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PRINCIPAL BUNDLES, CONNECTIONS AND BRST
COHOMOLOGY

H. Garćıa-Compeán, J.M. López-Romero, M.A.
Rodŕıguez-Segura and M. Socolovsky

Abstract

We review the elementary theory of gauge fields and the Becchi-Rouet-Stora-

Tyutin symmetry in the context of differential geometry. We emphasize the topo-

logical nature of this symmetry and discuss a double Chevalley-Eilenberg complex

for it.

1 Introduction

From their appearence gauge theories [1] have had a large influence on both
physics and mathematics. On the physical side one can date back to Maxwell-
Faraday (MF) abelian gauge theory (AGT) unifying electric and magnetic
phenomena (1860-70); the Einstein theory of general relativity (GR) (1915)
describing the gravitational force; first attemps of Weyl (1919), and Kaluza
and Klein (1919, 1926) to unify electromagnetism with gravity; the birth of
non abelian gauge theories (NAGT) in 1954 with the seminal work of Yang
and Mills (YM) which together with ideas from solid state physics (basically
that of spontaneous symmetry breaking) led to the SU(2)×U(1) Glashow -
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Weinberg - Salam (1961, 1967, 1968) electroweak (EW) theory unifying the
electromagnetic and the weak nuclear forces. (Notice that from the geomet-
rical point of view the EW theory involves just two spheres: S3 and S1.) We
should stress here that till now we have only mentioned the classical parts of
the corresponding theories; quantum electrodynamics (QED) and quantum
NAGT’s were proved to be renormalizable i.e. capable of absorbing infinite
quantities appearing in perturbation theory through the re-normalization
of masses and coupling (interaction) constants, after the contribution of a
large number of physicists, among others Dirac, Feynman, Dyson, Tomon-
aga, Schwinger, Salam and Ward for the case of QED (1930-50) and Faddeev,
Popov, t’Hooft and Veltman for quantum NAGT’s (1967, 1971-72). The the-
ory of the strong nuclear force based on the group SU(3) (unfortunately not
a sphere!), quantum chromodynamics (QCD) found its place in the present
context after the works of Politzer, Weinberg, Gross and Wilczek (1973),
thus leading to the succesful SU(3) × SU(2) × U(1) standard model (SM)
for the electronuclear (EN) interactions. Unfortunately it does not exist at
present a renormalizable theory of quantum gravity (QG); following Hawking
[2] we might say that perhaps the greatest problem of theoretical physics in
the last quarter of our century is the conciliation of quantum mechanics and
general relativity. In this field there are at least two approaches: one is that
of Ashtekar and co-workers [3] who mantain general relativity as the classi-
cal limit but construct the quantum theory after redefining the fundamental
variables, so the hope exists of constructing a theory of quantum general rel-
ativity (QGR); the other is that of string theory (ST) (1970, 1974, 1984) [4]
which represents a deep departure from the usual description of elementary
particles since at the roots of the theory is the idea that the fundamental ob-
jects in Nature are not point-like but string-like i.e. extended objects (even
at the classical level!) though extremely small (of the order of 10−35m) so
that GR is modified at short distances and therefore a theory of quantum
gravity should not be QGR but what we might call quantum string gravity
(QSG); obviously GR as a classical theory is recovered from ST in the large
distance limit.

On the mathematical side the list of applications of gauge theory is much
shorter, but however of great importance: it consists in the application done
by Donaldson (1983) [5] of the theory of moduli spaces of instantons (self-
dual and anti-self-dual solutions to the classical YM equations based on the
group SU(2)) to the problem of classification of closed orientable 1- con-
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nected differentiable 4-manifolds, and its relation to the same problem but
for topological manifolds previously considered by Freedman (1982) [6].

From the physical point of view the basic idea behind gauge theory [1]
is to extend a global symmetry of a Lagrangian describing a particular set
of free (non-interacting) fields to a local symmetry i.e. one in which the
symmetry transformations of the fields can be done in an independent way
at each space-time point. One of the most beautiful and important results of
this procedure is the appearance of physical interactions (couplings) among
the originally non-interacting fields. For example starting from the Dirac
Lagrangian L = ψ̄(γµ∂µ+m)ψ describing free electrons and positrons ( ψ and
ψ̄ fields) which has a global U(1) symmetry ψ → ψ′ = eiαψ, ψ̄ → ψ̄′ = ψ̄e−iα

(α = const. ∈ R and γµ : Dirac matrices, µ = 0, 1, 2, 3), the introduction of
the electromagnetic (photon) field (gauge potential) through the replacement
∂µ → Dµ := ∂µ + Aµ, with Aµ transforming as Aµ(x) → A′

µ(x) = Aµ(x) +
i∂µα(x) (notice the locality α = α(x)!) leads to the interaction between the
electron-positron field and the photon field i.e. to the term ψ̄γµAµψ in the
QED Lagrangian, LQED = ψ̄(γµDµ + m)ψ. Also, while global symmetries
lead to conserved quantities (like electric charge), local symmetries lead to
Ward-Takahashi-Slavnov-Taylor identities among Green’s functions that is
crucial for the proof of renormalizability.

Geometrically, classical gauge theories are theories of connections on prin-
cipal fiber bundles (p.f.b.’s), and related concepts in associated bundles (like
sections and covariant derivatives). In this framework the gauge potentials
of physics are local pull-backs on the base space (typically a space-time) of
connections which are differential 1-forms globally defined on the total space
of the bundle satisfying a set of suitable conditions and with values in the
Lie algebra of the symmetry group of the theory (the fiber of the bundle),
e.g. U(1) in the case of QED, SU(2)×U(1) for EW theory, SU(3) for QCD,
SO(3, 1) for GR, etc. It is interesting to mention that even a concept like
spontaneous symmetry breaking has been incorporated into the bundle lan-
guage, see e.g. ref. [7]. The introduction of p.f.b.’s inmediately leads us to
consider problems in infinite dimensional geometry, e.g. that of the gauge
group of the bundle and its Lie algebra; as we shall see in this article it is
precisely the cohomology of this algebra which leads to the extension (BRST
symmetry) into the quantum domain of the classical gauge symmetry.

The purpose of the present article is to review some basic ideas involved
in the theory of gauge fields from the geometrical viewpoint. The mate-
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rial presented here is not original, except possibly the idea of extending the
usual BRST complex into a double complex which could be naturally studied
through the use of spectral sequences. In section 2 we define principal and
associated fiber bundles, discuss the gauge group and its Lie algebra (with-
out entering into the difficulties of the relevant analysis), comment about
the idea of classification of p.f.b.’s, and discuss vector spaces of sections of
suitable vector bundles which are relevant for the next section. In section 3
the concept of connection is introduced in its four different variants, together
with the definitions of: curvature; gauge transformation of a connection and
its relation to the local transformations in physics, which can then be under-
stood as changes of local trivializations of the bundle; covariant derivative
and parallel transport in associated bundles; and the YM function. Finally
we discuss the total space of connections and its quotient by the gauge group.
In section 4, we briefly discuss the Bonora and Cotta-Ramusino [19] geomet-
rical interpretation of the (quantum) BRST symmetry and cohomology [20]
of gauge theories, as the Chevalley-Eilenberg cohomology of the Lie algebra
of the gauge group with coefficients in the space of functions on the space
of connections. The definition of the relevant coboundary operator only de-
pends on the principal fiber bundle in question and is independent of any
particular connection (with the possible exception of a base point), thus sug-
gesting a deep relation between the topology of fiber bundles and quantum
mechanics. The definition of the usual BRST cochain complex allows an
inmediate generalization into a doble complex whose total cohomology could
in principle be computed through the use of spectral sequences.

