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Abstract

Super coset spaces play an important role in the formulation of super-
symmetric theories. The aim of this paper is to review and discuss the
geometry of super coset spaces with particular focus on the way the geo-
metrical structures of the super coset space G/H are inherited from the
super Lie group G. The isometries of the super coset space are discussed
and a definition of Killing supervectors – the supervectors associated with
infinitesimal isometries – is given that can be easily extended to spaces
other than coset spaces.

PACS numbers: 02.40.-k, 11.30.Pb, 12.60.Jv

1 Introduction

Coset spaces are widely used in a variety of contexts, for example as target
spaces within string theory or more generally within non-linear sigma mod-
els. For supersymmetric theories of this kind, a thorough understanding of the
geometry of super coset spaces is therefore essential. On the other hand, super-
symmetric theories with coset spaces as the base naturally have a superspace
formulation in terms of super coset spaces, the most prominent examples being
supersymmetric theories in flat space. These can be formulated in terms of flat
superspace, which is the quotient of the super Poincaré group by its Lorentz
subgroup. We aim to provide in this paper a firm mathematical basis for the
geometry of super coset spaces, collating and making rigorous results often only
sketched in the literature and extending results only discussed for ordinary coset
spaces to the supersymmetric case.

The geometry of a (super) coset space G/H, i.e. its frame and connection,
can be determined in terms of the geometry of G. In fact, it is well known that
by pulling back the Maurer-Cartan one-form on the group G to the base G/H
one can obtain the frame and connection on the base, see e.g. [1, 2]. While
this is often stated in the literature a geometric explanation of this is usually
omitted. Treating the super Lie groupG as a principal bundle over G/H we give
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2 1 INTRODUCTION

a self-contained account of the geometry of coset spaces focussing in particular
on the relation between the geometry in the bundle and the geometry in the
base.

Coset spaces are characterized by high symmetry; most of their isometries
can be derived from the left action of G on the coset space and as such the
isometry group of G/H contains G. On the other hand, the isometries of
the coset space can be determined directly from its geometry: In the case of
ordinary space the infinitesimal isometries, i.e. the Killing vector fields, are
defined as the directions along which the metric tensor is dragged into itself. In
the case of superspace – where the tangent space group of the supermanifold
under consideration must correspond to the even Grassmann extension of the
tangent space group of the body of the supermanifold, i.e. to SO(p, q) – such a
definition is no longer feasible. This is as, in this case, there exists no physically
natural superspace generalization of the concept of metric [3, 4]: If one were to
introduce a supermetric the tangent space group of the supermanifold derived
from this would be too large, and hence would not correspond to the even
Grassmann extension of SO(p, q), thus rendering the theory unphysical. While
this problem is often noted in the literature its relevance to the definition of
Killing supervectors is seldom elucidated. One aim of this paper is therefore
to make rigorous and clarify the notion of Killing supervector fields in the
context of superspace. As we shall see it is possible to define Killing supervector
fields as those infinitesimal transformations that leave the frame and connection
invariant up to a gauge transformation, see also [3]. This condition can be
rephrased in terms of the commutator of some generalized Lie derivative and
the covariant derivative, cf. [3]. In the case of super coset spaces we shall see
that this definition reproduces the Killing supervectors derived from the left
action of the group on the super coset space which justifies this definition also
for more general spaces.

Derivations such as the covariant derivative and generalized Lie derivative
are an integral part of the geometry of coset spaces. We give a geometric
interpretation to derivations such as these on G/H by defining them in terms
of maps on the bundle G and associated bundles.

The organization of this paper is as follows: First we briefly review the con-
struction of G as a principal bundle over the coset space G/H. We then discuss
the geometry of G focussing in particular on its invariant vector fields and the
Maurer-Cartan form in the bundle. In Sections 4–6 we discuss in detail how the
geometry in the base, i.e. connection and frame, torsion and curvature, can be
obtained from the geometry in the bundle. In Section 7 we introduce associated
bundles and briefly review some aspects of supertensor bundles that will be im-
portant when discussing derivations on associated bundles. We then introduce
those (local) bundle maps that will allow us to define in Section 10 derivations
on supertensor bundles, such as the covariant derivative, the Lie derivative and
the so-called H-covariant Lie derivative. As we shall see in Section 11, Killing
supervectors, i.e. the supervectors associated to infinitesimal isometries, can be
defined in terms of a so-called generalized Lie derivative which combines an
arbitrary transformation in the base with an arbitrary gauge transformation in
the bundle, and which we require to commute with the covariant derivative.
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Finally, in Section 12, we shall apply the concepts and methods introduced in
the previous sections to flat superspace as an example.

