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Abstract

The BRST quantization of a gauge theory in noncommutative geometry is car-

ried out in the “matrix derivative” approach. BRST/anti-BRST transformation

rules are obtained by applying the horizontality condition, in the superconnection

formalism. A BRST/anti-BRST invariant quantum action is then constructed,

using an adaptation of the method devised by Baulieu and Thierry-Mieg for the

Yang-Mills case. The resulting quantum action turns out to be the same as that

of a gauge theory in the ’t Hooft gauge with spontaneously broken symmetry. Our

result shows that only the even part of the supergroup acts as a gauge symmetry,

while the odd part effectively provides a global symmetry. We treat the general

formalism first, then work out the SU(2/1) and SU(2/2) cases explicitly.
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I. Introduction

The Higgs mechanism makes it possible to give masses to gauge bosons, while

preserving the gauge symmetry. In this construction, some of the original scalar

particle fields ‘mutate’ into the longitudinal components of the (now massive) gauge

bosons. This fact may reflect the existence of an underlying structure, in which

the gauge bosons and the original scalar particles belong to the same multiplet

of a larger group. It is, therefore, natural to search for such a larger symmetry

group and a suitable multiplet. As a matter of fact, this idea was implemented

many years ago, using the supergroup SU(2/1) [1]; it was also shown that this

use of a supergroup could be extended to a large class of spontaneously broken

symmetries [2]. More recently, the idea has further mathematically evolved within

the superconnection construct [3, 4, 5, 6].

Another recent advance in mathematical pysics has consisted [7] in A. Connes’

noncommutative geometry. In this formalism, the Dirac K-cycle on a star algebra

acting on a Hilbert space, plays an important role, with possible applications to

particle physics. Connes and Lott [8] then showed in particular that the stan-

dard model could be obtained in noncommutative geometry, as a gauge theory

with a built-in spontaneous symmetry breakdown mechanism. Their work has

been further extended to GUT (grand unified theories) [9], to gravity [10], and to

supersymmetric theories [11].

Soon after the work of Connes and Lott, Coquereaux and other workers [12, 13]

showed that the Connes-Lott approach is equivalent to a theory based on the su-

perconnection concept [5, 14], rediscovering SU(2/1) in the process. In Coquereaux

et al.’s formulation, a Z2 graded space of matrix-valued forms is constructed, with

a generalized derivative; 0-form and 1-form fields together represent a superconnec-

tion. The generalized derivative consists of the usual Cartan exterior differential

operator, raising the form degree by one unit and thus also changing its Grassmann

grading (which we denote as ‘w-grading’, i.e. d has odd w-grading) plus a graded
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discrete operator consisting in a (graded) commutator with a constant matrix and

satisfying certain algebraic conditions (including odd grading in a supergroup’s

generating superalgebra, ‘g-odd’ in our nomenclature). This graded commutator

(or supercommutator) with a constant matrix is the matrix derivative [13]. We

shall denote the Coquereaux et al. approach as the matrix derivative approach.

The equivalence between the Connes-Lott and Coquereaux et al. approaches

has been stressed by Scheck and collaborators [15]. In both approaches, the 0-form

scalar field is interpreted geometrically as an object interconnecting a two-sheeted

world, whereas the 1-form field plays the usual role of a gauge field. The end-

product is equivalent to an extension of the internal supersymmetry method in its

superconnection formulation, completing, as we shall see, its geometric generation

of a spontaneous symmetry breakdown mode for a local gauge symmetry.

We have recently quantized the SU(2/1) electro-weak theory in the supercon-

nection formalism [16]. As an extension of this work, we now include in the present

paper the quantization of the noncommutative geometry version of this ”super-

gauge theory”, by adjoining the matrix derivative approach to the superconnection

formulation. Actually, this formulation goes beyond the internal supersymmetry

method in one aspect, namely the emergence of the negative squared mass term for

the scalar (Higgs) field from the geometry; in our previous treatment, most terms in

the spontaneous symmetry breakdown Lagrangian emerged geometrically, namely

(aside from the usual Yang-Mills term) the ‘free’ Higgs field Lagrangian plus its

interaction with the gauge bosons – and the quartic Higgs field potential; the ex-

ception, which had to be put in ‘by hand’ (and thus also broke the symmetry

explicitly) was this negative squared mass term, which is now provided by the

matrix derivative.