2 Principal and associated bundles

In this section we shall present as much information as we need about a
principal fiber bundle (or an equivalence class of principal fiber bundles)
without using the notion of a connection (gauge field), which is an additional
structure that we can impose on a principal bundle and which basically allows
to define the concepts of parallel transport in the total bundle space and of
covariant derivatives of sections (matter fields) in associated bundles (section
3), which physically lead to the concept of coupling (interaction) between the
matter and the gauge fields. As we shall see in section 4 the concept of BRST
cohomology in its algebraic formulation is a property of the bundle itself and
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does not involve any particular connection, except for the choice of a base
point. In fact it depends on the total space of connections which is a natural
object associated with the bundle. In this sense we can argue that the BRST
cohomology is a property of the ”space” where the connections live.

A smooth principal fiber bundle (p.f.b.) is a sextet ξ = (P, B, π, G, U ,ψ)
where P (total space) and B (base space) are respectively s + r- and s-
dimensional differentiable manifolds, P

π
−→ B (projection) is a smooth sur-

jective function, G is an r-dimensional Lie group (structure group) which

acts freely and smoothly on P through P ×G
ψ
−→ P , ψ(p, g) = ψg(p) (= pg),

ψ−1
g = ψg−1 , and transitively on fibers Gb = π−1({b}), b ∈ B i.e. for all

p, q ∈ Gb there exists g ∈ G such that q = pg (since for any b ∈ B, Gb is dif-
feomorphic to G, one says that G is the fiber of the bundle); U is an atlas on

ξ i.e. U = {(Uα,φα)}α∈J with open Uα ⊂ B and Pα = π−1(Uα)
φα−→ Uα ×G,

φα(p) = (π(p), γα(p)) a diffeomorphism satisfying the condition π1 ◦ φα = πα
(πα = π|Pα); γα : Pα −→ G is smooth and satisfies γα(pg) = γα(p)g.
Two p.f.b.’s ξ = (P, B, π, G,U ,ψ) y ξ′ = (P ′, B, π′, G,U ′,ψ′) are equiva-
lent (ξ ∼= ξ′) if there exist smooth maps α : P → P ′, β : P ′ → P such that:
1) π′◦α = π, π◦β = π′, 2) α, β are G-equivariant , 3) β ◦α = 1P , α◦β = 1P ′.
(For simplicity, in the following we shall use the notation ξ : G −→ P

π
−→ B,

saying that ξ is a p.f.b. on B or a G- bundle on B.)
Given ξ′ and ξ p.f.b.’s, a bundle map ξ′ −→ ξ is a triple (α, β, h) where

P ′ α
−→ P and B′ β

−→ B are smooth functions and G′ h
−→ G is a Lie group

homomorphism such that ψ ◦ (α× h) = α ◦ψ′ and π ◦α = β ◦π′; notice that
α induces β: if b′ ∈ B′, there exists p′ ∈ P ′ such that b′ = π′(p′), then β(b′) =
β ◦π′(p′) = π(α(p′)); the composition of bundle maps is given by (α′, β ′, h′)◦
(α, β, h) = (α′◦α, β ′◦β, h′ ◦h). If α and β are diffeomorphisms and h is a Lie
group isomorphism, then ξ and ξ′ are isomorphic p.f.b.’s. In particular for
P ′ = P , B′ = B and G′ = G the set G = G(ξ) = {(α, idB, idG)}α∈Diff(P ) is an
infinite dimensional Lie group [8] called the group of vertical automorphisms
of ξ or the gauge group of ξ [9]. Each element of G is represented by the
following commutative diagram:
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P ×G
α×idG−−−−→ P ×G

ψ ↓ ↓ ψ

P
α

−−−−→ P

π ↓ ↓ π

B
idB−−−−→ B

We can give a second version of the gauge group of ξ: let Γeq(P, G) = {γ :
P −→ G smooth, γ(pg) = g−1γ(p)g} with the composition law γ · γ′(p) =

γ(p)γ′(p); there is a group isomorphism G(ξ)
Σ
−→ Γeq(P, G) given by: Σ(α)(p)

is such that pΣ(α)(p) = α(p). A third version of G(ξ) will be discussed after
the concept of associated bundle is presented.

A section of a p.f.b. ξ is a smooth function B
s
−→ P such that π ◦

s = idB. One can prove that ξ is trivial, i.e. there exists a G-equivariant

diffeomorphism P
φ
−→ B×G such that π1◦φ = π if and only if ξ has a section

(given the section the global trivialization is φ(p) = (b, g) with b = π(p) and
g ∈ G such that p = s(b)g; given φ the section is s(b) = φ−1(b, e) with e the
identity in G). A local section in ξ is a smooth function sα : Uα → Pα such
that πα ◦ sα = idUα ; given the atlas U of a p.f.b. a canonical set of local
sections is σα(b) = φ−1

α (b, e).
If ξ is a p.f.b. on B and f : B′ → B is a smooth function, then the

pull-back bundle f ∗(ξ) on B′ has structure group G and total space P ′ =
f ∗(P ) = {(b′, p)|f(b′) = π(p)} ⊂ B′ × P . Clearly (p2, f, idG) is a bundle
map f ∗(ξ) → ξ. A well known construction due to Milnor [10] says that for
any Lie group G (in fact the construction extends to any topological group
G) there exists a universal principal bundle ξG : G → EG

π
→ BG (unique

up to homotopy type) such that for any G-bundle ξ′ on B′ there exists a

smooth function (unique up to homotopy) B′ f
→ BG with ξ′ ∼= f ∗(ξG);

in other words, if BB(G) denotes the equivalence classes of p.f.b.’s on B
with structure group G, and [B, BG] is the set of homotopy classes of maps
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from B to BG, then BB(G) ∼= [B, BG]; in particular for G = Z2
∼= S0,

U(1) ∼= S1 and SU(2) ∼= S3 one respectively has BS0 ∼= RP∞, BS1 ∼= CP∞

and BS3 ∼= HP∞; and BS1(S0) ∼= π1(RP∞) ∼= π0(S0) ∼= Z2, BS2(S1) ∼=
π2(CP∞) ∼= π1(S1) ∼= Z and BS4(S3) ∼= π4(HP∞) ∼= π3(S3) ∼= Z. In physical
applications, SU(2) − bundles on S4 = R4 ∪ {∞} and U(1) − bundles on
S2 = R2∪{∞} are important examples, the choice of an equivalence class of
such bundles being equivalent to the choice of an integer number, in physical
terms the winding number also called the instanton or monopole number for
the SU(2) and U(1) cases respectively.

Let X be a differentiable manifold and G × X
µ
→ X, µ(g, x) = µg(x)(=

g ·x), µ−1
g = µg−1 a smooth left action of G on X. Together with the p.f.b. ξ

this action induces the associated fiber bundle ξX : X−P×GX
πX→ B with fiber

X, total space PX = P ×G X = {〈p, x〉}(p,x)∈P×X, 〈p, x〉 = {(pg, g−1 · x)}g∈G,
base space B, projection πX(〈p, x〉) = π(p), and local triviality condition

given by Pα×G X
Φα→ Uα×X, Φα(〈p, x〉) = (π(p), γα(p) ·x) in a given atlas U

of ξ. If X = V is a real (complex) n-dimensional vector space then ξV is called
a real (complex) vector bundle of rank n. There is a bijection between the set
of equivariant functions Γeq(P, X) = {γ : P → X smooth, γ(pg) = g−1 ·γ(p)}
and the set of sections of ξX , Γ(ξX): in fact γ ∈ Γeq(P, X) induces sγ ∈ Γ(ξX)
with sγ(b) = 〈p, γ(p)〉 for any p ∈ Gb and viceversa, s ∈ Γ(ξX) induces
γs ∈ Γeq(P, X), γs(p) = x where s(π(p)) = 〈p, x〉. Pictorially,
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G

↓

P
γ

−−−−→ X

π ↓ |

B PX

s ↑↓ πX

B

If P
f
−→ P is a gauge transformation of ξ i.e. an element of G (ξ) and s

∈ Γ(ξX) then the gauge transformation of s is defined to be

s′ := sf∗(γs) (1)

with f ∗(γs) given by the diagram

X

f ∗(γs) ↗ ↑ γs

P −−−−→
f

P

then s’(b) = 〈p, γs ◦ f(p)〉 = 〈p, γs(pg)〉 = 〈p, g−1 · γs(p)〉 with p∈ Gb and g
∈ G such that f(p) = pg.

