(2,−)(M, adP )⇔B ⊥ Ω(2,+)(M, adP ), (154)

then τ ∈ HA is determined only up to elements in H̃arm
1

A(M, adP ). We can
then conclude that the space of gauge-fixed fields can, in a neighborhood of
an anti-self-dual connection, be given by

K∗
2TB
G ≈

(
HA. H̃arm

1

A(M, adP )
)
⊕ Ω(2,−)(M, adP )

G . (155)

6 Conclusions

In this paper we have discussed the possibility of describing YM theory in
terms of a theory that shares many characteristics with the topological field
theories (of the BF type).

The first step, Sec. 2, has been considering the first-order formulation of
YM theory with the addition of an extra field to be gauged away. The re-
sulting theory (27), which we call BFYM theory, shows a formal resemblance
with pure BF theory as the coupling constant vanishes.

In Sec. 3, we have shown that BFYM theory is indeed equivalent to YM
theory. Our proof is an explicit path-integral computation performed with
three different (but equivalent) gauge fixings: the trivial, the covariant and
the self-dual. The most interesting result is that perturbation theory in
the last two gauges can be organized in a different way than in the second-
order YM theory and explicitly shows the propagators of the topological BF
theories.
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In Sec. 4, after recalling some basic facts on the BV formalism, we have
given a brief description of the BV quantization of the BF theories. More-
over, we have shown that BFYM theory can be formulated in a canonically
equivalent way so that the limit for vanishing coupling is well-defined and
yields the pure BF theory plus a covariant kinetic term for the extra field.

Finally, in Sec. 5, we have described the geometric structure of BFYM
theory and have explicitly shown how to deal with the non-freedom of the
action of the symmetry group on the space of fields.

We conclude by recalling that one of the reasons for considering BFYM
theory (and looking for its underlying topological properties) is the possibility
of introducing new observables that might realize ‘t Hooft’s picture; but this
will be discussed elsewhere.
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A Computation of the Pfaffian of M

When studying BFYM theory in the self-dual gauge, we needed to compute
the Pfaffian of the matrix M defined in (75). By a well known algebraic
identity,

(PfM)2 = det M ;

therefore,
(PfM)4 = det M2.

An explicit computation using (65) and the last line of (63) yields

M2 = −




∆̃′

A 0 0
0

√
V 1 0

0 0 N



 ,

with

N =

(
1
2∆̃A DADA

D∗
AD∗

A ∆̃A

)
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acting on Ω(2,+)(M, adP )⊗ Ω0(M, adP ). Up to a possible irrelevant phase,

the determinant of M2 is equal to the product V m−/2 det′∆̃(1)
A det N . An

explicit computation yields

det N = det(∆̃(2)
A /2) det(∆̃(0)

A − RA),

with
RA = D∗

AD∗
A2G̃ADADA : Ω0(M, adP )→ Ω0(M, adP ).

To simplify RA, we notice that

2G̃ADA : Ω1(M, adP )→ Ω(2,+)(M, adP )

is the inverse of D∗
A on its image; more precisely, we have

D∗
A2G̃ADA = πcoker(DA),

which implies (77).
Moreover, by the last line of (63), we have

det(∆̃(2)
A /2) = det(∆(2,+)

A ).

Putting together all the pieces, we finally get (76).

B Some useful properties of the operator DA

In Sec. 3.2, we have introduced the operator DA. This operator is an in-
jection from the zero- to the one-forms since A is irreducible. Moreover,
we have supposed to work in a neighborhood N ′ of the space of anti-self-
dual connections where DA is also a surjection from the one- to the self-dual
two-forms.

These two properties are enough to prove a series of facts which were used
in Sec. 3.2 to prove the equivalence between YM theory and BFYM theory
in the self-dual gauge.

In subsection B.1 we will prove these facts in general; in subsection B.2
we will specialize to our case.
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B.1 The general case

Let us consider three (finite-dimensional) vector spaces X, Y and Z together
with an injective linear operator

p : X → Y (156)

and a surjective linear operator

q : Y → Z. (157)

Moreover, we assume ker q
⋂

ker p∗ = {0}.
Then we introduce the Laplace operators

∆X = p∗p,
∆Y = pp∗ + q∗q,
∆Z = qq∗.