We obtain the BRST/anti-BRST transformation rules of the theory, applying

our horizontality condition, extending Thierry-Mieg’s ansatz [6, 17, 18]. We con-

struct the quantum action by adapting the Baulieu/Thierry-Mieg method [19] for
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the Yang-Mills theory.

There are two important features deriving from our result. The first is the fact

that we obtain the most appropriate gauge condition for a spontaneously broken

gauge theory with scalar field, the ’t Hooft gauge [20, 21], simply by adapting

the method of Ref. [19], which would give the Landau gauge for the unbroken

Yang-Mills theory, to the noncommutative geometry framework. The other relates

to the physical content of a gauge theory in the noncommutative setting. Our

quantization reveals that only the even part of the supergroup indeed acts as a

gauge symmetry; the odd part simply produces a global symmetry. The resulting

BRST transformation rules for the fields are thus the same as those of the spon-

taneously broken gauge theory with a Higgs mechanism, except that the scalar

field transformation rule is changed by the addition of a constant shift (a vacuum

shift), due to the action of the matrix derivative, thereby implementing geomet-

rically the triggering of the spontaneous breakdown. Other fields are not affected

by the appearance of the matrix derivative.

In section 2, we study the BRST quantization in the matrix derivative ap-

proach for the general case. In section 3, we treat the SU(2/1) gauge theory,

effectively an algebraically constrained standard model SU(2) × U(1) gauge the-

ory of the electro-weak interaction. In section 4, we consider an SU(2/2) gauge

theory, which reduces to the spontaneously broken symmetry of an SU(2)×SU(2)

σ-model. Section 5 contains a discussion and conclusions.

II. BRST/anti-BRST symmetry and quantum action

In the matrix derivative approach of a noncommutative geometrical gauge the-

ory, the 0-form scalar field and 1-form gauge field together form a superconnection,

with w-odd forms in the g-even part and w-even forms in the g-odd part of the
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supergroup. We write the superconnection J as

J = Jev + Jod =
(

ω0 0
0 ω1

)
+

(
0 L01

L10 0

)
. (1)

The overall Z2 grading is given by the sum of the supermatrix grading (Z2 ‘g’-

grading) and the differential form grading (Z2 ‘w’-grading). The total grading of

the superconnection is therefore odd, in this Z2 graded space [16]. Multiplication

in this superspace is given by [5, 12]

(h ⊗ W ) · (h′ ⊗ W ′) = (−1)|W ||h′|(hh′) ⊗ (WW ′), (2)

where W, W ′ are differential forms of fixed Grassmannian Z2 w-gradings |W |, |W ′|,

and h, h′ are supermatrices of fixed Z2 g-grading | h |, | h′ |. With this convention,

we obtain the product rule for any two elements in our total Z2 graded space,

assuming A, B, C, D to be matrix-valued differential forms, which have fixed Z2 w-

gradings of 0 or 1, depending on whether they are even or odd forms, respectively,

[5, 12]
(

A B
C D

)

·
(

A′ B′

C ′ D′

)

=

(
A ∧ A′ + (−1)|B|B ∧ C ′ (−1)|A|A ∧ B′ + B ∧ D′

C ∧ A′ + (−1)|D|D ∧ C ′ (−1)|C|C ∧ B′ + D ∧ D′

)

.

(3)

Once the superconnection is given, the supercurvature Ft is defined in the

usual manner, with the generalized derivative dt , consisting of the usual 1-form

differential operator d and the matrix derivative dM [12, 13]:

Ft = dt J + J · J , (4)

dt = d + dM , (5)

d =
(

d 0
0 d

)
, where d = 1 ⊗ dxµ ∂

∂xµ
. (6)

The matrix derivative is given by

dM = i[η, ]±, where η =
(

0 ζ
ζ 0

)
. (7)

Here ζ and ζ are constant matrices of zero forms, satisfying

ζζ = ζζ ∝ 1, (8)
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so that the matrix derivative satisfies the nilpotency condition, dM
2 = 0. Note

that the total grading of the matrix derivative dM is odd. Thus the matrix deriva-

tive is a supercommutator, i.e. it acts as a commutator for objects of even total

grading and as an anticommutator for objects of odd total grading, where by ‘to-

tal’, we mean the product of the gradings of ’g’ and ’w’.