For later applications, two important bundles canonically associated to

a p.f.b. ξ are the following. Let g be the Lie algebra of G. G × G
Ad
−→
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G, (g, h) /→ Ad(g, h) = Ag(h) = g · h = ghg−1 and G × g
ad
−→ g, (g, v) /→

ad(g, v) = g ·v := Ag∗e(v) = dAg|e(v) are the left adjoint actions of G on itself
and on g, respectively. Associated with these actions one has the bundle of
Lie groups of ξ, ξG = (PG = P ×G G ≡ F, B, πG, G) and the bundle of Lie
algebras of ξ, ξg = (PG = P ×G g ≡ E, B, πg, g) which is a real vector bundle
of rank r. It is easy to see that if Γ(ξG) = Γ(F ) is the space of sections of
ξG with composition law s · s′(b) = 〈p, gg′〉 if s(b) = 〈p, g〉 and s′(b) = 〈p, g′〉,
then Γeq(P, G)

µ
−→ Γ(ξG) given by µ(γ)(b) := 〈p, γ(p)〉 with p ∈ Gb is a group

isomorphism , which provides the promised third equivalent version of the

gauge group: we have the isomorphism G(ξ)
µ◦Σ
−→ Γ(ξG). Moreover, Γ(ξg) =

Γ(E), the space of sections of ξg, is the Lie algebra of G(ξ) with exponential

map Γ(ξg)
Exp
−→ Γ(ξG) given by Exp(σ)(b) = 〈p, exp(v)〉 if σ(b) = 〈p, v〉 and

exp : g → G is the usual exponential function associated with the Lie group
G. We summarize this with the following picture:

G g

| |

F E

πG ↓↑ s
Exp

←−−−− σ ↑↓ πg

B B

Notice that locally ( or globally for trivial bundles) Pα ×G G ∼= Uα × G
and Pα×G g ∼= Uα×g; so G(ξα) ∼= Γ((ξG)α) ∼= C∞(Uα, G) : G-valued smooth
functions on Uα, and Lie (G(ξα)) ∼= Γ((ξg)α) ∼= C∞(Uα, g): g-valued smooth
functions on Uα.

The center of G is defined as the subset z of Γ(ξG) such that s(b) = 〈p, g〉
with g ∈ Z(G), the center of G; such elements are well defined since 〈p, g〉 =
〈ph, h−1gh〉 = 〈ph, g〉. Clearly z is an invariant subgroup of G and one has the
quotient group G/z. For later use the subgroup z̄ of z of constant Z-valued
sections of ξG is of interest (in particular z̄ = z for SU(n)), also Ḡ := G/z̄ is
well defined.
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For p = 0, 1, . . . , s = dim B define the infinite dimensional real vec-
tor spaces Ap := Γ(

∧p T ∗B ⊗ E): differential p-forms on B with values in
the Lie algebra of G(ξ) i.e. if α ∈ Ap then α : Γ(TB) × . . . × Γ(TB) →
Γ(E), (X1, . . .Xp) /→ α(X1, . . . , Xp) : B → E; A0 = Γ(ξg) and as we shall
see in the next section the affine space of connections on ξ, C(ξ) is mod-
elled on A1 and therefore A1 ∼= Tω(C,ω0) for any ω ∈ C and arbitrary
fixed ω0 ∈ C (base point). After Sobolev completion the Ap′s become
complete inner product linear spaces i.e. Hilbert spaces [8] with the in-
ner products defined as follows: i) let G be a compact connected simply-
connected Lie group e.g. G = SU(2); then the Killing form on g, B :
g×g → R,B(v, w) := −tr(ad(v)◦ad(w)) with ad : g → End(g), ad(v)(w) =
[v, w] the adjoint representation of g (ad is a Lie algebra homomorphism :
ad([v, w]) = ad(v)◦ad(w)−ad(w)◦ad(v)) is a positive-definite non-degenerate
symmetric bilinear form [11]; B induces the Killing-Cartan Riemannian met-
ric on G, 〈vg, wg〉g = B(Lg−1∗g(vg), Lg−1∗g(wg)), where Lg is the left transla-
tion by g; ii) let B be a compact and orientable manifold; paracompactness
and orientability respectively guarantee the existence of a Riemannian metric
and therefore of a Hodge-* operation and of a volume form *1 on B; then the
inner product on Ap is given by 〈, 〉p : Ap×Ap → R, 〈α, β〉p := −

∫

B tr(α∧∗β).

Locally, −tr(α∧∗β) = 1
p!g

k1l1 . . . gkplpB(αk1···kp, βl1···lp)×
√

det(gij)dx1∧· · ·∧dxs

(repeated indices are summed from 1 to s and at each b ∈ B, αk1···kp(b),

βl1···lp(b) ∈ g). For α ∈ Ap, ‖ α ‖p:= +
√

〈α,α〉p. It can be shown that
these inner products are invariant under gauge transformations of ξ. If
α ∈ Aq its gauge transformed under f ∈ G(ξ) is defined as follows: let
X1, . . . , Xq ∈ Γ(TB), then α(X1, . . . , Xq) ∈ Γ(ξg) and α(X1, . . . , Xq)′(b) =
〈p, Ag−1∗e◦γα(X1,...,Xq)(p)〉 with p ∈ Gb. In particular ‖ α ‖q is gauge invariant
for any α ∈ Aq.

Finally, let Γk = Γ(
∧k T ∗P ⊗g) be the vector space of differential k-forms

on P with values in g. In applications it is useful to consider the subspace
Γ̄k = Γ̄(

∧k T ∗P ⊗ g) consisting of the k-forms φ satisfying the conditions :
i) φp(X1p, . . . , Xkp) = 0 ∈ g if for some j, Xjp ∈ Vp = TpGb, the vertical
space at p, i.e. the φ′s are horizontal; ii) for X1, . . . , Xk ∈ Γ(TP ), g ∈ G
and q = pg ∈ P , ψ∗

gq(φq)(X1p, . . . , Xkp) = φq(ψg∗p(X1p), . . . ,ψg∗p(Xkp)) =
Ag−1∗e ◦ φp(X1p, . . . , Xkp) i.e. under diffeomorphisms of P induced by the
action of G on P , the φ′s transform according to the adjoint representation
of G. (Γ̄k is usually called the space of Ad−G invariant horizontal k−forms
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on P with values in g.) In particular we will show in section 3 that the spaces
Γ̄1 and A1 are isomorphic.

