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Abstract

With the exception of gravitation, the known fundamental interac-
tions of Nature are mediated by gauge fields. A comparison of the candi-
date groups for a gauge theory possibly describing gravitation favours the
Poincaré group as the obvious choice. This theory gives Einstein’s equa-
tions in a particular case, and Newton’s law in the static non-relativistic
limit, being seemingly sound at the classical level. But it comes out that
it is not quantizable. The usual procedure of adding counterterms to
make it a consistent and renormalizable theory leads to two possible the-
ories, one for each of the two de Sitter groups, SO(4,1) and SO(3,2). The
consequences of changing from the Poincaré to the de Sitter group, as
well as the positive aspects, perspectives and drawbacks of the resulting
theory are discussed.

1 Introduction

General Relativity is the widely accepted theory of gravitation. Besides its
consistency and beauty, it has accumulated an impressive amount of experi-
mental successes, which seems to establish its validity beyond any possibility
of doubt. It was submitted to a very heavy attack some years ago [1], to
which followed an equally passionate defense [2]. But the debate was, curi-
ously enough, restricted to the soviet community. Independently of the hard
core of the subject, on which we shall not take position here, it is undeniable
that such controversies are highly to be praised. No theory can be accepted
as eternal, or incapable of improvement and any honest, good-willed attack
is always healthy. A consequence of the polemics has been a reapraisal of
the accepted theory by its very supporters, which was a very positive point.
Some weak points, well known to experts, have become of widespread knowl-
edge. Even true believers of a theory accept that alternative models help its
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understanding and provide references for experimental improvements. Some
alternative theories of the past (Brans-Dicke, for example) have played such a
”sparring” role.

Are there additional reasons to look for alternative theories? From the
experimental point of view, there is none. General Relativity has an impressive
record of experimental successes. We could estimate that it has been verified,
in those cases in which it was possible, to around 0.1%. This is far less precise
than the analogous score for some other interactions, but experiments are
exceedingly difficult. From the theoretical point of view, there is no imperative,
compeling reason. There are a few reasons nevertheless.

Some theoretical defects of General Relativity sprang out in the controversy
alluded to. To start with, let us talk of two of them. First, in order to
have things well-defined, even the gravitational field should be asymptotically
vanishing. This means that, in particular, the space sector of spacetime should
be asymptotically flat and would lead to trouble with one of the two favoured
universe models of Cosmology: it would be consistent with the open Friedmann
universe, but not with the closed Friedmann universe. A second difficulty is
that General Relativity is not really a field theory. The argument runs as
follows: when talking about a field, we must be able to say where it is. The
usual means for that is to calculate its energy density: the field is there where
the energy density is different from zero. General Relativity attributes no
well-defined energy density to the gravitational field. It is true however that
an analogous difficulty is present in gauge theories. There, also the ”charge”
density of the gauge field is ill-defined. Thus, for example, the color density
of the gluon field has no physical meaning. Energy (the energy-momentum
tensor) is the ”charge” for gravitation and, just as for the gauge charges in
general, only the total charge of gauge field plus source fields has a covariant
meaning [3]. There is also the possibility of interpreting General Relativity as
a metric field supperposed to a Minkowski background. This would not change
the problem of the energy, but would make it still more similar to the gauge
charge problem. By the way, a frequent argument against General Relativity
is that the energy-momentum tensor is the Noether current for translations,
and that the remaining local symmetries of spacetime (that is, the Lorentz
transformations) are not contemplated.

There are a number of further arguments against General Relativity. A
very common one, which is weak to the point of being almost wrong, would
run more or less as follows: the desired goal is an unified theory, and this would
require similar theories. Well, amongst the 4 interactions nowadays taken as
fundamental, the electromagnetic and weak interactions are described by the
Weinberg-Salam gauge model, and the strong interactions are described by
the SU(3) gauge chromodynamics. And these theories are also very succesful!
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Only gravitation stays apart from the 3 gauge-ruled interactions. It should
then, unification oblige, have also a gauge formulation. Now, the truth is that
unification can be conceived even if gravitation remains different. In this case,
there are two possibilities: (i) it remains different, but it is quantizable, or
(ii) it is so different that it is not quantizable. A favorite possibility of the
last type is ”induced gravitation” in the sense of Zeldovich and Sakharov [4],
which conceives gravitation as a kind of elastic property of spacetime, coming
from the vacua of the other interactions. It would be necessary, in order to
support this idea, to show that such vacua do induce a curvature on spacetime.
Unfortunately, despite gigantic efforts, this has not been shown up to now.
This vision of gravitation as an effective interaction would allow it to remain
different from the other and, furthermore, to remain essentially classical.