We now write the classical action of the gauge theory in noncommutative ge-

ometry as

Scl = −
1

4

∫
Tr Ft

! · Ft , (9)

where & denotes taking the Hermitian conjugate for supermatrices and taking

the Hodge dual for differential forms. In order to find the BRST/anti-BRST

transformation rules, we use the so-called horizontality condition[3, 17, 18, 19],

which is another description of the Maurer-Cartan equation:

F̃t = Ft , (10)

where F̃t is the supercurvature, defined in the extended space of the doubled fiber

bundle [16],

F̃t = d̃t J̃ + J̃ · J̃ . (11)

‘Doubling’ implies the extension of the base manifold through doubling the fiber,

from {G} to {G}⊗{G}, so that we have a gauge fiber coordinate y and its dual ȳ [6,

17, 18, 19]. In this extended space, the generalized derivative and superconnection

are given by

d̃t = dt + s + s̄ , (12)

J̃ = J + C + C̄ . (13)

Here, s and s̄ are 1-form differential operators acting respectively on the coordi-

nates of the fiber and of its dual:

s =
(

s 0
0 s

)
where s = 1 ⊗ dyN ∂

∂yN
,

6



s̄ =

(
s̄ 0
0 s̄

)

where s̄ = 1 ⊗ dȳM ∂

∂ȳM
. (14)

C and C̄ are obtained from J by replacing dxµ by dyN and dȳM , and represent

the ghost and anti-ghost fields, respectively:

C =

(
c0NdyN 0

0 c1NdyN

)

≡
(

c0 0
0 c1

)

,

C̄ =

(
c̄0MdȳM 0

0 c̄1MdȳM

)

≡
(

c̄0 0
0 c̄1

)

. (15)

After applying the horizontality condition we obtain the BRST/anti-BRST

transformation rules:

(dy)1 : s J = −dt C − J · C − C · J ,

(dȳ)1 : s̄ J = −dt C̄ − J · C̄ − C̄ · J ,

(dy)2 : s C = −C · C , (16)

(dȳ)2 : s̄ C̄ = −C̄ · C̄ ,

(dy)1(dȳ)1 : s C̄ + s̄ C + C · C̄ + C̄ · C = 0.

By introducing an auxiliary field E such that

s C̄ ≡ E , i.e.,

(
sc̄0 0
0 sc̄1

)

≡
(

b0 0
0 b1

)

, (17)

we can fix the remaining BRST/anti-BRST transformation rules,

s̄ C = −E − C · C̄ − C̄ · C ,

s E = 0, (18)

s̄ E = −s̄ (C · C̄ + C̄ · C ) = −C̄ · E + E · C̄ .

One can easily check the nilpotency property of the BRST/anti-BRST transfor-

mations, s 2 = s̄ 2 = 0, for the above transformation rules (16), (17) and (18).

Decomposing J into J ev + J od as in (1), we can write the even and odd

parts of the first two equations in (16) separately as follows, by noting that d , s
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and s̄ are even matrices, whose entries are one-form differential operators.

even part : s Jev = −d C − Jev · C − C · Jev ,

s̄ Jev = −d C̄ − Jev · C̄ − C̄ · Jev , (19)

odd part : s Jod = −dM C − Jod · C − C · Jod ,

s̄ Jod = −dM C̄ − Jod · C̄ − C̄ · Jod .

Note that the even parts are the usual BRST/anti-BRST transformation rules of

a one-form gauge field [19], while the odd parts are those of a matter field, plus

the additional terms caused by the matrix derivative. These additional terms rep-

resent a translation of the scalar field and correspond to the vacuum shift in the

usual Higgs mechanism. The difference, however, is that this is a built-in property

of a gauge theory in the noncommutative geometry setting, in contradistinction to

the conventional Higgs construction. The system’s ‘ordinary’ gauge symmetry is

thereby broken explicitly through that geometrical setting.