3 Space of connections

There are four equivalent definitions of a connection on a p.f.b. or prin-
cipal connection. To be self-contained and for practical purposes, we give
here all the definitions leaving to the reader the details of the proof of their
equivalence. A connection on a p.f.b. ξ = (P, B, π, G,U,ψ) is:

a) (Geometric definition) An assignment at each p ∈ P of a vector sub-
space Hp (horizontal space) of TpP with the properties: i) π∗p|Hp : Hp →
Tπ(p)B is a vector space isomorphism; ii) ψg∗p(Hp) = Hψg(p); iii) for all p ∈
P there exists open Up ⊂ P and a set of vector fields V1q, ..., Vsq on Up such
that for all q ∈ Up, V1q, ..., Vsq is a basis of Hq i.e. the asignment p /→ Hp

is a smooth s dimensional distribution on P . A consequence of this defi-
nition is that TpP = Hp

⊕

Vp and so for each vp ∈ TpP the decomposition
vp = hor(vp)⊕ ver(vp) is unique.

b) (Algebraic definition) A differential 1-form on P with values in g i.e. an
element ω ∈ Γ(T ∗P⊗g) with the following properties: i) ψg

∗
q(ωq) = Ag−1∗e◦ωp

if q = pg (i.e. under the action of G on P , ω transforms according to the
adjoint representation of G); ii) ωp(A∗

p) = A , for all p ∈ P and for all A ∈ g
with A∗

p ∈ Vp and A∗ ∈ Γ(TGb) the fundamental vector field associated with
A and defined by A∗ : Gb → TGb, A∗(p) = (p, A∗

p), A∗
p : C∞(Gb,R) → R,

A∗
p(f) = d

dt
f(p exp tA)|t=0. The horizontal vector space at p is then defined

as Hp := ker(ωp) and ωp(vp) = φ−1
p (ver(vp)) with g

φp
→ Vp the canonical

vector space isomorphism given by φp(A) = A∗
p. Notice that ωp(vp) = 0 iff

vp ∈ Hp i .e. ω is a vertical 1- form on P .
c) (Gauge theory definition) A set {Aα}α∈J of g-valued differential 1-

forms on {Uα}α∈J with U = {(Uα,φα)}α∈J an atlas for ξ, related by Aαb =
Ag−1∗e ◦ Aβb + Lg−1∗g ◦ gβα∗b for each b ∈ Uα ∩ Uβ and where g = gβα(b)
with gβα : Uα ∩ Uβ → G such that σα(b) = σβ(b)gβα(b). The Aα’s are
the gauge potentials in physical applications and the Uα’s are open sets in
space-time; usually Uα = B and ξ is trivial. The restriction ωα on Pα of
the unique connection ω in ξ determined by the Aα’s satisfies Aα = σ∗

α(ωα)
or Aαb = ωσα(b) ◦ σα∗b. The local relation between the Aα’s is called in
physics ”gauge transformation”; however according to the modern geometric
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terminology we shall reserve that name of the elements of the global group
G(ξ).

d) (Topological definition) A G-equivariant splitting γ of the short exact

sequence (s.e.s.) of vector bundles over P , 0 → V P
i
→ TP

π̃
→ π∗TB → 0

where V P =
∐

p∈P Vp is the vertical bundle of P , i is the inclusion, π∗(TB) ⊂
P × TB is the pull-back bundle induced by the projection P

π
→ B i.e.

π∗(TB)
p2−−−−→ TB

p1 ↓ ↓ πB

P −−−−→
π

B

and π̃ the bundle map induced by i) the map

TP
π∗−−−−→ TB

πP ↓ ↓ πB

P −−−−→
π

B

and ii) the factorization property of the pull-back, leading to π∗ = p2 ◦ π̃:

TP
π̃

−−−−→ π∗(TB)
p2−−−−→ TB

πP ↘ p1 ↓ ↓ πB

P −−−−→
π

B

(π̃(p, vp) = (p, π∗(p, vp)). For each p ∈ P , there exists (π∗(TB))p
γp
→ TpP ,

a 1-1 linear transformation of vector spaces satisfying π̃p ◦ γp = id(π∗(TB))p
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and one has the linear isomorphism Vp ⊕ (π∗(TB))p
ηp
→ TpP, ηp(vp ⊕ wb) =

ip(vp) + γp(wp). Clearly (π∗(TB))p is the horizontal space at p ∈ P and G-
equivariance of γ means the condition ii) of definition a). (Paracompactness
of P guarantees the existence of a connection on ξ.)

Let C(or C(ξ)) denote the set of all connections on ξ, its algebraic structure
and topology will be discussed later. Notice that C is a ”natural” object
associated with ξ. If ω0 is a fixed connection (base point) C is denoted by
C0 or (C,ω0). In the trivial bundle, the product connection on B × G is
canonically defined as follows: TP = TB ⊕ TG =

∐

(b,g)∈B×G TbB ⊕ TgG , so
H(b,g) := TbB for all g ∈ G (V(b,g) = TgG); the connection form ω0 is given by
ω0(b,g)

(vb ⊕ vg) = φ−1
(b,g)(ver(vb ⊕ vg)) = φ−1

(b,g)(vg) := Lg−1∗g(vg) = ve ∈ g i.e.

φ−1
(b,g) = Lg−1∗g for all b ∈ B and since Lg−1∗g : TgG → g is canonical we can

identify ω0(b,g)(vb⊕vg) ≡ vg. For the trivial bundle B
σ
→ B×G, σ(b) = (b, e) is

a global canonical section and if ω is an arbitrary connection, Ab = ω(b,e)◦σ∗b
does not vanish in general; however for the product connection the gauge
potential vanishes: in fact, A0

b(vb) = ω0(b,e) ◦ σ∗b(vb) ≡ ver(σ∗b(vb)) according

to the previous identification and σ∗b(vb) is horizontal since TbB
σ∗b→ TbB⊕ g,

σ∗b(vb) = vb ⊕ 0, so A0 = σ∗(ω0) = 0.
A connection on a p.f.b. immediately leads to the concept of horizontal

lifting of vector fields: let X be a vector field on B, then Xb ∈ TbB and we
define the horizontal lifting X̃ ∈ Γ(TP ) by X̃p = (π∗|Hp)

−1(Xb) ∈ Hp.
Let ω ∈ C and f ∈ G(ξ), then it is easy to prove that the pull-back f ∗(ω),

the gauge transformed connection, is also an element of C; a little more work
shows that f ∗(ω) is given by

f ∗(ωf(p)) = (Lγ(p)−1 ◦ γ)∗p + Aγ(p)−1∗e ◦ ωp (2)

which belongs to T ∗
p P ⊗ g and where γ = Σ(f) ∈ Γeq(P, G). The right hand

side of (2) is given by the sum of the two diagonals in the following diagrams:

g

↗ ↑ Lγ(p)−1∗γ(p)

TpP −−−−→
γ∗p

Tγ(p)G

13



g

↗ ↑ Aγ(p)−1∗e

TpP −−−−→
ωp

g

In physical language, the formulas (1) and (2) summarize the gauge trans-
formations of matter and gauge fields. Locally, for matrix Lie groups (2) is
given by the well known formula

ω′ = g−1ωg + g−1dg (3)

where g ∈ C∞(Uα, G).
The curvature of the connection ω is the differential 2-form on P with val-

ues in g given by Ω = Dω := (dω)hor ∈ Γ(Λ2T ∗P ⊗ g) with (dω)hor(X, Y ) =
dω(horX, horY ); clearly Ω is horizontal i.e. Ωp(Xp, Yp) = 0 if Xp and/or
Yp ∈ Vp and one can prove that Ω = dω + 1

2 [ω,ω]∧ where 1
2 [ω,ω]∧(X, Y )

denotes 1
2ω

a ∧ ωb(X, Y )[ea, eb] = 1
2(ω

a(X)ωb(Y ) −ωa(Y )ωb(X)) [ea, eb] in a
basis {ea}dimG

a=1 of g, for a matrix Lie group 1
2 [ω,ω]∧(X, Y ) = [ω(X),ω(Y )]. A

connection ω for which Dω = 0 is called flat. Clearly, the product connection
on the trivial bundle is flat. Under a gauge transformation f ∈ G(ξ),

f ∗(Ωf(p)) = Aγ(p)−1∗e ◦ Ωp ∈ Λ2T ∗
p P ⊗ g (4)

which locally and for matrix groups reduces to the formula

Ω′ = g−1Ωg (5)

with g ∈ C∞(Uα, G).
Let ω be a connection on P , Ω its curvature, X, Y ∈ Γ(TB) and X̃,