The very success of General Relativity, on the other hand, teaches two
important things to those in search of alternative models: (i) of course, the
alternative model should give the same well-verified results, and (ii) gravita-
tion does exhibit a privileged relationship to spacetime. All this has led to
two main kinds of alternative models. The first one is the higher-order cur-
vature Lagrangians, like L = R + R2. The differences with respect to the
Lagrangian R are known of old [5], but are not observable with present-day
resources. Though improving renormalization, these Lagrangians require suc-
cessive addition of terms (called counterterms) to account for divergences at
higher perturbation orders. This means that we should have actually some-
thing like L = R+R2 +R3 +R4 + . . . . And here we notice that we work with
a beloved prejudice, whose main justification lies in simplicity: we suppose
the Lagrangian to be a polynomial in the field and their derivatives. Why
not things like L = 1/(1 − R), for example? Non-polynomial Lagrangians
have been fashionable in the seventies, but seem to have been abandoned by
now. The second kind of alternative models is super- gravity [6], which adds
a particle of opposite statistics to each known particle, as well as improves
renormalizability for the lower order perturbative graphs, but fails at higher
orders. There is still another point of view: since gravitation is different, let
us quantize it differently! This is the banner of the so called ”Quantum Grav-
ity” scheme. Recently, Ashtekhar proposed another approach [7], a version
of the Hamiltonian formalism in which the gravitational variables appear as
gauge variables, with the advantage that some of the gauge constraints are
automatically satisfied.

We go now to the main point of our paper. There is another frequent argu-
ment, which is wrong but is relevant because it calls attention to an important
point: the incompatibility of General Relativity with quantum requirements.
It is attributed to Bohr and Rosenfeld the statement: every field must be quan-
tized, since otherwise it would be possible to violate the uncertainty principle.
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This is a rather loose version of what is really said in the famous Bohr- Rosen-
feld paper [8]. As Rosenfeld himself pointed out [9], the arguments, there
applied to the electromagnetic field, do not apply to gravitation. Whether
gravitation is to be quantized or not, the answer is to be given by experiment.

The fact remains, however, that General Relativity is not (at least pertur-
batively) renormalizable. Supported on their natural affinity to renormaliza-
tion, a large number of gauge models for gravitation have been proposed. Our
intention here will be to present the case for one of them, the Gravitational
de Sitter Gauge Model. Because the subject is very wide [10], we shall be a
bit näıve and adopt a rather assertive style, even at the risk of seeming dog-
matic. In broad brushstrokes, the case is summed up in the following points:
(i) gravitation is deeply related to spacetime itself, much more so than other
nowadays known interactions; (ii) gauge theories describe suitably the other
interactions and, despite the above discussion about the weakness of this ar-
gument, it seems natural for us to look for alternatives inspired by the gauge
scheme; (iii) the natural group to be considered is the Poincaré group; (iv) a
gauge theory for the Poincaré group is plagued with a deadly illness: it has no
action functional; (v) if ”quantized” in a way that dispenses with the action
functional, it has no well-defined vertices, a problem that can be solved by a
method inspired by renormalization theory, that is, by the addition of coun-
terterms; (vi) once this is done, the resulting theory is non-renormalizable at
first, but addition of new counterterms turn it into a renormalizable theory;
(vii) the resulting model, once the counterterms have been added, is a gauge
theory for one of the de Sitter groups. The gauge theory for a de Sitter group
appears consequently as a smoothed, renormalizable Poincaré gauge theory.

As the crux of the problem lies in the question of renormalizability, we
start by a brief discussion of the subject in section 2. Dimensional considera-
tions lead to one of the main arguments favoring de Sitter gauge theories: it is
very difficult to conceive a renormalizable theory with the energy-momentum
as source current. With the exception of gravitation, the known fundamen-
tal interactions of Nature are mediated by gauge fields. The general, for-
mal characteristics of gauge theories are summed up in section 3, followed by
a comparison of the candidate groups for a gauge gravitation theory. The
Poincaré group comes out as the obvious choice. We consequently analyse the
gauge theory for the Poincaré group in the following section, together with a
short discussion of the bundle of linear frames which appears as the geometric
background. The theory gives Einstein’s equations in a particular case, and
Newton’s law in the static non-relativistic limit, being seemingly sound at the
classical level. But it comes out that it is not quantizable. As described in sec-
tion 5, the procedure of adding counterterms to make it into a consistent and
renormalizable theory leads to two possible theories, one for each of the two de
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Sitter groups, SO(4,1) and SO(3,2). The consequences of changing from the
Poincaré to the de Sitter group, as well as the positive aspects, perspectives
and drawbacks of the resulting theory, are outlined in the final section.

2 Renormalizability

A theory which does not bow to the renormalizability requirement is unac-
ceptable from the quantum point of view: it will attribute infinite values to
finite quantities. There seems to be theories which are renormalizable even
if not perturbatively so, but this is too involved a subject to be considered
here. We speak here of perturbative, order by order renormalizability. This
is a very restrictive condition. Amongst all the polynomial models, there are
only three types of renormalizable theories:
(1) scalar theories with interaction term of type λφ4;
(2) scalar-fermion interactions of Yukawa type: gΨ̄Ψφ for scalars and gΨ̄γ5Ψφ
for pseudo-scalars;
(3) minimal coupling as given by gauge theories for reasonable groups (like
SU(N) and SO(N)).
An essential characteristic coming out from the detailed examination of the
problem is embodied in a simple rule-of-thumb: in order that the theory be
renormalizable, the coupling constants must be non-dimensional.