Adapting the Baulieu/Thierry-Mieg method for a BRST/anti-BRST invari-

ant quantum action, which yields the Landau gauge for the usual Yang-Mills

theory[19], we write the quantum action as

SQ = −
1

4

∫
Tr {Ft

! · Ft − s s̄ (J ! · J ) + α s (C̄! · E )}, (20)

where, α is a parameter. Using the transformation rules (16), (17), (18) and (19),

we obtain

Tr{s s̄ (Jev
!·Jev )} = 2 Tr{(Jev )!·(d E )+(d C̄ )!·(d C +Jev ·C +C ·Jev )}, (21)

Tr{s s̄ (Jod
!·Jod )} = 2 Tr{(Jod )!·(dM E )+(dM C̄ )!·(dM C +Jod ·C +C ·Jod )},

(22)

and

Tr
{
αs (C̄ ! · E )

}
= Tr {αE ! · E } . (23)
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Thus, the quantum action SQ can be written as

SQ = −
1

4

∫
Tr {Ft

! · Ft + α E ! · E

− 2(Jev )! · (d E ) − 2(d C̄ )! · (d C + Jev · C + C · Jev ) (24)

− 2(Jod )! · (dM E ) − 2(dM C̄ )! · (dM C + Jod · C + C · Jod )}.

One can check that this quantum action is BRST/anti-BRST invariant.

In the above quantum action (24), the terms with the auxiliary field E are

the gauge fixing terms and give rise to the ’t Hooft gauge condition [20, 21] as we

shall see in the next two sections. The first term is the classical action, and the

remaining terms constitute the kinetic and interaction terms of the ghost fields. In

the following two sections we calculate the quantum action (24) for the SU(2/1)

and SU(2/2) cases explicitly.

III. BRST quantization of the SU(2/1) case

The generators of SU(2/1) are the same as those of SU(3), namely the con-

ventional λ - matrices, except for t8, which is given by

t8 =
1√
3




−1 0 0
0 −1 0
0 0 −2



 , (25)

in order to satisfy STr(ti) = 0. We write the SU(2/1) superconnection as

J = itiJi (i = 1, 2, · · · , 8)

= Jev + Jod = i

(
τaWa − 1√

3
B 0

0 − 2√
3
B

)

+ i
(

0
√

2Φ√
2Φ† 0

)
, (26)

where we identified the gauge and Higgs fields Wa, B, Φ, and Φ† with the com-

ponents; Wa = Ja (a = 1, 2, 3), B = J8, Φ = 1√
2

(
J4 − iJ5

J6 − iJ7

)

, and Φ† =

1√
2

(
J4 + iJ5

J6 + iJ7

)

.
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We now introduce the ghost, anti-ghost, and auxiliary fields, in the doubled-

fiber bundle space.

C = i

(
τaca − 1√

3
c8 0

0 − 2√
3
c8

)

, C̄ = i

(
τac̄a − 1√

3
c̄8 0

0 − 2√
3
c̄8

)

,

E = i

(
τaba − 1√

3
b8 0

0 − 2√
3
b8

)

(a = 1, 2, 3). (27)

In order to derive the BRST/anti-BRST transformation rules, we apply eqs.(16)-

(19) of the previous section. In calculating the SU(2/1) case, we encounter the

following difficulty. With the 3 × 3 matrix representation, it is not possible to

choose a constant matrix η =
(

0 ζ
ζ 0

)
for the matrix derivative, satisfying the

condition (8), ζζ = ζζ ∝ 1, which is essential for the nilpotency of the matrix

derivative. In order to resolve this difficulty, we first extend all 3 × 3 matrix

representations of fields into 4 × 4 matrices, simply by adjoining a 4th row and a

4th column, with all components vanishing. We then choose the η matrix in this

extended 4×4 matrix representation space, in which it does satisfy the nilpotency

condition. This 4×4 η matrix, enables us to perform all calculations involving the

η matrix, such as evaluating the supercurvature, etc. After this is done, we project

back onto the 3×3 matrix representation space, simply discarding the 4th row and

column. Note that this construction reflects the fact that the true fundamental

representation of SU(2/1) is 4-dimensional [3], reflecting the homomorphism with

OSp(2/2) and fitting the internal quantum numbers for quarks, i.e. (uR/uL, dL/dR)

where the order follows descending weak hypercharges (4/1, 1/ − 2) (in units of

(1/3)). However, for integer charges, the upper state trivializes and disconnects