Ỹ their horizontal liftings. One can prove that Ω(X̃, Ỹ ) ∈ Γeq(P, g), then
Ω̃(X, Y ) := sΩ(X̃,Ỹ ) defines an element Ω̃ ∈ A2 = Γ(Λ2T ∗B ⊗E). The Yang-
Mills action is the function Y M : C → R, ω /→ Y M(ω) :=
(‖ Ω̃ ‖2)2 whose extrema (critical points in the sense of Morse theory) give
the solutions of the classical equations of motion

D2∗Ω̃ = 0 (6)
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(see below the definition of the covariant derivative and divergence). By
gauge invariance of the inner product 〈, 〉2, YM is indeed a function on the
quotient space C/G (more precisely C′/Ḡ, see below), whose topology is non-
trivial due to the non-trivial homotopy of the gauge group G. Finally, Ω
satisfies the Bianchi identity DΩ = (dΩ)hor = 0; from the physical point
of view one can say that the ”half” of the classical equations of motion
for the gauge fields has purely geometric origin (Bianchi identity), while the
”other half” or ”dynamical equations” (6) are a consequence of the somewhat
arbitrary definition of Y M .

Let ξV : V − PV
πV→ B be a real vector bundle associated with ξ : G →

P
π
→ B, ω a connection on ξ and s a section of ξV . As we saw in section 2, s

induces γs ∈ Γeq(P, V ) and if X is a vector field on B then one can prove that
X̃(γs) is also equivariant i.e. X̃(γs) ∈ Γeq(P, V ), which induces the covariant
derivative of s with respect to ω in the direction X

∇ω
V (X, s) := sX̃(γs) (7)

(For f ∈ Γeq(P, V ), Y ∈ Γ(TP ) and ω ∈ C, the covariant derivative of
f with respect to ω in the direction Y is defined as Df(Y ) := df(horY ),
clearly if Y is horizontal Df(Y ) = Y (f); for G× V

µ
→ V a linear action and

p ∈ P , (Df)p(Yp) = f∗p(Yp) + µ̃∗e(ωp(Yp))(f(p)) ∈ V with µ̃ : G → GL(V )
given by µ̃(g) := µg.)

Diagramatically
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G

↓

TP
πp

−−−−→←−−−−
X̃

P −−−−→
ω

T ∗P ⊗ g

π ↓

TB
πB−−−−→←−−−−
X

B

P
γs−−−−→−−−−→

X̃(γs)

V

|

PV

∇ω
V (X,s) ↑↓ πV

B

For brevity one omits V and ω in the symbol of the covariant deriva-
tive and writes ∇ω

V (X, s) = ∇Xs. It is easy to verify that the operator
∇ω : Γ(TB) × Γ(PV ) → Γ(PV ),∇ω(X, s) := ∇Xs is a linear connection in
ξV i.e. ∇X+X′s = ∇Xs +∇X′s, ∇fXs = f∇Xs, ∇X(s + s′) = ∇Xs +∇Xs′

and ∇X(fs) = X(f)s + f∇Xs for any X, X ′ ∈ Γ(TB), s, s′ ∈ Γ(PV ) and
f ∈ C∞(B,R). In other words, ∇ω is C∞(B,R)-linear with respect to X but
satisfies the Leibnitz rule with respect to s. The curvature of the linear con-
nection ∇ω is the operator Rω : Γ(TB)× Γ(TB) → End(Γ(PV )), (X, Y ) /→
Rω(X, Y ) : Γ(PV ) → Γ(PV ), s /→ Rω(X, Y )(s) := ([∇X ,∇Y ] − ∇[X,Y ])(s)
with [∇X ,∇Y ] = ∇X ◦ ∇Y − ∇Y ◦ ∇X . Rω is C∞(B,R)-linear with re-
spect to X, Y and s i.e. Rω(fX, Y )(s) = Rω(X, fY )(s) = Rω(X, Y )(fs) =
fRω(X, Y )(s).
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In terms of the previously defined covariant derivative one defines the (lin-
ear) covariant derivative operator with respect to ω in the associated bundle
ξV , dω : Γ(PV ) → Γ(T ∗B⊗PV ), s /→ dωs : Γ(TB) → Γ(PV ), dωs(X) := ∇Xs.
One easily verifies that dω(fs) = (df)s + fdωs. (Again the full notation
should be dV

ω ). From the physical point of view the object dωs establishes
the interaction between the matter field s and the gauge field ω. In the
following and with the purpose of practical applications we shall restrict the
discussion to the case V = g (one could of course mantain the discussion at
a general level for an arbitrary associated vector bundle ξV ).

In the same way as the De Rham exterior derivative generalizes the con-
cept of differential of a function, the concept of covariant exterior differentia-
tion generalizes the covariant derivative of sections of ξg. The obvious spaces
which replace the spaces Ωp(B) of differential p-forms on B are the spaces
Ap defined in section 2; then one defines Dp : Ap → Ap+1 with D0 = dω and
for p = 1, ..., s,Dp(α)(X1, ..., Xp+1) =

∑p+1
i=1 (−1)i+1∇Xi

(α(X1, ..., X̂i,
..., Xp+1)) +

∑

1≤i<j≤p+1(−1)i+jα([Xi, Xj], X1, ..., X̂i, ..., X̂j , ...Xp+1) . Com-
paring with the objects defined in Appendix A which lead to the Chevalley-
Eilenberg (C-E) cohomology of a Lie algebra [12], one is tempted to identify
Cp = Ap, g = Γ(TB), V = Γ(E) and δp = Dp ; however contrary to the case

in De Rham theory the sequence 0 → A0 dω→ A1 D1

→ A2 D2

→ . . .
Ds−1

→ As → 0
is not in general a complex since {Dp}s−1

p=0 is not a coboundary operator i.e.
Dp+1 ◦ Dp does not vanish in general. The necessary and sufficient con-
dition to have a coboundary and therefore a C-E cochain complex is that
the operator δω : Γ(TB) → End(Γ(E)), X /→ δω(X) : Γ(E) → Γ(E), s /→
δω(X)(s) := ∇Xs be a Lie algebra representation, but from the definition of
Rω, δω([X, Y ]) = [δω(X), δω(Y )]−Rω(X, Y ) and thus we have the result that
for each flat connection ω (if any) on a p.f.b. for which Rω = 0 one has a C-E
complex i.e. the set of operators {Dp}s−1

p=0 does indeed satisfy Dp+1 ◦Dp = 0
and therefore a C-E cohomology H∗

CE(Γ(TB), δω, Lie(G(ξ);R). One says
that the curvature of the connection is an obstruction to the existence of the
cohomology of the Lie algebra Γ(TB) with coefficients in Γ(E).

Independiently of the flatness or not of the connection ω, one can prove
that each Dp has an adjoint operator with respect to the inner product 〈, 〉p
in Ap,Dp∗ : Ap+1 → Ap, called exterior covariant divergence for p ≥ 1
and covariant divergence for p = 0, such that for any α ∈ Ap and β ∈
Ap−1, 〈α,Dp−1β〉p = 〈Dp∗α, β〉p−1. (The construction of the adjoints runs
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according to the following general procedure: Let V and W be vector spaces
with inner products 〈, 〉V and 〈, 〉W which induce isomorphisms V

µV−→ V ∗

and W
µW−→ W ∗ given by µV (v)(v′) = 〈v, v′〉V and µW (w)(w′) = 〈w, w′〉W .