2 G as a principal bundle over G/H

Consider a super Lie group G with super Lie subgroup H. A super Lie group
shall be defined in the sense of DeWitt, see [5], as a group which is also a
supermanifold and which has a differentiable group multiplication. We define
the super coset space G/H via the equivalence of group elements in G under
right multiplication by an element of H,

G/H = {gH : g ∈ G}. (2.1)

The coset space G/H naturally inherits a supermanifold structure from the
supermanifold G [5]. The geometry of the coset space G/H is also inherited
from G. To study this we consider G as a principal bundle over G/H with
fibre H. The construction in the non-supersymmetric case [6, 7] is directly
transferred to the supersymmetric case. First we have the bundle projection
map

π : G→ G/H

: g 7→ gH. (2.2)

The inverse image π−1(p) of a point p in the base gives us the fibre above that
point which is clearly isomorphic to H. To define the local trivializations of the
bundle we consider charts Ui ⊂ G/H on the base. Within a particular chart it
is always possible to choose a local section. By a local section we mean a map
Li : Ui → π−1(Ui) which satisfies π ◦ Li = idUi . The local section Li provides
us with a coset representative Li(p) for any p ∈ G/H. Using this local section
we define the canonical local trivialization for the bundle

φi : Ui ×H → π−1(Ui)

: (p, h) 7→ Li(p)h. (2.3)

Note that the inverse is easily constructed as φ−1
i (g) = (π(g), Li(π(g))−1g).

The transition functions for Ui ∩ Uj 6= ∅ are defined as

tij(p) = φ−1
i,pφj,p : H → H, (2.4)

where φi,p(h) ≡ φi(p, h). The map tij(p) is clearly just left multiplication
by an element of H, and we shall use the notation tij(p)(h) = tij(p)h. The
trivializations are then related as

φj(p, h) = φi(p, tij(p)h). (2.5)

The structure group is thereforeH and acts on the fibreH by left multiplication.
We thus have that G is a principal bundle over G/H with structure group H.
We denote this as G = P (G/H,H).
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3 Group geometry

3.1 Invariant vector fields

Let us denote the super Lie algebra associated to the super Lie group G by
g. The generators of g will be denoted by Tp, p = 1, . . . ,dim g; they have
definite parity, either even or odd and we will set (−1)p = 1 for Tp even and
(−1)p = −1 for Tp odd. The index in the exponent of (−1) is as such to be
understood as taking the values 0 or 1 according to whether it is even or odd.
A general element of the super Lie algebra is then expanded in the generators
as X = XpTp, where the Xp are pure supernumbers chosen such that X is
even. As such the super Lie algebra consists of even elements only, in fact g can
be viewed as the even part of a larger Berezin superalgebra [3]. The super Lie
group G can then be obtained from its super Lie algebra via the exponential
mapping.

For each element of the algebra A ∈ g we can construct two different super-
vector fields, A♯ and A♭, defined by their action on a function f on G as

A♯
∣

∣

g
[f ]

def
=

d

dt

(

f
(

getA
))

∣

∣

∣

t=0
(3.1a)

A♭
∣

∣

g
[f ]

def
=

d

dt

(

f
(

etAg
))

∣

∣

∣

t=0
. (3.1b)

We have thus obtained two maps from the algebra g to the space of vector fields
on G given by ♯ : A 7→ A♯ and ♭ : A 7→ A♭. Clearly these maps are linear.

The definition of the vector fields given above may be modified in the case
that A is an odd element of the Berezin superalgebra simply by choosing the
parameter t to be an odd supernumber. This ensures that etA is still a group
element. This way it possible to define the supervectors Tp

♯ and Tp
♭ for all p.

It is easy to see that A♯ is a left-invariant vector field, whereas A♭ is right-
invariant:

Lg1∗

(

A♯
∣

∣

g

)

= A♯
∣

∣

g1g
(3.2a)

Rg1∗

(

A♭
∣

∣

g

)

= A♭
∣

∣

gg1
. (3.2b)

Here Lg and Rg are the group operations of left and right multiplication by
g ∈ G, the lowered asterisk (∗) is used to denote the corresponding induced
map on vector fields (the pushforward). The vector fields also satisfy

Rg1∗

(

A♯
∣

∣

g

)

=
(

Adg1−1A
)♯ ∣

∣

gg1
(3.3a)

Lg1∗

(

A♭
∣

∣

g

)

= (Adg1A)♭
∣

∣

g1g
. (3.3b)

Here Adg is the adjoint action of the group on its algebra which is induced from
the adjoint action of the group on itself. For the latter we also use the notation
Adg. We have Adgh = ghg−1 and thus, in a matrix representation, the adjoint
action on the algebra is thus just AdgA = gAg−1.
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Under the Lie bracket of supervector fields we find

[A♯, B♯] = [A,B]♯ (3.4a)

[A♭, B♭] = −[A,B]♭ (3.4b)

[A♯, B♭] = 0. (3.4c)

The bracket occurring on the right is the super Lie algebra bracket.