(e.g. the νR) and we are left with the 3-dimensional representation. As a matter of

fact, the procedure we use here also corresponds to the projective module method

of Connes and Lott [8]. We thus perform the actual calculation with

ζ = ζ =
√

2k
(

0 1
1 0

)
, k : real,

and obtain the following BRST/anti-BRST transformation rules.

sAII = −dcII − AIIcII − cIIAII ,
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s̄AII = −dc̄II − AII c̄II − c̄IIAII ,

sAI = −dcI , s̄AI = −dc̄I ,

sΦ = −cII(Φ + ξ) −
1√
3
cI(Φ + ξ),

s̄Φ = −c̄II(Φ + ξ) −
1√
3
c̄I(Φ + ξ),

sΦ† = (Φ† + ξ†)cII +
1√
3
(Φ† + ξ†)cI ,

s̄Φ† = (Φ† + ξ†)c̄II +
1√
3
(Φ† + ξ†)c̄I ,

scII = −cIIcII , s̄c̄II = −c̄II c̄II , (28)

scI = s̄c̄I = 0,

sc̄II = bII , s̄cII = −bII − cII c̄II − c̄IIcII ,

sbII = 0, s̄bII = −c̄IIbII + bII c̄II ,

sc̄I = −s̄cI = bI , sbI = s̄bI = 0,

where

AII = iτaWa, AI = iB, cII = iτaca, cI = ic8,

c̄II = iτac̄a, c̄I = ic̄8, bII = iτaba (a = 1, 2, 3), bI = ib8, (29)

ξ = k

(
0
1

)

.

Note that the transformation rules of Φ and Φ† correspond to those of the Higgs

fields with a shifted vacuum. For the supercurvature we obtain

Ft =

(
FW − 1√

3
FB − 2(ΦΦ† + ξΦ† + Φξ†) −i

√
2(DΦ + (i ,W · ,τ + i√

3
B)ξ)

−i
√

2(DΦ† − ξ†(i ,W · ,τ + i√
3
B)) − 2√

3
FB − 2(Φ†Φ + ξ†Φ + Φ†ξ)

)

,

(30)

where

FW =
1

2
FWµνdxµ ∧ dxν = d(i ,W · ,τ ) + (i ,W · ,τ)(i ,W · ,τ),

FB =
1

2
FBµνdxµ ∧ dxν = d(iB), (31)

Φ =

(
φ+

φ0

)

=
1√
2

(
φ3 + iφ4

φ1 + iφ2

)

=
1√
2

(
J4 − iJ5

J6 − J7

)

,

11



DΦ = (DΦ)µdxµ = dΦ + (i ,W · ,τ +
i√
3
B)Φ,

DΦ† = (DΦ†)µdxµ = dΦ† − Φ†(i ,W · ,τ +
i√
3
B).

We use d4x = dx0∧dx1∧dx2∧dx3, ε0123 = 1, and adopt the convention of Ref.[22]

for the dual of a differential form in n dimension, required for (24),

∗ (dxi1 ∧ dxi2 ∧ · · · ∧ dxip) =
1

(n − p)!
εi1i2···ip

ip+1···indxip+1 ∧ · · · ∧ dxin (32)

satisfying ∗ ∗ ωp = (−1)p(n−p)ωp for a p-form ωp.

Selecting the metric gµν = (−1, +1, +1, +1), the first term in (24), the classical

action, is given by

LC =
1

4
FWaµνF

µν
Wa +

1

4
FBµνF

µν
B

−(DΦ† − ξ†(i ,W · ,τ +
i√
3
B))µ(DΦ + (i ,W · ,τ +

i√
3
B)ξ)µ

−2((Φ† + ξ†)(Φ + ξ) − ξ†ξ)2

=
1

4
FWaµνF

µν
Wa +

1

4
FBµνF

µν
B

−(DΦ† − ik(
√

2W− +
2√
3
Z))µ(DΦ + ik

( √
2W+
2√
3
Z

)

)µ (33)

−2(Φ†Φ + k(φ0 + φ̄0))2,

where W µ
± = 1√

2
(W µ

1 ∓ iW µ
2 ), Zµ = −

√
3

2 W µ
3 + 1

2B
µ, Aµ = 1

2W
µ
3 +

√
3

2 Bµ.

In order to see the physical spectrum of the theory, we now write the above

expression in the unitary gauge, which is given by Φ =

(
0

1√
2
χ

)

with real χ.