This is the case e.g. of Hilbert spaces in the infinite dimensional case or for

arbitrary finite dimensional inner product spaces. If V
f
−→ W is a linear

transformation (as Ap Dp

−→ Ap+1 is), W ∗ f̄
−→ V ∗ given by f̄(γ) = γ ◦ f closes

the diagram

V
µV−−−−→ V ∗

f ↓↑ f∗ ↑ f̄

W −−−−→
µW

W ∗

and defines the composition f ∗ = µ−1
V ◦ f̄ ◦ µW which satisfies

〈f(v), w〉W = 〈v, f ∗(w)〉V .) One has the sequence

0 ←− A0 d∗ω←− A1 D1∗

←− A2 D2∗

←− · · ·
Ds−2∗

←− As−1 Ds−1∗

←− As ←− 0

which again in general is not a chain complex; clearly {Dp∗}s−1
p=0 is a boundary

i.e. Dp−1∗ ◦ Dp∗ = 0 iff {Dp}s−1
p=0 is a coboundary. (Dp∗ generalizes the

codifferential d∗ in De Rham theory.) At each p one defines the generalized
Laplace-Beltrami operator ∆p := Dp∗ ◦Dp + Dp−1 ◦Dp−1∗ (pictorially

· · ·Ap−1 Dp−1

−−−−→←−−−−
Dp−1∗

Ap
Dp

−−−−→←−−−−
Dp∗

Ap+1 · · · = · · ·Ap · · ·),

in particular ∆0 = d∗
ω ◦ dω : A0 −→ A0 with inverse (if it exists) the Green

function Gω := ∆−1
0 .

Let Γ̄1 be the space of horizontal Ad − G invariant 1-forms on P with
values in g, and C the set of connections on P . It is easy to show that

Γ̄1×C
+̂
−→ C,α+̂ω := α+ω, where the sum in the right hand side is the one

in Γ(T ∗P ⊗ g), is a free and transitive action of Γ̄1 on C; then by definition
(Γ̄1, C, +̂) is an affine space and if ω0 is a distinguished connection (base
point) in C, µ0 : Γ̄1 −→ C0, µ0(τ) := τ+̂ω0 is a bijection with inverse µ−1

0 (ω) =
ω−ω0. Therefore (C0, +̃;R, ·̃) with ω+̃ω′ := µ−1

0 (ω)+µ−1
0 (ω′)+̂ω0 and λ̃·ω :=
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λµ−1
0 (ω)+̂ω0 is a real infinite dimensional vector space. (In particular one has

the ”straight line” of connections through ω1 and ω0 for arbitrary ω1 in C0

given by ω(t) = ω0 + t(ω1 − ω0) = (1 − t)ω0 + tω1.) Notice that for the
product bundle B ×G the affine space of connections can be identified with
a vector space since the product connection is canonical; this is not the case
however in an arbitrary principal bundle.

Giving C0 the limit topology of R∞ makes it a topological space of the
homotopy type of a point i.e. contractible and therefore with zero homo-
topy groups. The choice of a vector space basis provides C0 with a global
chart and makes it an infinite dimensional differentiable manifold with tan-
gent space TωC0 at each ω ∈ C0 isomorphic to Γ̄1, the differentiable struc-
ture is however independent of the choice of basis and of ω0. The function
ρ0 : C0 −→ A1,ω /→ ρ0(ω) : Γ(TB) −→ Γ(E), ρ0(ω)(X) := sω(X̃0) where X̃0

is the horizontal lifting of X by ω0 and sω(X̃0) the element in Lie(G(ξ)) cor-

responding to the equivariant ω(X̃0) in Γeq(P, g), turns out to be a bijection,
and therefore one has the composition

Γ̄1

µ0 ↙ ↓ ρ0◦µ0

C0 −−−−→
ρ0

A1

which establishes a 1-1 and onto linear transformation between the vector
spaces Γ̄1(T ∗P ⊗g) and Γ(T ∗B⊗E); the isomorphism however is not canon-
ical (except for the trivial bundle B ×G) since ρ0 ◦ µ0 depends on ω0.

One can prove that the infinite dimensional universal principal bundle
Ḡ −→ C′ −→ C′/Ḡ where C′ is the subspace of C consisting of irreducible
connections (ω is irreducible if any two points p and p′ in P can be joined by
a horizontal curve) is not trivial since Ḡ has at least one non-zero homotopy
group [13] (see also [14]); this leads to the imposibility of a global gauge fixing,
i.e. of a continuous choice of a representative for each gauge equivalence class
of connections in C′/Ḡ. (The concept of irreducibility is closely related to that
of parallel transport. For any two points b and b′ in B and a smooth curve
γ joining them with γ(0) = b and γ(1) = b′ it can be proved that there
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exists a unique horizontal lifting γ̄p of γ in P (all tangent vectors to γ̄p are
horizontal and π◦ γ̄p = γ) passing through any p ∈ Gb. Then there exists the
diffeomorphism τγ : Gb −→ Gb′ , τγ(p) = τγ(γ̄p(0)) := γ̄p(1) which is called the
parallel transport of Gb in P through γ in B. From the physical point of view
one can imagine that when a particle is classically transported through the
path γ in space-time B in the presence of the fields {Aα}α∈J from the point
b to the point b′ its ”internal state” changes from γ̄p(0) = p (initial state) to
γ̄p(1) (final state). For a closed curve γ, there exists and is unique g ∈ G such
that γ̄p(1) = pg , and for the loop space of B at b, Ω(B, b) the corresponding
set of parallel transports Gb −→ Gb form a group Φb , the holonomy group of
the connection ω at the point b. It can be shown [15],[16] that for each p ∈ Gb

there exists a group isomorphism Jp : Φb −→ φp where φp is the Lie group
(closed subgroup of G) given by φp = {g ∈ G|∃γ ∈ Ω(B, b)|τγ(p) = pg}, the
holonomy group of the connection ω with reference point p. Also, if p and
p′ can be joined with an horizontal curve then φp = φp′ and if all points of
P can be joined with horizontal curves to a given fixed point p0 ∈ P , then
φp = G for all p ∈ P .)

Let ω ∈ C0 and η ∈ A0 = Γ(E) = Lie(G(ξ)), then dωη ∈ A1 and (ρ0 ◦
µ0)−1(dωη) ∈ Γ̄1 . So ω′ = ω + d0

ωη is in C0 with d0
ω := (ρ0 ◦ µ0)−1 ◦ dω;

ω′ is the Lie algebra or infinitesimal transformation of ω generated by η
. Notice that the ”effective” covariant derivative operator d0

ω depends on
ω0 , the distinguished element in C; only for trivial bundles or locally for
arbitrary bundles dω and d0

ω can be identified and one has the usual formula
ω′ = ω+dωη which can be formally obtained from (3) as the O(t) term in the
expansion of g = exp(tη) at t = 1 considering G(ξ) as a group of matrices and
identifying dη+[ω, η] with dωη. Similarly as in finite dimensional Lie groups,
for each η ∈ Lie(G(ξ)) one has the one parameter group of infinitesimal
transformations of ω,ω(t) = ω + td0

ωη.