3.2 The Maurer-Cartan one-form

The Maurer-Cartan one-form ζ is a super Lie algebra valued one-form defined
on the super Lie group as

ζ(A♯)
def
= A, ∀A ∈ g. (3.5)

Note that one should be careful when dealing with forms acting on vectors in
the case of supersymmetry, our conventions are given in Appendix A.1.

The Maurer-Cartan one-form is clearly left-invariant, whereas under right
translations it transforms as

R∗
gζ = Adg−1ζ. (3.6)

The Maurer-Cartan form can be shown to satisfy

dζ + ζ ∧ ζ = 0, (3.7)

which is the so-called Maurer-Cartan structure equation.

When working in a matrix representation of the group the Maurer-Cartan
form may be represented as ζ = g−1dg [8]. Throughout the remainder of this
paper we will occasionally work in a matrix representation where it is more
convenient.

4 The connection on G/H

In this section we will construct a connection on the coset space G/H. We will
see that this connection is naturally induced from the group G, in particular
from the Maurer-Cartan form. A connection on a fibre bundle is defined quite
abstractly in terms of a decomposition of the tangent space into so-called ver-
tical and horizontal subspaces. While this definition may not be the definition
of connection familiar from physics it will provide us with a deeper insight into
the geometry. In Section 4.3 we will review how this abstract definition relates
to the familiar notion of connection in physics.

4.1 Horizontal and vertical subspaces

Geometrically a connection on the bundle G can be thought of as a decompo-
sition of the tangent space to the super Lie group, TgG = T v

gG ⊕ T h
g G, into
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vertical and horizontal subspaces, respectively. This decomposition must be
supersmooth and the horizontal subspaces must satisfy

T h
ghG = Rh∗T

h
g G. (4.1)

Such a decomposition of the tangent space can be achieved by utilizing the
left-invariant vector fields and the natural decomposition of the algebra arising
from the subgroup H.

Let us denote the super Lie algebra of the subgroupH by h. We then choose
a subspace k in g complementary to h, i.e.

g = k ⊕ h. (4.2)

The generators of the full algebra Tp, p = 1, . . . ,dim g, can then be split up into
the generators of h, HI , I = 1, . . . dim h, and the remaining generators KA,
A = 1, . . . dim k. The structure constants fpq

r of g are then defined by

[HI ,HJ ] = fIJ
KHK (4.3a)

[HI ,KA] = fIA
JHJ + fIA

BKB (4.3b)

[KA,KB ] = fAB
JHJ + fAB

CKC . (4.3c)

The bracket here is the graded Lie bracket which satisfies the symmetry [Tp, Tq] =
−(−1)pq[Tq, Tp].

If k can be chosen such that the structure constants fIA
J vanish, i.e. [h, k] ⊆

k, then the group G is said to be reductive. As we shall see this is an important
property and we shall assume that G is reductive throughout the remainder of
this paper.

The decomposition of the algebra in Eq. (4.2) naturally gives a decomposi-
tion of the tangent space to the group into horizontal and vertical subspaces.
We may use the generators of the algebra to define a basis of the vertical and
horizontal subspaces. We take {HI

♯} to be a basis of T v
gG and {KA

♯} to be a

basis of T h
g G, i.e.

T v
g G ≡ {XIHI

♯
∣

∣

g
: XI ∈ R∞} (4.4a)

T h
g G ≡ {XAKA

♯
∣

∣

g
: XA ∈ R∞}, (4.4b)

where here R∞ denotes the real supernumbers. This decomposition is clearly
smooth and of the form TgG = T v

gG⊕T h
g G. From Eq. (3.3a) and the reductive

property f the group it is easily seen that Eq. (4.1) is satisfied.