Elementary dimensional analysis is of help here. One uses a system of
units in which h̄ = c = 1, that is, they are non-dimensional: [h̄] = [c] = 0.
One counts the dimension in terms of the mass: [m] = 1. This means that
some usual quantities have dimensions like [∂µ] = [E] = [T−1] = [L−1] = 1.
Comparing the different terms in the free Lagrangians, one finds that the
main fields have the following dimensions: bosons, [φ] = [Aµ] = 1; fermions,
[Ψ] = [Ψ̄] = 3/2; field strengths of gauge theories, [Fµν ] = 2. A very general
result is that all Noether source currents have [J ] = 3.

A disturbing fact appears in General Relativity, in which the Noether
source current has dimension [Tµν ] = [E/V ] = 4. This is clearly related to
the fact that the usual transformation generators are dimensionless, except
those of translations, which have [∂µ] = 1. It is true that also the dimensions
of the basic fields are anomalous in General Relativity: [R] = 2 is a correct
field strength, but the metric gµν has [gµν ] = 0! The final trouble comes really
from the energy-momentum ”irregularity”: the coupling constant k is seen,
from [Rµν ] ∼ k[Tµν ], to have dimension [k] = −2. The source current, being
the Noether current associated to translations, enforces a non-vanishing di-
mension for the coupling constant k in General Relativity. It is anyhow hard
to imagine a renormalizable theory with the energy-momentum as source cur-
rent, which is itself a non-renormalizable tensor. In the perturbative series,
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each term contains Feynman integrals in the momenta and must be dimen-
sionless. Each vertex produces a factor f , here with [f ] = [L2]. In order
to compensate this dimension, some factor p2 turns up in the integrand and
the terms become more and more divergent as the order of perturbation in-
creases [11]. The measure of divergence is given by the superficial degree of
divergence ŵv for each vertex, which is given by ŵv = δv +(3/2)fv + bv, where
δv is the number of derivatives in the internal lines incident at the vertex v, fv

is the number of incident fermion lines, and bv is the number of boson lines.
If, for all vertices, ŵv > 4, the theory is non-renormalizable; if, for all vertices,
ŵv ≤ 4, then the theory is renormalizable; if, for all vertices, ŵv < 4, the theory
is super-renormalizable. It turns out that renormalizability may be checked
by inspection of the interaction terms in the Lagrangian. In last resort, what
happens is that the constants in the Lagrangian are corrected order by order.
One says then that the infinities are absorbed in the constants. These con-
stants include the wavefunction normalizations, the masses, and the coupling
constants. If they are enough to absorb all the infinities, the theory is renor-
malizable. Actually, if we find that a given theory is non-renormalizable, it can
eventually be ”repaired”: it may happen that it becomes renormalizable once
one or more terms (”counterterms”) are added to the primitive Lagrangian.
The theory is renormalizable when the number of necessary counterterms is
finite. The physical starting Lagrangian must contain all the necessary coun-
terterms.

Let us look at the simplest example, the electrodynamics of mesons (such
as π+ and π− mesons). The free Lagrangian density would be

L = −∂µφ
∗∂µφ + mφφ∗ −

1

4
FµνFµν .

The interaction is added through the gauge prescription, by which ordinary
derivatives are replaced by covariant ones: ∂µ → ∂µ − ieAµ. The Lagrangian
density becomes

L = −[∂µ + ieAµ]φ∗[∂µ − ieAµ]φ + mφφ∗ −
1

4
FµνFµν .

We then proceed to obtain the quantized, renormalized theory. A strange thing
happens then: a theory as above is not consistent. In order to renormalize
the graphs with four external meson legs and internal photon loops, it is
necessary to add a counterterm +λ|φφ∗|2 to the above Lagrangian. This is
why one always starts with the meson Lagrangian with the term λφ4: one
knows it will be necessary. It is a fascinating point that, in order to interact
correctly through the exchange of photons, the mesons are forced to interact
also between themselves, and in that particular prescribed way.

What happens in General Relativity is that new counterterms must be
added at each order in perturbation, so that actually an infinite number of
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counterterms is required for the whole perturbative series. And, we repeat,
this trouble comes from the ”irregular” dimension of the energy-momentum
tensor. A fact which, by the way, suggests that any theory with this tensor as a
source will have the same kind of problem. Notice that some people argue that
non-renormalizability may ultimately be a good thing for General Relativity.
The requirements of field theory supposes Minkowski space at arbitrarily short
distances, but there could be a natural cut-off given by the Planck scale [12].