LUG
C =

1

4
FWaµνF

µν
Wa +

1

4
FBµνF

µν
B

− {
1

2
∂µχ∂µχ + g2W+µW

µ
−(χ +

√
2k

g
)2 +

2

3
g2ZµZ

µ(χ +

√
2k

g
)2} (34)

−
1

2
(gχ2 + 2

√
2kχ)2

The coupling constant g is introduced by scaling the superconnection as J → gJ .

In this unitary gauge we see that only one scalar field remains as a physical (and
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massive) Higgs field χ, whereas the other three scalars have been ‘mutated’, now

providing the longitudinal components of W± and Z. The masses of the massive

particles are Mχ = 2
√

2k, MW =
√

2k, MZ = 2
√

2√
3
k, and we see the relations

M2
W

M2
Z

= 3
4 = cos2θW , Mχ = 2MW . We shall return to the latter ratio Mχ

MW
in section

5, when discussing possible quantum corrections.

We now write the quantum Lagrangian of (24) as

LQ = LC + L1 + L2, (35)

where LC is the classical Lagragian, L1 stands for the ghost terms, and L2 for the

gauge fixing terms. After some calculations, we obtain L1,

L1 =
1

2
tr[∂µc̄IID

µcII + 2∂µc̄I∂
µcI

+ {(c̄II +
1√
3
c̄I)ξ(Φ

† + ξ†)(cII +
1√
3
cI)} (36)

+ {ξ†(c̄II +
1√
3
c̄I)(cII +

1√
3
cI)(Φ + ξ)}],

where DµcII = ∂µcII + [Aµ
II , cII ].

For L2, we obtain

L2 =
α

2
{[(b1)

2 + (b2)
2 + (bZ)2 + (bA)2] +

2

α
[b1(∂µW µ

1 −
√

2kφ4)

+ b2(∂µW µ
2 −

√
2kφ3) + bZ(∂µZ

µ −
2
√

2√
3

kφ2) + bA(∂µAµ)]}, (37)

where bZ = −
√

3
2 b3 + 1

2b8, bA = 1
2b3 +

√
3

2 b8. After integrating out the auxiliary fields

b1, b2, bZ , and bA, L2 becomes

L2 = −
1

2α
{(∂µW µ

1 −
√

2kφ4)
2+(∂µW

µ
2 −

√
2kφ3)

2+(∂µZ
µ−

2
√

2√
3

kφ2)
2+(∂µA

µ)2}.

(38)

This expression clearly shows that we obtain the gauge-fixed quantum Lagrangian

of the ’t Hooft gauge [20, 21], as we claimed in the previous section:

∂µW µ
1 − MW φ4 = 0,
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∂µW µ
2 − MW φ3 = 0,

∂µZµ − MZφ2 = 0, (39)

∂µA
µ = 0.

IV. BRST quantization of SU(2/2) case

We now calculate the SU(2/2) case. The generators of SU(2/2) are the same

as those of SU(4), except for t8 and t15, which are replaced by

t8 =
1√
3





−1 0 0 0
0 −1 0 0
0 0 −2 0
0 0 0 0



 , t15 =
1√
6





1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 3



 , (40)

to conforming with the super-tracelessness of the SU(2/2) generators. The super-

connection for the SU(2/2) case can be written as

J = itiJi (i = 1, 2, · · · , 15) =

(
AL + 1√

2
B iΦ

iΦ† AR + 1√
2
B

)

(41)

with one-forms in the even part and zero-forms in the odd part, given as

AL = iτaALa, AR = iτaARa, B = iIY, Φ = Iφ0 + iτaφa, (42)

where τa(a = 1, 2, 3) are Pauli matrices, and I is 2×2 identity matrix. ALa, ARa, Y

are real, whereas φ0, φa are complex, the fields being assigned to the components

of J ’s according to

ALa = Ja (a = 1, 2, 3), AR1
= J13, AR2

= J14,

AR3
= −

1√
3
(J8 +

√
2J15), Y = −

1√
3
(
√

2J8 − J15),

φ0 =
1

2
[(J4 − iJ5) + (J11 − iJ12)], φ1 = −

i

2
[(J6 − iJ7) + (J9 − iJ10)],

φ2 = −
1

2
[(J6 − iJ7) − (J9 − iJ10)], φ3 = −

i

2
[(J4 − iJ5) − (J11 − iJ12)].