Given a notion of horizontal and vertical vectors, it is natural to define
horizontal and vertical differential forms. A differential form on the bundle is
called vertical (respectively horizontal) if it vanishes whenever one of the vec-
tors on which it is evaluated is horizontal (respectively vertical). For example,
expanding the Maurer-Cartan form, Eq. (3.5), in the algebra generators we
have

ζ = ζAKA + ζIHI . (4.5)
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It is then easy to see that

ζA(KB
♯) = δB

A ζA(HJ
♯) = 0

ζI(KB
♯) = 0 ζI(HJ

♯) = δJ
I . (4.6)

Hence ζA will vanish when acting on any vertical vector whereas ζI vanishes on
any horizontal vector. ζA is therefore a horizontal form and ζI a vertical form.
Eq. (4.5) can thus be thought of as a decomposition of the Maurer-Cartan form
into its horizontal and vertical parts.

4.2 The connection one-form

It is usually more convenient to define a connection in terms of a connection

one-form. This is a super Lie algebra valued one-form, Ω, on the bundle and it
is required to satisfy

Ω(HI
♯) = HI , I = 1, . . . ,dim h (4.7a)

R∗
hΩ = Adh−1Ω, ∀h ∈ H. (4.7b)

The horizontal subspace is then defined as the kernel of Ω, i.e.

T h
g G = {X ∈ TgG : Ω(X) = 0}. (4.8)

We will now show that the vertical part of the Maurer-Cartan form, ζIHI ,
can be taken to be the connection one-form consistent with the definition of
horizontal and vertical subspaces defined in Eqs. (4.7a, 4.7b). Firstly, as ζAKA

is horizontal, it follows immediately from Eq. (3.5) that

(ζIHI)(HJ
♯) = HJ , J = 1, . . . ,dim h. (4.9a)

We also find immediately from Eq. (3.6) that

R∗
h(ζ

IHI) = Adh−1(ζIHI), ∀h ∈ H. (4.9b)

These two equations can then be compared directly with Eqs. (4.7a, 4.7b). Also,
as the form ζIHI is vertical, its kernel is precisely the horizontal subspace. Thus
we may choose the connection one-form as Ω = ζIHI .

4.3 The local connection and parallel transport

The definition of a connection in terms of horizontal and vertical subspaces
may seem a little abstract, and the connection one-form Ω is not the connection
usually dealt with in physics. In this section we shall review the relation of this
abstract definition of connection to the more familiar notion of connection in
physics. To do this we shall consider parallel transport.

Given a curve γ : [0, 1] → G/H in the base we define a horizontal lift of
γ to be a curve γ̃ : [0, 1] → G in the bundle which satisfies π ◦ γ̃ = γ and for
which the tangent vector to γ̃ lies in T h

γ̃(t)G. For each point g ∈ π−1(γ(0)) there

is a unique horizontal lift of γ for which γ̃(0) = g. Further, for h ∈ H, the
horizontal lift passing through gh is simply γ̃(t)h.
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Consider a point g0 ∈ G above γ(0), and construct the horizontal lift γ̃ of
γ satisfying γ̃(0) = g0. Then the value g1 = γ̃(1) is said to be the parallel

transport of g0 along γ.
Let us now analyze this construction as viewed from a local trivialization.

Let us choose the local section1 such that L(p) = g0, we may then decompose
the horizontal lift of γ as

γ̃(t) = L(γ(t))h̃(t), (4.10)

where h̃(0) = 1. Then, if we let X be the tangent vector to γ and let X̃ be the
tangent vector to γ̃, it is possible to show (see Appendix A.2) that

X̃ = Rh̃(t)∗
(L∗X) + (h̃(t)−1dh̃(X))♯. (4.11)

Note that this result is here written in a matrix representation. Also, d is
the exterior derivative on the base G/H and should not be confused with the
exterior derivative on the group G which we used in Section 3.2. Now, since X̃
is horizontal we have that Ω(X̃) = 0, hence using Eqs. (4.7a, 4.7b) we find

0 = Adh̃(t)−1Ω(L∗X) + h̃(t)−1dh̃(X)

= h̃(t)−1

(

L∗Ω(X)h̃(t) +
d

dt
h̃(t)

)

. (4.12)

With this equation in mind we introduce the local connection, ω(L), a super Lie
algebra valued one-form in U , defined as

ω(L) def
= L∗Ω. (4.13)

Thus we see from Eq. (4.12) that

d

dt
h̃(t) = −ω(L)(X)h̃(t). (4.14)

From this equation, or its formal solution in terms of the path ordered expo-
nential, we see that the local connection is precisely the connection familiar to
us from physics. This will become even more apparent in Section 10.1 when we
work with associated bundles.