Notice that no interaction mediated by a vector meson is renormalizable
unless the meson is a gauge boson. In this case, the gauge symmetry may
be spontaneously broken, so as to endow the intermediate bosons with mass
while preserving renormalizability. All that said, it seems reasonable, when
looking for alternative theories for gravitation, to go after a gauge model,
knowing nevertheless that that model should have a privileged relationship to
spacetime.

3 Gauge theories

What finally makes gauge theories [13] so especial? They have some really
nice properties:
(i) they embody an automatic prescription for taking symmetries into account.
But attention: such symmetries are particle-classifying, the elementary parti-
cles are placed in multiplets of the symmetry group;
(ii) they have a natural affinity with renormalization; as said above, this is a
real ace!
(iii) they have a very rigid structure, basically geometrical in character; they
possess much more symmetry than that included in the gauge group: duality
symmetry, conformal symmetry, BRST symmetry, etc.

Given a classifying group G (a group in whose multiplets the elementary
particles can be coherently accommodated) with Lie algebra G′ generated by
operators Ja satisfying [Ja, Jb] = f c

abJc, the gauge potential will have the
form Aµ = JaAa

µ, and the field strength will be Fµν = JaF a
µν = Ja(∂µAa

ν −
∂νAa

µ + fa
bcAb

µAc
ν). We know perfectly the geometry behind it: A is a

connection and F is its curvature, satisfying automatically the Bianchi identity
(

δa
c∂µ + fa

bcA
b
µ

)

F̃ cµν = 0 ,

where F̃ c
µν = 1

2
εµνρσF cρσ is the dual of F . A change of gauge is a trans-

formation A → A′ = U(A + d)U−1, leading to F ′ = dA′ + A′ ∧ A′ =
U(dA + A ∧ A)U−1 = UFU−1. The field strength F , whose components
are the measurable quantities, is covariant under gauge transformations. This
means that they have, as they should, a covariant physical meaning. The basic
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dynamics is given by the Yang-Mills equation
(

δa
c∂µ + fa

bcA
b
µ

)

F cµν = Jaν ,

where Jaν is the source Noether current. Given the structure constants fa
bc

of the group, one can always write directly the field equations, one for each
group generator. We profit here to make it clear what we mean by a gauge
theory: it is a theory whose basic dynamics is governed by the Yang-Mills field
equations.

In the sourceless case, Jaν = 0, the Yang-Mills equation is just the ex-
pression of the Bianchi identity written for the dual of F . This is the duality
symmetry. Both equations are invariant if we change the space time metric
gµν by multiplying it by a function: gµν → f(x)gµν . This is the conformal
symmetry, deeply related to the renormalizability of the theory. This is of
course no place for a detailed exposition of gauge theories. We only quote
these items to give an idea of how rigid they are, so much so that you cannot
change anything without breaking the whole structure and losing their good
properties. The background structure [14] is well-known: its a principal fiber
bundle, with spacetime as the base space and the gauge group as the fiber.
The bundle space is locally a direct product of spacetime by the group. The
connection A takes vector fields on the bundle space into the Lie algebra of the
gauge group. It represents the field mediating the interaction between source
fields.

Each source field is in an associated bundle, structure similar to the prin-
cipal bundles but with a representation (a multiplet to which the source field
belongs) replacing the group. There are in principle infinite connections on
each bundle, amongst which the Yang-Mills equation, with suitable bound-
ary conditions, chooses one. This fixes the gauge field of the problem under
consideration.

An important question is related to another dear prejudice: universality.
Though experimental evidence is still lacking, there is a widespread belief that
gravitation concerns all elementary particles. There would be no particle that
does not feel gravitation. The fact that the Poincaré group classifies all the
elementary particles is not enough to ensure such property. Given a gauge
model, particles insensible to the field are classified in the singlet represen-
tations, which are one-dimensional and whose dynamics will automatically
”vanish”. Scalar fields are singlets of the Lorentz group, though not of the
translation group. This is one reason for the importance of translations —
they would ”explain” universality. But there is another origin for universality,
holding for any group acting on spacetime: the so called kinematic repre-
sentations [15]. All these groups have a representation in terms of vector
fields (that is, derivatives) on spacetime, which act through the arguments of
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the wavefunctions. This is true for translations, rotations, boosts, conformal
transformations, and dilatations. Given any Lie group, it is an easy task to
build up a formal gauge theory by writing down the corresponding Yang-Mills
equations. The presence of these kinematic representations, however, changes
the scheme a lot. And they will, we repeat, be at work for any group acting
on spacetime.

There will be another, deep problem concerning gravitation and gauge
theories. The latter have mediating fields of spin 1. The interaction will
consequently reverse sign when one of the interacting particles is changed into
its antiparticle [16]. This affects another beloved prejudice: that matter and
antimatter have the same, attractive, gravitational interaction. We shall see
later how this problem may come to be circumvented.