4 BRST cohomology

As we mentioned in the previous section the group of the gauge transforma-
tions on a p.f.b., G(ξ) has a right action on the space of connections C(ξ),
namely C × G

Φ
−−−−→C, (ω, f) /→ Φ(ω, f) := f ∗(ω) i.e. the action is given by

the gauge transformations of the connections.
As first observed in ref. [19] this action leads to the Chevalley-Eilenberg
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cohomology of the Lie algebra of G(ξ) with coefficients in the real valued
functions (0-forms) on C(ξ), which was identified with the Becchi-Rouet-
Stora-Tyutin (BRST) cohomology [20] previously found in the context of
the quantum theory of gauge fields as a consequence of the global symmetry
naturally appearing at the end of the quantization procedure via the method
of path integration [1], the generator of the symmetry precisely being the
coboundary operator of the BRST complex. (Immediately after the discovery
in [20], an anti- BRST symmetry was found within the same context by Curci
and Ferrari [25], and it was until 1982 when Alvarez-Gaumé and Baulieu [26]
made the deep assertion that the full BRST symmetry is the gauge symmetry
in the perturbative quantum theory; moreover they proved that the gauge
invariance of the physical S-matrix elements is equivalent to the full BRST
invariance (though not gauge invariance) of the ”quantum Lagrangian”; this
point of view was extensively reviewed by Baulieu in [27].)

There are at least two reasons why the approach to the BRST symmetry
from the geometrical point of view is interesting. First, the BRST coho-
mology turns out to be a property of the chosen principal bundle ξ i.e. of
the ”space” where the gauge fields live; in this sense it can be considered
as a purely geometrical property, independent of any lagrangian theory that
one can set up on the base space of the bundle (in particular of the YM la-
grangian). Second, the BRST cohomology groups contain information about
the quantum theory of any gauge theory that one can place on the principal
bundle, in fact the gauge anomalies are contained in the cohomology groups
with ghost number larger than or equal to one, as it is discussed in refer-
ences [19] and [21]. (Local ghost and anti-ghost fields, scalar particles with
Fermi statistics, naturally appear in the path integral quantization when one
expresses the Faddeev-Popov determinant in terms of the algebraic genera-
tors of an infinite dimensional complex Grassmann algebra with involution.
In the geometrical description the (global) ghost field is the Maurer-Cartan
form of the gauge group.) This fact again suggests a deep connection be-
tween the topology of fiber fundles and the quantum theory of gauge fields
(connections) as it was recently emphasized, though in an apparently dif-
ferent context, by Atiyah [22] and Witten [23]. (Incidentaly in the recent
literature([21],[24]) there are efforts towards the explicit calculation of the
BRST cohomology groups for several different concrete situations using the
technique of spectral sequences.)

Using the proposition of Appendix C one makes the identifications G =
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G(ξ) and M = C(ξ); then for each p ∈ {0, 1, 2, . . .} one has the representation
of the Lie algebra of the gauge group on the differential p-forms over the space

of connections given by A0 = Lie(G(ξ))
φp
→ End(Ωp(C(ξ))), φp(s) = Ls∗

where s∗ is the fundamental vector field on C(ξ) associated with s and Ls∗

is the Lie derivative with respect to s∗, so for any real valued f ∈ Ω0(C(ξ)),
s∗ω(f) = d

dt
f ◦ Φ(ω, (µ ◦ Σ)−1(Exp ts))|t=0 = d

dt
f(ω + td0

ωs)|t=0 where the
last expression for s∗ω(f) depends on the base point ω0 in C (as mentioned
in section 3 for trivial bundles ω0 is canonical and d0

ω can be identified with
dω). Defining the spaces Cνp (ξ) of alternating continuous (see below) functions
A0×. . .×A0 (ν times)

α
−−−−→Ωp(C(ξ)) for ν = 1, 2, 3, . . . and C0

p(ξ) = Ωp(C(ξ))
for ν = 0, with C(ξ) and A0 respectively given suitable Sobolev k- and (k+1)-
norm completions with integer k ≥ [dimB

2 ] + 1 (these completions guarantee
that the action C × G → C extends to a smooth action Ck × Gk+1 → Ck [8];
see also reference [28] for the case k = 3, G = SU(2) and B a compact
4-manifold), one has the double complex

C0
0(ξ)

d0
0−−−−→ C0

1(ξ)
d0
1−−−−→ C0

2(ξ)
d0
2−−−−→ · · ·

δ00 ↓ δ01 ↓ δ02 ↓

C1
0(ξ)

d1
0−−−−→ C1

1(ξ)
d1
1−−−−→ C1

2(ξ)
d1
2−−−−→ · · ·

δ10 ↓ δ11 ↓ δ12 ↓

...
...

...

with differentials
δνp : Cνp (ξ) → Cν+1

p (ξ), δνp (α)(s0, . . . , sν) = Σν
i=0(−1)iLs∗(α(s0, . . . , ŝi, . . . , sν))

+Σ0≤i<j≤ν(−1)i+jα([si, sj], s0, . . . , ŝi, . . . , ŝj, . . . , sν) and dνp : Cνp (ξ) → Cνp+1(ξ),
dνp(α)(s1, . . . , sν) = d(α(s1, . . . , sν)) where d is the De Rham operator on the
infinite dimensional manifold C (the double complex is like that in appendix
C, except that now it extends to infinity also in the horizontal direction).
The continuity condition for α is given as follows: if α ∈ Cνp (ξ) then the map
αω,ξ1,...,ξp : A0 × · · ·× A0(ν times) → R, (s1, ..., sν) /→ αω,ξ1,...,ξp(s1, ..., sν) :=
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α(s1, ..., sν)(ξ1, ..., ξp)(ω) is continuous for all ω ∈ Ck and ξ1, ..., ξp ∈ V ect(Ck).
The usual BRST complex [19] is the Chevalley-Eilenberg complex consisting
of the first column in the previous ”lattice” which defines the BRST coho-
mology of the principal bundle ξ as H∗

BRST (ξ)
= ⊕∞

ν=0H
ν
BRST (ξ) = ⊕∞

ν=0
kerδν

0

imδν−1
0

(δ−1
0 = 0), ν is the ghost number and the

coboundary {δν0}
∞
ν=0 is identified with the BRST nilpotent operator appearing

in the quantum theory. The columns corresponding to p = 1, 2, . . . and the
corresponding differentials have been defined here in a formal way and we do
not have yet a physical interpretation (if any) of them. Following Appendix
B one has an associated total complex (K, D) with Kn(ξ) = ⊕ν+p=nCνp (ξ)
and Dn = ⊕ν+p=n(δνp ⊕ (−1)νdνp) and therefore a total cohomology H∗(K, D)
which we might call the total BRST cohomology of a p.f.b. ξ and denote by
H∗

BRST (ξ). We believe that the possible implications and interpretations of
this definition deserves further research.

In reference [19] a geometric interpretation of the above Lie algebra co-
homology in terms of the vertical part of the De Rham exterior derivative
on the space of irreducible connections is given; however we believe that an
interpretation in terms of the topological (Eilenberg-Steenrod) cohomologies
of the relevant spaces of the bundle (Lie group, total space and base space)
should be more conclusive towards establishing a relationship between quan-
tum mechanics and topology [29].
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Appendix A. Cohomology of Lie algebras [12]

Let V and g respectively be a vector space and a Lie algebra over the field
k of real or complex numbers, and φ : g −→ Endk(V ) a representation of g
on V i.e. a k-linear map such that φ([A, B]) = φ(A) ◦ φ(B)− φ(B) ◦ φ(A).
Define the vector spaces C0 := V and for p ∈ Z+, Cp := {t : g × . . . ×
g(p times) −→ V, t multilinear totally antisymmetric (alternating)} . One
defines the set of linear operators δp : Cp −→ Cp+1, δp(t)(v1, . . . vp+1) :=
Σp+1

i=1 (−1)i+1φ(vi)(t(v1, . . . , v̂i, . . . , vp+1))
+Σ1≤i<j≤p+1(−1)i+jt([vi, vj], v1, . . . , v̂i, . . . , v̂j, . . . , vp+1)) which satisfy
δp+1 ◦ δp = 0 i.e. {δp}∞p=0 is a coboundary. This leads to the complex

0 −→ C0 δ0
−→ C1 δ1

−→ C2 δ2
−→ C3 δ3

−→ · · · with p-cocycles Zp = ker δp

and p-coboundaries Bp = im δp−1 , and one defines the Chevalley-Eilenberg
cohomology of g with respect to the representation φ of g on V (or ”with
coefficients in V ”) given by the graded group (direct sum of abelian groups)
H∗

CE(g,φ, V ; k) = ⊕∞
i=0H

i
CE(g,φ, V ; k) with H i

CE(g,φ, V ; k) = Z i/Bi. In
particular H0

CE = {t ∈ V | t ∈ ker(φ(v)), ∃v ∈ g} = ∩v∈gker(φ(v)).