(158)

With our hypotheses, these operators are invertible; we will denote by G∗
their inverse.

Now we have the following:

Theorem 5 If qp = 0, then

1. 0→ X
p→ Y

q→ Z → 0 is an exact sequence, and

2.

det ∆X det ∆Z

det ∆Y
= 1.

Proof Fact 1 just follows from the definition of exact sequence. For fact 2,
write

Y = Y1 ⊕ Y2,

with
Y1 = Im p = ker q, Y2 = Im q∗ = coker q.

∆Y is block diagonal with respect to this decomposition, so det ∆Y = det ∆Y1
det ∆Y2

,
with

∆Y1
= pp∗ : Y1 → Y1,

∆Y2
= q∗q : Y2 → Y2.
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Moreover, Y1 (Y2) is isomorphic to X (Z), and p and p∗ (q∗ and q) are
invertible operators when restricted to this space. It follows that

det ∆Y1
= det ∆X , det ∆Y2

= det ∆Z .

Q.E.D.

If pq 3= 0, we cannot identify ker q with Im p. We can however reduce to
the preceding situation by defining

p̄ = Hp : X → Y, (159)

where H is the projection operator

H = 1− q∗GZq : Y → Y. (160)

Since qH = 0, we get qp̄ = 0. We will then define

∆̄X = p̄∗p̄,
∆̄Y = p̄p̄∗ + q∗q.

(161)

Then we have the following

Corollary 1 If p̄ is injective and q is surjective, then

det ∆̄X det ∆Z

det ∆̄Y
= 1.

This corollary can however be refined to give the following

Theorem 6 If ∆̄X is invertible and q is surjective, then

det ∆̄X det ∆Z

det ∆Y
= 1.
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Proof First of all we notice that “p̄ injective” is equivalent to “∆̄X invert-
ible.”

Then we proceed as in the proof of Thm. 5 and split Y as

Y = Y1 ⊕ Y2,

where Ȳ1 = ker q and Y2 = coker q. Notice that HY2 = {0} and H|Y1
= 1, so

ker H = Y2.
The Laplace operator ∆̄Y is block diagonal with respect to the above

decomposition of Y . Therefore,

det ∆̄Y = detY1
(pp∗) detY2

(q∗q).

The Laplace operator ∆Y is not block diagonal but has the following form
with respect to the above decomposition:

∆Y =

(
pp∗ pp∗

pp∗ pp∗ + q∗q

)

.

By subtracting the first from the second row, we get

det ∆Y = det

(
pp∗ pp∗

0 q∗q

)

= det ∆̄Y .

Q.E.D.

Remark The condition that p̄ is injective is equivalent to Im p
⋂

coker q =
{0} (supposing that p is injective). If pq = 0, then this condition is immediate
since in this case Im p = ker q.

A dual way of solving the problem is to define

q̃ = qK : Y → Z (162)

with
K = 1− pGxp

∗ : Y → Y. (163)

In this case, we get q̃p = 0. We can then define ∆̃Z = q̃q̃∗ and have a theorem
analogous to Thm. 6.

We summarize the previous results, and some more, in the following
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Theorem 7 If p is injective and q is surjective, then

1. ∆̄X is invertible if and only if ∆̃Z is, or, equivalently, if and only if
Im p

⋂
coker q = Im q∗

⋂
coker p∗ = {0}.

2. If any one is invertible then

a.
det ∆̄X det ∆Z

det ∆Y
=

det ∆X det ∆̃Z

det ∆Y
= 1;

b. the operators
ξ = p∗GY p : X → X,
ζ = qGY q∗ : Z → Z

are identity operators;

c. the operators

ξ̂ = p∗GY q∗qGY p : X → X,
ζ̂ = qGY pp∗GY q∗ : Z → Z

are null operators.

Notice that if pq = 0 statements 2b. and 2c. follow trivially from the commu-
tativity of p and q with the Laplace operators. The remarkable fact is that
ξ = ζ = 1 and ξ̂ = ζ̂ = 0 even without this condition.

Proof To prove 1. we notice that ∆̃Z is invertible if and only if q̃∗ is injec-
tive, i.e., if and only Im q∗

⋂
coker p∗ = {0} (supposing q∗ injective). Since

Im p = coker p∗ and Im q∗ = coker q, the last condition turns out to be
Im p

⋂
coker q = {0} which is equivalent to the invertibility condition for ∆̄X

(s. the preceding remark).