The arguments listed above support the idea that, if we are to look for an
alternative theory of the gauge type [17], a group classifying the elementary
particles must be involved, which should be intimately related to spacetime
itself. Let us then briefly review the main groups acting on spacetime:
(i) the conformal group: it is deeply related to the causality structure [18], as it
contains the transformations preserving the light cones; it should be somehow
broken, as its representations can only accommodate particles of vanishing
masses; in other words, it does not really classify the known elementary par-
ticles;
(ii) the de Sitter groups: we will come back to them later;
(iii) the Lorentz group: it has been studied by Yang [19], Camenzind [20],
Carmeli [21], and many others; it does not really classify the elementary par-
ticles — it would account for spin but leaves momentum out of the game;
(iv) Poincaré group [22]: it classifies the elementary particles, giving them
both spin and momentum; it has a very clear relationship with spacetime, and
is the obvious natural candidate; it is however a non-semisimple group and we
shall see that this leads to a lot of trouble;
(v) the translation group: in certain aspects, it has been used [23] to rephrase
General Relativity, but it does not classify the particles — it takes only mo-
mentum into account.

Thus, the Poincaré group, which is both the classifying group in what
concerns spacetime and the basic local group of Physics, appears as the natural
candidate for a gauge model for gravitation. Indeed, it has been the most
studied group [24], and we shall use it as the starting point of our analysis. It
will have apparently unsolvable problems with quantization. Actually the best
argument for the de Sitter group is that it comes out of the whole analysis as
the ”corrected” Poincaré group, in a sense to be made clear in the following.
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4 The Poincaré group

We have been saying that gauge theories have as background a principal fiber
bundle, with gauge group as the fiber and spacetime as the base space. This is
actually the way of doing geometry in (rather) modern language [25]. And we
are, repeating again, looking for a gauge theory somehow linked to spacetime,
much more so than the usual gauge models. Now, there is an important
fact. Every differentiable manifold M (here we are thinking of spacetime, of
course) has a principal fiber bundle naturally attached to it, the bundle of
linear frames. The set of linear frames at a point of the manifold is isomorphic
to the real linear group GL(m,R) of real m×m matrices (with m = dimM),
so that the natural bundle is a principal fiber bundle with this group. As we
are speaking of Minkowski spacetime, whose main characteristic is the Lorentz
metric, a special role will be reserved to the sub-bundle of pseudo-orthogonal
frames (that is, of the frames which are orthogonal according to the Lorentz
metric).

Let us be a bit more precise. A linear frame at point p of the base space is
chosen as follows. Take the tangent space at p, TpM . It is isomorphic to the
Euclidean space Em. On Em there is a canonical frame, formed by the unit
one-dimensional vectors δk, having 1 at the k-th entry and zero everywhere
else. We choose a basis, or frame, by transplanting this one to TpM . Formally,
a linear frame {bk} is given by a mapping b : Em → TpM , b(δk) = bk. Thus,
different frames correspond to different choices b of which bk correspond to the
unit vector δk. In strict relation to these vectors there is a canonical basis for
the group Lie algebra, given by ”unit” matrices ∆α

β. These matrices have 1
at the α−β entry and zero everywhere else. Now, given any metric η (here the
Lorentz metric), we define matrices Jαβ = ηαγ∆γ

β − ηβγ∆γ
α. Then the Jαβ ’s

generate the Lie algebra of the orthogonal group of η (notice that from this
notation comes the use of double indices for spacetime geometrical objects,
at a difference with geometrical objects related to other bundles). In our
case, the Jαβ ’s will generate the Lorentz group. The frame vectors are then
taken to be orthogonal, and a sub-bundle results, the bundle of Lorentzian
frames. A linear connection will be the 1-form Γ = ∆α

βΓα
β = ∆α

βΓα
β

µdxµ.
A connection defines a covariant derivative, which acts on any object in a well-
defined way. A Lorentz connection will be Γ = JαβΓαβ = JαβΓαβ

µdxµ, and
its curvature, which is its own covariant derivative, will be F = 1

2
JαβFαβ =

1
2
JαβFαβ

µdxµ with

Fαβ
µν = ∂µΓαβ

ν − ∂νΓαβ
µ + Γα

εµΓεβ
ν − Γα

ενΓεβ
µ .