Appendix B. Double Complexes and Total Co-
homology

A double (cochain) complex (C, ∂, d) is a double array i.e. a ”lattice” of
abelian groups Cp,q, p, q = 0, 1, 2, ..., with differentials (group homomor-
phisms) dp,q : Cp,q → Cp,q+1 and ∂p,q : Cp,q → Cp+1,q, dp,q+1 ◦ dp,q =
∂p+1,q ◦ ∂p,q = 0, satisfying ∂p,q+1 ◦ dp,q = dp+1,q ◦ ∂p,q i.e. the commuta-
tive diagrams

Cp,q dp,q

−−−−→ Cp,q+1

∂p,q ↓ ↓ ∂p,q+1

Cp+1,q −−−−→
dp+1,q

Cp+1,q+1

(C, ∂, d) induces a total (simple) cochain complex (K, D) as follows: for n =
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0, 1, 2, ... one defines the abelian groups Kn = ⊕p+q=nCp,q and the operators
Dn = ⊕p+q=nDp,q with Dp,q := ∂p,q ⊕ (−1)pdp,q ; then it is easy to verify
that Dn : Kn → Kn+1 are differentials i.e. group homomorphisms satisfying
Dn+1 ◦Dn = 0, thus leading to the complex

K0 D0

−→ K1 D1

−→ K2 D2

−→ · · ·

More pictorially

where the ◦ dots denote the groups Cp,q.
The cohomology of the simple complex (K, D), H∗(K, D) = ⊕∞

n=0H
n(K,

D), Hn(K, D) = kerDn/imDn−1 (D−1 = 0) is called the total cohomology of
the original double complex (C, ∂, d).

A technique to compute H∗(K, D) is that of spectral sequences (SS) [17].
A double complex has two filtrations, each having an associated SS, and both
SS’s converge to the total cohomology.

Appendix C. Group Actions and Double Com-
plexes [18]

Proposition: Let G be a Lie group, M a diffentiable manifold and M×G
ψ
−→

M a right action of G on M . Associated with this action there exists a double
cochain complex involving the Lie algebra of G and the differential forms on
M .

Proof: i) Let A ∈ g = Lie(G); its fundamental vector field A∗ is the vector
field on M given by A∗

x(f) = d
dt

(f(xexptA))|t=0 = d
dt

(f ◦ ψ(x, exptA))|t=0 for
any x ∈ M and f ∈ C∞(M,R).
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ii) If Φ(A∗) = {φt}t∈(−ε,ε) is the flow of A∗ then the Lie derivative of a
tensor τ on M with respect to A∗ is the tensor of the same type LA∗(τ) =
d
dt
φ∗

t (τ)|t=0 where φ∗
t (τ) is the pull-back of τ by φt; in particular this holds

for p-forms on M and then for each p = 0, 1, 2, ..., n = dim M one has the
operator LA∗ : Ωp(M) → Ωp(M).

iii) For each fixed p ∈ {0, . . . , n} one defines the infinite set of vector
spaces: Cνp = {g × . . . × g (ν times)

α
−→ Ωp(M),α alternating} for ν ∈ Z+

and C0
p = Ωp(M) for ν = 0.

iv) The (canonical) representation φp : g −→ End(Ωp(M)), φp(A) := LA∗

of g on Ωp(M) (φp is a Lie algebra homomorphism since L[A,B]∗ = L[A∗,B∗] =
[LA∗ ,LB∗ ]) induces the infinite (cochain) complex

C0
p

δ0p
−→ C1

p

δ1p
−→ C2

p

δ2p
−→ · · ·

where {δνp}
∞
ν=0 is the coboundary δνp : Cνp → Cν+1

p , α /→ δνp (α): g×. . .×g (ν+1

times) → Ωp(M), δνp (α)(A0, . . . , Aν) := Σν
i=0(−1)iLA∗

i
(α(A0, . . . , Âi, . . . ,

Aν)) +Σ1≤i<j≤ν(−1)i+jα([Ai, Aj], A0, . . . , Âi, . . . , Âj , . . . , Aν) (it holds δν+1
p ◦

δνp = 0) which in turn induces the p-th C-E cohomology of g with coefficients
in Ωp(M), H∗

CE(g, Ωp(M)) = ⊕∞
ν=0H

ν
CE(g, Ωp(M)) with Hν

CE(g, Ωp(M)) =
kerδν

p

imδν−1
p

.

v) Regarding the set of the previously defined C-E complexes as n + 1
infinite (vertical) columns one defines horizontal operators dνp : Cνp → Cνp+1,
α /→ dνp(α) : g × . . .× g (ν times) → Ωp+1(M), dνp(α)(A1, . . . , Aν)
:= d(α(A1, . . . , Aν)) where d is the De Rham operator of the manifold M ;
the commutativity of the Lie derivative with the De Rham operator i.e.
LX ◦d = d ◦LX for all X ∈ Γ(TM) implies that each vertical ladder {dνp}

∞
ν=0

is a cochain complex homomorphism and one has the following ”lattice” of
commuting diagrams:
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C0
0

d0
0−−−−→ C0

1

d0
1−−−−→ C0

2

d0
2−−−−→ . . .

d0
n−2

−−−−→ C0
n−1

d0
n−1

−−−−→ C0
n

δ00 ↓ δ01 ↓ δ02 ↓ δ0n−1 ↓ δ0n ↓

C1
0

d1
0−−−−→ C1

1

d1
1−−−−→ C1

2

d1
2−−−−→ . . .

d1
n−2−−−−→ C1

n−1

d1
n−1−−−−→ C1

n

δ10 ↓ δ11 ↓ δ12 ↓ δ1n−1 ↓ δ1n ↓

C2
0

d2
0−−−−→ C2

1

d2
1−−−−→ C2

2

d2
2−−−−→ . . .

d2
n−2

−−−−→ C2
n−1

d2
n−1

−−−−→ C2
n

δ20 ↓ δ21 ↓ δ22 ↓ δ2n−1 ↓ δ2n ↓

...
...

...
...

...

Each ”square” is of the form

Cνp
dν

p
−−−−→ Cνp+1

δν
p ↓ ↓ δν

p+1

Cν+1
p −−−−→

dν+1
p

Cν+1
p+1

and it holds δνp+1 ◦ dνp = dν+1
p ◦ δνp .

vi) d2 = 0 implies dνp+1 ◦ dνp = 0 and therefore the above lattice of abelian
groups and differentials is a double complex (C, δ, d). !

From appendix B one has the total complex (K,D), with groups Km =
⊕ν+p=mCνp and coboundaries Dm = ⊕ν+p=mDν

p : Km → Km+1 for m =
0, 1, 2, . . . with Dν

p = δνp ⊕ (−1)νdνp, which in turn induces the total coho-
mology H∗(K,D) of the original double complex (C, δ, d).
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