Statement 2a. follows from Thm. 6 after exchanging X with Z and p
with q∗. By the way, either numerator is equal to the determinant of the
operator (

∆Z qp
p∗q∗ ∆X

)

: Z ⊗X → Z ⊗X.
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To prove 2b., first of all we notice that we have the commutation rules:

p ∆X −∆Y q = −q∗qp,
q ∆Y −∆Z q = qpp∗,

together with their conjugates

∆X p∗ − p∗ ∆Y = −p∗q∗q,
∆Y q∗ − q∗ ∆Z = pp∗q∗.

Now we multiply the above relations by G∗ both from the left and from the
right getting

p GX −GY q = GY q∗qpGX ,
q GY −GZ q = −GZqpp∗GY ,
GX p∗ − p∗ GY = GXp∗q∗qGY ,
GY q∗ − q∗ GZ = −GY pp∗q∗GZ .

(164)

Using the third relation of (164), we can write

ξ = 1−GXp∗q∗qGY p.

Then we use the second relation of (164) and obtain

ξ = 1−GXR + GXRξ,

where
R = p∗q∗GZqp.

Finally, we notice that
∆̄X = ∆X − R.

Applying ∆X to the last formula for ξ, we get

∆̄Xξ = ∆̄X .

If ∆̄X is invertible, this implies ξ = 1.
A dual proof shows that ζ = 1 when ∆̃Z is invertible.
To prove 2c., we use the fourth relation of (164) and obtain

ξ̂ = (1− ξ)p∗q∗GZqGY p = 0.

A dual proof shows that ζ̂ = 0.

Q.E.D.
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The infinite-dimensional case If X, Y and Z are (infinite-dimensional)
Hilbert spaces, all the previous theorems hold if we add the hypothesis that p
and q have elliptic Laplacians. In this case, by Hodge’s theorem, the spectra
of the Laplace operators are discrete, the eigenspaces are finite-dimensional
and each Hilbert space is the direct sum of these eigenspaces. Therefore, we
can use the ζ-function regularization. Namely, if we denote by λ the eigen-
values of a Laplace operator ∆ and by dλ the dimension of the corresponding
eigenspace, the ζ-function is defined as

ζs(∆) = Tr ∆−s =
∑

λ

λ−sdλ

for s large enough and then analytically extended. The regularized determi-
nant is then defined as

det ∆ := exp[−ζ ′0(∆)].

The proof of Thm. 5 can be refined by showing that p is an isomorphism
between each eigenspace of ∆X and each eigenspace of ∆Y1

. This is essentially
due to the fact that p∆X = ∆Y1

p and to the assumption that there are no zero
eigenvalues. Therefore, ζs(∆X) = ζs(∆Y1

) for all s. By similar considerations
on ∆Y2

and ∆Z , we get finally

ζs(∆X)− ζs(∆Y ) + ζs(∆Z) = 0, ∀s.

Deriving with respect to s and setting s = 0 yields (the logarithm of) the
required formula.

B.2 Our case

To apply the previous analysis to our case, we set

X = Ω0(M, adP ),

Y = Ω1(M, adP ). H̃arm
1

A(M, adP ),
Z = Ω(2,+)(M, adP ).

The operators p and q correspond to the operator DA. With these definitions
we have

∆X = ∆(0)
A ,

∆Y = ∆̃(1)
A ,

∆Z = ∆(2,+)
A ,
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Moreover,
∆̄X = ∆̂(0)

A ,
ξ = X̃A,
ζ = Z̃A,
ζ̂ = ẐA,

where the operators on the r.h.s. are defined in (78), (79) and (80).
Recall that, by the definition of N ′, (Im D∗

A

⋂
coker D∗

A)
⋂

Ω1(M, adP ) =

{0} if A ∈ N ′. Therefore, by statement 1. of Thm. 7, ∆̂(0)
A is invertible.

Then, by statements 2b. and 2c. of Thm. 7 we see that

X̃A = 1, Z̃A = 1, ẐA = 0; (165)

finally, by statement 2a., we have

J [A] = 1, (166)

with J [A] defined in (81).
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