From these expressions comes the Bianchi identity,

∂µF̃αβµν − Γα
γµF̃ γβµν + F̃α

γ
µνΓγβ

µ = 0 .
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This is quite analogous to the usual geometrical background of gauge mod-
els related to ”internal” symmetries, but there is here a deep difference. The
bundle of linear frames, we have said, is more deeply rooted on the base man-
ifold than any other bundle. This is shown by the presence of a property
which is not present in other bundles. The property is called soldering and is
embodied in a special Em-valued form on the bundle, the solder form. Being
Em-valued means that it is of the form S = δkSk, with Sk an usual form. It
is thus a mapping TbGL(m,R) → Em. It establishes a direct relation between
tangent spaces of the bundle manifold and tangent spaces of the base man-
ifold. Given the projection mapping π of the bundle and its differential π∗

(which maps tangent vectors), then we have S = b−1 ◦π∗. This form is canon-
ical, in the sense that it is always there, for any differentiable manifold. Now,
choosing a frame is always done by a section, a mapping σ : M → bundle.
Differential forms on the bundle are brought back to M by the pull-back σ∗ of
σ, the dual of its differential. Each Lorentz frame (tetrad, vierbein, fourleg)
is given by σ : M → bundle, σ : p → {hα(p)}, with π ◦ σ(p) = p. Now, it so
happens that, if σ chooses the frame ha, then its pull-back of the solder form
gives back precisely ha : σ∗(Sα) = hα = hα

µdxµ. The presence of the solder
form allows one, if given a metric η on Rm, to ”transform” it into a metric
g on the base manifold M , by g(X,Y ) = η(b−1X, b−1Y ). This is the deep
reason for the usual way of writing a metric in terms of the tetrads, as the last
expression is just gµν = ηαβhα

µhβ
ν .

The presence of the solder form has an important consequence: given a
connection, there exists another natural characteristic of it, besides the curva-
ture. It is its torsion, which is the covariant derivative of the solder form. As
the latter is expressed on M by the tetrad, the torsion appears as the covariant
derivative of the tetrad fields,

Tα
µν = ∂µhα

ν − ∂νhα
µ + Γα

εµhε
ν − Γα

ενh
ε
µ .

And it turns out that also an extra Bianchi identity holds,

∂µT̃αµν − Γα
γµT̃ γµν + F̃α

γ
µνhγ

µ = 0 .

The Bianchi identity is half the field equations of a gauge theory (for exam-
ple, the first pair of Maxwell’s equations). We are thus to expect that, if
we build up a gauge model related to the bundle of frames, we have some
extra field equations. Thus, the special ”tight-bound” relation of the linear
bundle to the base manifold engenders torsion, and this is submitted to an
extra Bianchi identity. Torsion is nevertheless quite absent in other bundles,
like those related to usual (internal) gauge theories. Notice that ”absent’ is
quite different from ”null”. The fact that T = 0 has deep consequences in
geometry (that is the general definition of a Riemannian space, one with van-
ishing torsion). It remains for us that the presence of T will, already from the
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start, establish a difference for any gauge theory related to the geometry of
spacetime.

Another step is the following: the space R4, endowed with the Lorentz
metric, becomes E3,1 and can be identified to the translation group T3,1. The
whole thing can be then rewritten in terms of the bundle of the affine linear
bundles. Once reduced by the imposition of Lorentz-orthogonality, the bundle
is a principal bundle with the Poincaré group as the structure group (gauge
group). One might call it the bundle of the affine orthogonal frames.

Define then the gauge potentials Γ = Jα
βΓα

βµdxµ for the Lorentz sector,
and B = TαBα

µdxµ for the translational sector. Accordingly, an extra field
strength will appear:

τα
µν = ∂µBα

ν − ∂νBα
µ + Γα

εµBε
ν − Γα

ενB
ε
µ .

Given then the Poincaré group, with its structure constants, one writes directly
the vacuum Yang-Mills equations:

∂µFαβµν − Γα
γµF γβµν + Fα

γ
µνΓγβ

µ = 0 ;

∂µτ
αµν − Γα

γµτ
γµν + Fα

γ
µνBγ

µ = 0 .

Because translation generators have dimensions, the corresponding fields have
rather strange dimensions themselves: [B] = 0 and [τ ] = 1. The relation
between the translational gauge potential and the tetrads is given by [26]:

hα
µ =

∂xα

∂xµ
+ kBα

µ .

Thus, B is the non-trivial, anholonomous part of the tetrad. There is more
here than a mere coordinate transformation. The torsion relates to the field
strengths F and τ by T = τ − Fx. The Yang- Mills equations become

∂µFαβµν − Γα
γµF γβµν + Fα

γ
µνΓγβ

µ = 0 ; (1)

∂µTαµν − Γα
γµT γµν + Fα

γ
µνhγ

µ = 0 . (2)

It is remarkable that the above equations are just the Bianchi identities written
for the dual fields, so that duality symmetry is respected.