Note that ω(L) clearly depends on the choice of local section. The choice of
local section can be seen to be precisely what we would naturally call the choice
of gauge. This view of gauge choice is one of the many nice aspects of working
in the language of bundles. To see this in a little more detail let us consider the
connection for two different choices of local section: L(p) and L′(p). The two
local sections can clearly be related by a right multiplication, L′(p) = L(p)h(p),
with h(p) ∈ H dependent on p ∈ U . It is possible to show (see Appendix A.2)
that for a vector X ∈ TpU we have

L′
∗X = Rh∗(L∗X) + (h−1dh(X))♯. (4.15)

From this it follows directly that

ω(L′)(X) = ω(Lh)(X) = h−1ω(L)(X)h + h−1dh(X).
1We will drop subscript i’s where we only need to consider one chart.
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Since X is arbitrary we deduce

ω(Lh) = h−1ω(L)h+ h−1dh, (4.16)

which is the usual transformation rule for a connection under the gauge trans-
formation given by the local field h(p) ∈ H.

5 The frame and coframe on G/H

In the previous section we have discussed how the connection one-form on the
bundle G can be taken to be the vertical part of the Maurer-Cartan one-form.
When pulled back under a local section this gives us the usual connection on
the base. It is then natural to ask what the horizontal part of the Maurer-
Cartan form is associated with. We will show in this section that it is naturally
associated with a frame.

Consider the pullback of the horizontal components of the Maurer-Cartan
form. We define

EA(L)
def
= L∗ζA. (5.1)

Note that a coframe in U is defined as a set of dim(G/H) one-forms that are
linearly independent at each p ∈ U . Since A = 1, . . . ,dim(G/H) there is clearly
the right number of EA(L); all that remains is to show pointwise linear indepen-
dence. Consider a point p ∈ U . Suppose we introduce a set of supernumbers
λA and impose that

∑

AE
A
(L)|pλA = 0. Acting on an arbitrary vector v ∈ TpU

and using the definition of pullback this gives
∑

A

(ζAλA)(L∗v) = 0.

Now, since ζA is horizontal it vanishes when acting on any vertical vector Vvert ∈
T v
L(p)G and hence we have

∑

A

(ζAλA)(L∗v + Vvert) = 0.

The vector L∗v + Vvert can be seen to be a completely arbitrary supervector in
TL(p)G, this follows from the fact that an arbitrary curve g(t) ∈ π−1(U) can be
decomposed in terms of the local trivialization as g(t) = L(γ(t))h(t) where γ(t)
is a curve in U , and h(t) ∈ H. So let us expand L∗v + Vvert in the basis of the

K♯
A as L∗v + Vvert = V AKA

♯, where V A are therefore arbitrary supernumbers
of parity A since L∗v + Vvert is even. We then have

∑

A

V AλA = 0.

Choosing V A appropriately we see that λA = 0 for all A, hence the EA(L) are
linearly independent.

The dual frame of vectors, E
(L)
A , satisfying EB(L)(E

(L)
A ) = δA

B, is given by

E
(L)
A

∣

∣

p
= π∗

(

KA
♯
∣

∣

L(p)

)

. (5.2)
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This is easily checked as

EB(L)(E
(L)
A ) = L∗ζB(π∗KA

♯)

= ζB(L∗π∗KA
♯)

= ζB(KA
♯ + Vvert)

= δA
B .

Here we have noted that the horizontal part of the supervector L∗π∗KA
♯ is just

KA
♯, its vertical part we have called Vvert which vanishes when acted on by ζB.

The final line then follows immediately from Eq. (4.6).
Let us consider the behavior of the frame under a gauge transformation,

which, as remarked in Section 4.3, is merely a change of local section. We again
introduce two local sections L(p) and L′(p) = L(p)h(p) and will consider how

the frame E
(L′)
A is related to the frame E

(L)
A . First consider, for A ∈ k and f

some arbitrary function on G,

π∗
(

A♯
∣

∣

L(p)h(p)

)

[f ] = A♯
∣

∣

L(p)h(p)
[f ◦ π]

=
d

dt

(

f ◦ π
(

L(p)h(p)etA
))

∣

∣

∣

t=0

=
d

dt

(

f ◦ π
(

L(p)etAdh(p)Ah(p)
))

∣

∣

∣

t=0

=
(

Adh(p)A
)♯ ∣

∣

L(p)
[f ◦ π]

= π∗
(

(Adh(p)A)♯
∣

∣

L(p)

)

[f ]. (5.3)

Now expand A in the basis of k as A = XAKA, where the XA are constant
supernumbers of parity A. Then, as the function f is arbitrary, and by appro-
priate choice of the XA, we find

π∗
(

KA
♯
∣

∣

L(p)h(p)