AL and AR are thus the SU(2) gauge fields, B is the U(1) gauge field, and Φ is

the complex scalar field (with its four components).
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We now introduce the ghost and anti-ghost fields,

C =
(

cL 0
0 cR

)
+

( 1√
2
cI 0

0 1√
2
cI

)

, C̄ =
(

c̄L 0
0 c̄R

)
+

( 1√
2
c̄I 0

0 1√
2
c̄I

)

, (43)

where cL = iτacLa, cR = iτacRa(a = 1, 2, 3), cI = iIcIr, with real cLa, cRa, and cIr

and similarly for C̄ . {cL, c̄L} and {cR, c̄R} are the ghost and antighost fields for

the SU(2) gauge fields AL and AR, respectively, and {cI , c̄I} are those of the U(1)

gauge field B.

The BRST/anti-BRST transformation rules are obtained from (16)-(19). Choos-

ing

η =

(
0 ξ
ξ† 0

)

, where ξ = k

(
1 0
0 1

)

, k : real, (44)

we get

sAL = −dcL − ALcL − cLAL,

s̄AL = −dc̄L − ALc̄L − c̄LAL,

sAR = −dcR − ARcR − cRAR,

s̄AR = −dc̄R − ARc̄R − c̄RAR,

sB = −dcI , s̄B = −dc̄I ,

sΦ = (Φ + ξ)cR − cL(Φ + ξ),

s̄Φ = (Φ + ξ)c̄R − c̄L(Φ + ξ),

sΦ† = (Φ† + ξ†)cL − cR(Φ† + ξ†),

s̄Φ† = (Φ† + ξ†)c̄L − c̄R(Φ† + ξ†),

scL = −cLcL, s̄c̄L = −c̄Lc̄L, (45)

scR = −cRcR, s̄c̄R = −c̄Rc̄R,

scI = s̄c̄I = 0,

sc̄L = bL, s̄cL = −bL − cLc̄L − c̄LcL,

sc̄R = bR, s̄cR = −bR − cRc̄R − c̄RcR,

sbL = 0, s̄bL = −c̄LbL + bLc̄L,
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sbR = 0, s̄bR = −c̄RbR + bRc̄R,

sc̄I = −s̄cI = bI , sbI = s̄bI = 0.

We have introduced the auxiliary fields E =
(

bL 0
0 bR

)
+

( 1√
2
bI 0

0 1√
2
bI

)

with

bL = iτabLa, bR = iτabRa (a = 1, 2, 3), and bI = iIbIr, where bLa, bRa, and bIr are

real. For the supercurvature, we obtain

Ft ==

(
FL + 1√

2
FB − (ΦΦ† + ξΦ† + Φξ†) −i(DΦ + ALξ − ξAR)

−i(DΦ† − ξ†AL + ARξ†) FR + 1√
2
FB − (Φ†Φ + ξ†Φ + Φ†ξ)

)

,

(46)

where FL = dAL + ALAL, FR = dAR + ARAR, FB = dB, DΦ = dΦ + ALΦ −

ΦAR, DΦ† = dΦ† − Φ†AL + ARΦ†.

The classical Lagrangian, the first term in (24), is given by [23],

LC = tr[
1

4
F+µνF

µν
+ +

1

4
F−µνF

µν
− +

1

8
FBµνF

µν
B

−
1

2
(DΦ† + 2kA−)µ(DΦ − 2kA−)µ −

1

2
(Φ†Φ + k(Φ + Φ†))2], (47)

where A± are respectively the vector and axial vector gauge fields, as defined

by A± = 1
2(±AL + AR) = iτaA±a, and F µν

+ = ∂µAν
+ − ∂νAµ

+ + [Aµ
+, Aν

+] +

[Aµ
−, Aν

−], F µν
− = ∂µAν

− − ∂νAµ
− + [Aµ

+, Aν
−] + [Aµ

−, Aν
+]. The above expression tells

us that the three axial vector gauge fields A−a have acquired the mass 2k, whereas

the three vector gauge fields A+a and the U(1) gauge field Y remain massless.