These equations would give an answer to the issue referred to in the intro-
duction concerning the complete treatment of the local spacetime symmetries.
The Noether current for the translational invariance appears as the source in
the torsion equation, whereas the Noether current for the rotational and boost
invariance, the relativistic angular momentum density, comes up as the source
for the curvature equation. The presence of a dynamical equation for the tor-
sion gives the theory an advantage over the theories of Einstein-Cartan type.
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Equations (1) and (2) have been proposed directly by Popov and Daikhin [27],
but for them the tetrads, and not their non-trivial parts were supposed to be
the translational gauge potentials. There are great difficulties [28] with this
interpretation. The tetrads, as we have seen, are always there. There is no
way of anullating them, there would be no way to describe the absence of
gravitational field. The theory has some very good points:
(i) in the sourceless static spherically symmetric case, one finds Newton’s law
with L =

√
4πG;

(ii) if we put by hand T = 0, the second equation gives Fα
γ
µνhγ

µ = 0, which
is the vacuum Einstein’s equation;
(iii) technically, as gauge fields have spin 1, particle-particle interaction has
opposite sign to particle-antiparticle interaction; but, the indices α, µ, etc in
Bα

µ are all related to spacetime, so that we can possibly find a way of taking
B as a spin 2 field [29].

There are, however, differences with respect to usual gauge theories. For
example, the Poincaré group is non-semisimple, which implies that there is no
Lagrangian yielding its Yang-Mills equations. Moreover, as it acts on space-
time, it has kinematic representations, which will respond for the universality
of gravitation. And finally, it is worth mentioning that the fields have abnor-
mal dimensionalities: [B] = [h] = 0 and [τ ] = [T ] = 1.

5 Quantization: from Poincaré to de Sitter

Well, the goal is to obtain a quantum theory! Thus, we take the equations
and try to quantize them. We would hope to be able to use all the so well
lubricated machinery of gauge theories: partition function, Faddeev-Popov,
etc. We start by looking for the Lagrangian density. And then, we have the
first shock: the above Yang-Mills equations have no Lagrangian density, they
do not come from any action through an extremal principle [30]. This is a
negative point, but it should be remembered that at least one basic equation
of classical Physics is in the same case, the Euler (and the Navier-Stokes)
equation of fluid dynamics.

Whether or not an equation or set of equations come from an action func-
tional is the object of the Helmholtz-Vainberg theorem, which can be put in
a very simple form if we generalize exterior differential calculus to function-
als [31]. We can show that, for the Yang-Mills equation to have a Lagrangian,
the gauge group must be in one of the following cases: (i) a semisimple group;
(ii) an abelian group; (iii) a direct product of an abelian and a semisimple
group. As the Poincaré group is in neither of these cases, the equations have
no Lagrangian. We are thus condemned to try to quantize the theory without
resource to any of the usual Lagrangian-based techniques. It is possible in
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principle to quantize a theory directly from the field equations, as in the for-
malism of Källén-Yang-Feldman [32]. One expects difficulties, of course. For
example, it will be impossible to use the Faddeev-Popov trick, so that ghosts
should be introduced in the rather non-systematic way of Feynman’s ”polish
paper” [33]. Actually, one does not even have to face these problems — a
second shock is waiting for us before that: the theory is not quantizable! It
presents a sickness, which we can call vertex inconsistency, or perturbative in-
coherence. There exists a general procedure [34] to check whether or not a set
of field equations leads to a coherent theory (as a curiosity, if you try to take
the Navier-Stokes equation as a model field theory equation, it is incoherent:
it leads to a theory which cannot be quantized). This general formalism shows
that every Lagrangian theory is automatically consistent, but that there are in
principle also non-Lagrangian theories which are consistent. But if we apply
it to Yang-Mills equations for non-semisimple groups, we find that they are
never consistent. Well, what interests us here is the bad result: the Yang-Mills
equations for the Poincaré group cannot be quantized.

We should not, however, minimize the arguments favouring a Poincaré
group gauge theory for gravitation. The group is the classical group for rel-
ativistic kinematics, it classifies all elementary particles, etc. On the other
hand, one sees that such a theory is essentially classical, it cannot be given a
quantum version. Is there a way out of the above difficulty? Actually, there
is: the same general procedure which tells whether a set of field equations
leads or not to a coherent theory provides a systematic way to ”patch the
theory up”. It allows to obtain the minimum terms which should be added to
an inconsistent theory in order to make of it a good theory. The method is
analogous to that of renormalization: one adds extra terms so that the overall
theory becomes tractable. The difference here is that terms are to be added
to the field equations.

The simplest form to get a consistent theory is to drop all terms coupling
B to Γ in eqs.(1-2). The result is a consistent Lagrangian theory, which is
actually a gauge model for the direct product between Lorentz and translation
groups. However, as a vector field, the gauge potential B should couple to the
Lorentz gauge potential Γ. This can be achieved by considering B as a source
field, and then replacing all ordinary derivatives by covariant ones. The result
is

∂µFαβµν − Γα
γµF γβµν + Fα

γ
µνΓγβ

µ = L−2ταµνBβ
µ (3)

∂µτ
αµν = Γα

γµτ
γµν . (4)

The factor L−2 has to be introduced for dimensional reasons. These equations
can be derivable from the Lagrangian L = −1

4
(F 2 + L−2τ2), from which we

can see that the sources appearing in eqs.(3-4) are respectively the spin density
and the spin energy-momentum tensor of the B field.
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The next step is to find a way of introducing the term Fα
γ
µνBγ

µ into
eq.(4) in order to go as close as possible to the eqs.(1-2) of the Poincaré gauge
model. This can be achieved by adding the term −(1/2L2)Fαβ

µνBα
µBβ

ν to
the Lagrangian, which will contribute correctly to give eq.(2), as well as will
give a further contribution to eq.(1). The new Lagrangian becomes

L = −
1

4
Fαβ

µν
(

Fαβ
µν + 2L−2Bα

µBβ
ν

)

− 4L−2τα
µντα

µν , (5)

which represents a rather complicated, but consistent theory.
Once we arrive at this point, we can examine the renormalization question.