)

= π∗
(

(Adh(p)KA)♯)
∣

∣

L(p)

)

. (5.4)

Let us introduce the coadjoint representation, g 7→ Λp
q(g), of the group G

defined by

Adg−1Tp
def
= Λp

q(g)Tq. (5.5)

We will now again see the importance of the assumption that the group G is
reductive. In this case we have [h, k] ⊆ k and thus the coadjoint representation
furnishes us with a representation, h 7→ ΛA

B(h), of the subgroup H on the
space k

Adh−1KA = ΛA
B(h)KB . (5.6)

Thus, from Eq. (5.4), we finally have

E
(Lh)
A = ΛA

B(h−1)E
(L)
B . (5.7)

It follows immediately from Eq. (5.7) that the coframe transforms under a
gauge transformation as

EA(Lh) = EB(L)ΛB
A(h). (5.8)
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This can also be derived directly from the definition Eq. (5.1) using Eq. (4.15)
in a similar manner to that used in the case of the connection.

We are primarily, though not solely, interested in the case when G/H is a
superspace, see Section 1. Recall that one crucial property of superspace is that
its tangent space group must coincide with the even Grassmann shell [3] of the
tangent space group of the body of the superspace under consideration. This
will be the case when H is the even Grassmann shell of SO(p, q). Further to
this we require for a superspace that the representation ΛA

B(h) is completely
reducible, acting as SO(p, q) rotations on the even coordinates and as Spin(p, q)
rotations on the odd coordinates. In this case we will sometimes refer to the
frame as being orthonormal although this is only true for the even part of the
frame.

6 Torsion and curvature

In the previous sections we have prescribed a supergeometry on the coset space
G/H by determining a local frame and connection. Eqs. (4.13, 5.1) may be
combined into one equation

L∗ζ = EA(L)KA + ωI(L)HI , (6.1)

where we have expanded the connection in the generators of the algebra h.
This equation is often stated in the literature [2, 9] in a matrix representation
so that L∗ζ = L(p)−1dL(p), see Section 3.2. Given a supergeometry it is
natural to next calculate the torsion and curvature. We will see that the torsion
and curvature can be straightforwardly determined from the Maurer-Cartan
structure equation, Eq. (3.7).

6.1 Local torsion and curvature

First we define the torsion and curvature on the base. In this section we will
not explicitly display the dependence of the frame and connection on the local
section L, all quantities derived from them do, however, obviously retain this
gauge dependence. From the local connection ω we define the curvature on the
base as

R
def
= dω + ω ∧ ω, (6.2)

which can be expanded in components as R = RIHI . This gives

RI = dωI −
1

2
ωJ ∧ ωKfKJ

I . (6.3)

The torsion is naturally defined in terms of the exterior covariant derivative of
the frame2

TA
def
= −DEA = −dEA − EB ∧ ωB

A. (6.4)

2Note that the definition we use has the opposite sign to much of the literature.
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Here ωB
A is the connection ω written in terms of the coadjoint representation.

Using the definition of the coadjoint representation, Eq. (5.5), we see that to
first order

ΛA
B(1 + ǫIHI) = δA

B − ǫIfIA
B, (6.5)

hence

ωA
B = −ωIfIA

B. (6.6)

We may also consider the component form of the definitions of curvature
and torsion. We expand ω = EAωA, and similarly ωB

C = EAωAB
C , and also

introduce the anholonomy supercoefficients, CAB
C , via

[EA, EB ] = CAB
CEC . (6.7)

It is then possible to show that

TAB
C = CAB

C + ωAB
C − (−1)ABωBA

C (6.8a)

RAB = EA[ωB] − (−1)ABEB [ωA] − CAB
CωC + [ωA, ωB ]. (6.8b)

Using the conventions of Appendix A.1 we can also show that

R(X,Y ) = (−1)XY
(

X[ω(Y )] − (−1)XY Y [ω(X)] − ω([X,Y ]) + [ω(X), ω(Y )]
)

(6.9)
for supervectors X and Y . These expressions will be useful later.

With these definitions in mind let us consider the pullback of the Maurer-
Cartan structure equation, Eq. (3.7), under the local section. We have

dL∗ζ + L∗ζ ∧ L∗ζ = 0.

Substituting in Eq. (6.1) and separating out the k and h parts we find

dEA −
1

2
EB ∧ ECfCB

A − EB ∧ ωIfIB
A = 0

dωI −
1

2
EB ∧ ECfCB

I −
1

2
ωJ ∧ ωKfKJ

I = 0.