For the quantum Lagrangian LQ, we again write, as in (35),

LQ = LC + L1 + L2.

The ghost part L1 is given by

L1 =
1

2
tr[(∂µc̄LDµcL + ∂µc̄RDµcR + ∂µc̄I∂

µcI) − 2k2(c̄L − c̄R)(cL − cR) (48)

+ k({(c̄L − c̄R)cR − cL(c̄L − c̄R)}Φ† + {cR(c̄L − c̄R) − (c̄L − c̄R)cL}Φ)],

where DµcL = ∂µcL + [Aµ
L, cL], DµcR = ∂µcR + [Aµ

R, cR].

The gauge fixing part L2 is given by

L2 = α {((b−a)
2+(b+a)

2+
1

2
(bIr)

2)+
2

α
(b−a(∂µAµ

−a−2kϕa)+b+a(∂µA
µ
+a)+

1

2
bIr(∂µY

µ))},

(49)
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where b± = 1
2(±bL + bR) = iτab±a, ϕ = 1

2(Φ − Φ†) = τaϕa. Integrating out the

auxiliary fields b±, L2 becomes

L2 = −
1

α
{(∂µA

µ
− − 2kϕ)2 + (∂µAµ

+)2 +
1

2
(∂µY

µ)2}. (50)

This expression again displays the quantum Lagrangian in the ’t Hooft gauge:

∂µA
µ
−a − MA−

ϕa = 0,

∂µA
µ
+a = 0, (51)

∂µY
µ = 0,

where MA−
= 2k is used. If we write Φ as (σ + i,π · ,τ) + i(η + ,ρ · ,τ) with real

σ,,π, η, ,ρ fields, then ϕ in L2 can be identified with ,π. This is consistent with the

fact that the ,π fields are gauged away and mutate into the longitudinal compo-

nents of the axial vector fields A− in the unitary gauge. This is also related to the

fact that the SU(2/2) case corresponds to the gauged SU(2)×SU(2) σ-model [23].

V. Conclusion

In the matrix derivative approach, derived from noncommutative geometrical

gauge theory and adjoined to internal supersymmetry, in its superconnection ver-

sion, the vector gauge fields and the scalar fields are combined together, constitut-

ing the superconnection. The two sets of fields are thus related as a supermultiplet

from the very beginning. This provides for an elegant geometrical realization of the

Higgs mechanism. The entire Lagrangian is geometrical, even including the neg-

ative mass term for the scalar field, needed to trigger the spontaneous symmetry

breakdown for the (g-even) gauge subgroup. That symmetry-breaking quadratic

term for the scalar field is provided by the matrix derivative, beyond the unification

achieved by the supergroup by itself. Summarizing, the unification is complete,

within the limitations set by the broken symmetry actual content. We return to

these limitations in our last paragraph.
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Another advantage of the formalism touches upon the quantum action, namely

in the gauge in which it appears, as a result of the construction. This turns out to

be the ‘t Hooft gauge, most convenient for a spontaneously broken symmetry with

Higgs field and suitable for renormalization [20, 21]. We obtained this action just

by adapting the Baulieu/Thierry-Mieg method [19], which would yield the Landau

gauge for the unbroken Yang-Mills theory, to the matrix derivative approach.

For the calculation of the Ft
! · Ft term in the classical and some of the other

parts of the quantum Lagrangian we have used the definition of (32) for the dual

form. This definition gives the kinetic terms of both the vector and scalar fields

automatically in their canonical form, also providing the relation Mχ = 2MW .1

This ratio is also due to the fact that we have only one overall supergauge coupling

constant g for the superconnection J in section 3, due to universality. Without

the assumption of universality for the supergroup we would have independent

couplings for fields corresponding to forms of different degrees - in our case the

even and odd parts of the superconnection, i.e. two independent couplings. One

might then obtain a different mass ratio for the Higgs and gauge bosons [24].

Lastly, we note that only the even part of the supergroup is gauged in the

sense of Relativistic Quantum Field Theory - even though the entire supergroup is

used as a structure group for the theory and provides the geometrical framework

for the quantization procedure, including the ‘t Hooft gauge. As a result, there is

no guarantee of non-renormalization of the theory’s couplings beyond those of the

g-even gauge subgroup.
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