The situation is found to be quite analogous to the meson electrodynamics
case: as it stands, the theory is nonrenormalizable, but it so happens that
a counterterm of quartic type, (−1/4L4)(Bα

µBα
µBβ

νBβ
ν) added to the La-

grangian (5) makes the theory renormalizable. The Lagrangian then becomes

L = −
1

4

[

(

F + 2L−2BB
)2

− 4L−2τ2

]

. (6)

And here comes the main point. We have said that only a few theories are
perturbatively renormalizable, and we have arrived at one of them. It should
be of one of the types given previously. Once we think in that way, it comes
not as a surprise that the above theory — which is a Poincaré gauge theory
corrected so as to be quantizable, and corrected so as to be renormalizable
— is also a gauge theory. In effect, if we redefine the fields by absorbing
the abnormal dimensions: Γα5

µ := L−1Bα
µ, Fα5

µν := L−1τα
µν , and put

Fαβ
µν := Fαβ

µν(old) + L−2(Bα
µBβ

ν − Bα
νBβ

µ), we find that the above
Lagrangian is that of a gauge theory for semi-simple group, actually a de Sitter
group! In this way, the de Sitter gauge theory comes up as the quantizable,
renormalizable Poincaré gauge theory [35].

6 Final comments

There are, of course, some problems. One of them concerns the non-compact
character of the de Sitter group, and to the consequent unboundedness of
the Hamiltonian. This problem is plausibly solved through the choice of con-
venient boundary conditions [36]. A second problem concerns interpretation
of the length parameter L. Instead of the usual geometrical picture of a
Minkowski space tangent to each point of spacetime, the tangent spaces are
now de Sitter spaces. In this case, L is a length parameter attached to any de
Sitter space, its pseudo-radius. The usual picture is here reversed: spacetime
itself is Minkowski space, while the tangent spaces are the curved de Sitter
spaces. In the case of DS(3,2), the covering space is topologically E4 and the
tangent spaces are at least diffeomorphic to a flat space.
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In order to accept a de Sitter group as the group of relativistic kinematics
in replacement to the Poincaré group, one should accept that it, and not
Poincaré, classifies the elementary particles. This is acceptable for present-
day knowledge, provided L is large enough. The contact with usual Minkowski
results could then be obtained through the use of stereographic coordinates.
The definitions of energy and momentum would be changed, though in each
case the departures from their usual meanings would be of order (at least)
L−1.

The de Sitter approach has many fine points, coming mainly from formal
aspects [37]. One of them, noticed by Dirac a long time ago, refers to the γ
matrices. The de Sitter group puts γ5 on an equal footing with other γ’s, as its
generators in the spinor representation are σµν = i

2
[γµ, γν ] and σ5ν = i

2
[γ5, γν ].

This means that chiral symmetry has a foot in the theory and suggests a partial
symmetry breaking. Another one is purely geometrical: the de Sitter groups
coincide with the bundles of Lorentzian frames on a de Sitter space: DS(3,2)
= SO(3,2)/SO(3,1) and DS(4,1) = SO(4,1)/SO(3,1).

There are prospective effects concerning both cosmology and particle phys-
ics. Let us only touch two of them.
1. We have said that the Poincaré theory leads to Newton’s law in the appro-
priate limit. From the additional terms appearing in the Yang-Mills equations
of the de Sitter theory, we should expect some modification of this law at
distances of the order of L. Changing Newton’s law would alter the interpre-
tation of data concerning the missing mass problem in galaxies and clusters.
This would suggest values of cosmological scale for the universal constant L.
2. If one of the de Sitter groups is to replace the Poincaré group as the basic,
kinematic classifying group, a lot is changed. The concept of energy, as said,
must be reformulated. There is more: both CP and CPT will be universally
violated in their present-day formulation. By ”universally violated” we mean
that all interactions will feel the same effects, so that in CP (always in its usual
formulation) there will be no reason to privilege the K0K̄0 system. Also the
”new CPT” will differ from the usual operation. Nevertheless, the violation
should be less than something, as no universal violation has been observed.
Since the differences are proportional to factors of L−1, L can always be taken
large enough to make them negligible. Or, if experiments come to detect such
an effect, they will also fix the value of L. The K0K̄0 system, which allows
very high precision measurements of the mass splitting, seems to be a good
candidate.
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