Comparing these two equations with the definitions of the curvature and torsion
two-forms we see that

TA = −
1

2
EB ∧ ECfCB

A (6.10a)

RI =
1

2
EB ∧ ECfCB

I . (6.10b)

Comparing to the component expansion of a p-form as given in Eq. (A.11) we
see that

TAB
C = fAB

C , RAB
I = −fAB

I . (6.11)
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6.2 Torsion and curvature from the bundle

Whilst it is sufficient for most applications to consider the torsion and curvature
as defined in the previous section, it is nice to see how they are obtained in terms
of the geometry of the bundle. The first concept we need to define is the exterior
covariant derivative, D, on the bundle, not to be confused with that defined on
the base used in the previous section. It is defined by its action on an n-form
φ on the bundle as

Dφ(X1, . . . ,Xn+1)
def
= dφ(Xh

1 , . . . ,X
h
n+1). (6.12)

Here the supervector Xh is the horizontal part of the supervector X.
Now recall that the vertical part of the Maurer-Cartan form gave us the

connection on the bundle ζIHI = Ω. Denoting the horizontal part by ζAKA =
Θ, we have

ζ = Θ + Ω. (6.13)

The form Θ is essentially the solder form on the bundle [8] which can be seen
as follows. The solder form is a form defined on a frame bundle; we will see in
Section 7.2 how the principal bundle may be thought of as the frame bundle. In

particular, a frame E
(L)
A |p corresponds to the point L(p) in the principal bundle.

Given a vector V |L(p) tangent to the bundle at this point the components of

the solder form, ΘA, are defined to satisfy

π∗
(

V |L(p)

)

= ΘA(V |L(p))E
(L)
A |p. (6.14)

By expanding V in the basis of the T ♯p it is straightforward to check that ΘA =
ζA solves this equation. Θ = ζAKA can therefore be considered as the collection
of the components of the solder form into a single algebra valued form, thus in
the following we will simply refer to Θ as the solder form.

We may then define the quantities T and R which we call the torsion and
curvature on the bundle. These are defined in terms of the exterior covari-
ant derivatives of the solder form and connection form, respectively, and are
calculated to be

−T
def
= DΘ = dΘ + Θ ∧ Ω + Ω ∧ Θ (6.15a)

R
def
= DΩ = dΩ + Ω ∧ Ω. (6.15b)

Note that T is a k-valued two-form, whereas R is h-valued. A straightforward
calculation shows that when pulled back under a local section these quantities
give the definitions of the local torsion and curvature two-forms in Eqs. (6.2, 6.4)

L∗T = TAKA, L∗R = R. (6.16)

Let us now consider how the torsion and curvature on the bundle may be
expressed in terms of the structure constants of the algebra. Using Eq. (6.13)
and Eqs. (6.15a, 6.15b) we see that

Dζ = −T + R = dΘ + Θ ∧ Ω + Ω ∧ Θ + dΩ + Ω ∧ Ω

= dζ + ζ ∧ ζ − Θ ∧ Θ

= −Θ ∧ Θ, (6.17)
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where in the last line we have used the Maurer-Cartan structure equation Eq.
(3.7). As Θ = ζAKA we find

−T + R =
1

2
ζA ∧ ζB[KB ,KA]

=
1

2
ζA ∧ ζBfBA

CKC +
1

2
ζA ∧ ζBfBA

IHI .

If we then split this up into its k and h parts we find

T = −
1

2
ζA ∧ ζBfBA

CKC (6.18a)

R =
1

2
ζA ∧ ζBfBA

IHI . (6.18b)

If we pullback these equations to the base as in Eq. (6.16) we obtain the expres-
sions for the local torsion and curvature we derived earlier in Eqs. (6.10a, 6.10b).

7 Associated bundles and supertensor bundles

7.1 Associated bundles

Given a principal bundle P (G/H,H) = G we construct an associated fibre
bundle as follows. Consider a manifold F on which the structure group H acts
on the left. Then we define an equivalence relation on G× F by

(g, f) ∼ (gh, h−1f), (7.1)

where (g, f) ∈ G × F . In the following we shall denote the equivalence class
of the point (g, f) as [(g, f)]. From this equivalence relation we define the
associated fibre bundle as the coset space (G× F )/H, see [6]. In the following
we shall consider associated bundles only where the fibre F is a supervector
space3. In these cases H acts on the fibre via some representation ρ and the
equivalence relation, Eq. (7.1), reads

(g, ξ) ∼ (gh, ρ(h)−1ξ), ξ ∈ F. (7.2)

Defining the local bundle map

R
(L)
h1

: L(p)h 7→ L(p)h1h (7.3)

we can define the action of H on a local section of a general associated bundle
s(p) = [(L(p), ξ(p))] as

R̃
(L)
h : [(L(p), ξ(p))] 7→ [(R

(L)
h

(

L(p)
)

, ξ(p))] (7.4)

which, using the equivalence relation, can be rewritten as

R̃
(L)
h s(p) = [(L(p), ρ(h)ξ(p))]. (7.5)

3Note that local sections of associated bundles where the fibre F is a supervector space can
be linearly combined to give new local sections in a way that will become apparent in Section
7.3.
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Note that R
(L)
h is a group homomorphism, i.e. we have

R
(L)
h1

◦R
(L)
h2

= R
(L)
h1h2

. (7.6)

Based on the definition of R̃
(L)
h we can define the action of h on a local section

s(p) = [(L(p), ξ(p))] of a general associated bundle. For hǫ = 1 + ǫH + O(ǫ2)
we define

R̃
(L)
H s(p)

def
=

d

dt

(

R̃
(L)
ht
s(p)

)∣

∣

∣

t=0
. (7.7)

We hence have

R̃
(L)
H s(p) =

[(

L(p),
d

dt
(ρ(ht)ξ(p))

∣

∣

∣

t=0

)]

. (7.8)

7.2 Equivalence of the principal bundle with the frame bundle

In this section we shall show that the orthonormal4 frame bundle F (G/H) is
equivalent to the principal bundle. Note that the fibre of the frame bundle

above the point p is given by {E
(Lih)
A

∣

∣

p
: h ∈ H} ∼= H. We define the local

trivialization of the frame bundle as

ψi : Ui ×H → π−1
F (Ui)

: (p, h) 7→ {ΛA
B(h−1)E

(Li)
B

∣

∣

p
} = {E

(Lih)
A

∣

∣

p
}, (7.9)

where we have defined the frame bundle projection map πF as

πF : F (G/H) → G/H

: π∗
(

KA
♯
∣

∣

g

)

7→ gH. (7.10)

The transition functions t̃ij of the frame bundle are then given by

t̃ij(p) = ψ−1
i,p ψj,p : H → H, (7.11)

where ψi(p, h) = ψi,p(h). We thus already see that the structure group of
the orthonormal frame bundle is equal to the structure group of the principal
bundle, see Section 2. In order to fully establish the equivalence between the
principal bundle and the frame bundle we shall now show that the transition
functions of the principal bundle are equal to those of the frame bundle. In
order to do this consider the action of t̃ij(p) on h

t̃ij(p)h = ψ−1
i,p

(

ΛA
B(h−1)E

(Lj )
B

∣

∣

p

)

. (7.12)

Now we have using the definition of the transition functions of the principal
bundle P (G/H,H), see Eq. (2.3),

Li(p) = φi(p, e) = φj(p, tji(p)e) = Lj(p)tji(p) (7.13)

4Note that here we use the term orthonormal in the sense discussed in the last paragraph
of Section 5.
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and hence we find

E
(Lj)
B

∣

∣

p
= π∗

(

KB
♯
∣

∣

Lj(p)

)

= π∗
(

KB
♯
∣

∣

Li(p)tij

)

= ΛB
C(tij(p)

−1)E
(Li)
C

∣

∣

p
. (7.14)

We thus have

t̃ij(p)h = ψ−1
i,p

(

ΛA
B(h−1)ΛB

C(tij(p)
−1)E

(Li)
C

∣

∣

p

)

= ψ−1
i,p

(

ΛA
B

(

(tij(p)h)
−1

)

E
(Li)
B

∣

∣

p

)

= tij(p)h. (7.15)

This proves that the transition functions of the frame bundle equal those of the
principal bundle. We thus see that the principal bundle and the frame bundle
are equivalent bundles. In the following we shall, for convenience, use the
principal bundle rather than the frame bundle in order to formulate associated
bundles.

7.3 Supertensor bundles

In this section we shall briefly discuss the equivalence relations Eq. (7.1) in the
case of general tensor bundles. Although it is more natural to consider tensor
bundles associated to the frame bundle we will in this section use the equivalent
principal bundle for the ease of notation.

Let us consider a pure, i.e. even or odd, section s(p) of a general tensor
bundle with both contravariant and covariant indices. We write

s(p) = [(L(p), {sA1···Ai
Ãi+1···Ãi+j

Ai+j+1··· · · · })]. (7.16)

Here we define the equivalence by

(L(p), {sA1···Ai
Ãi+1···Ãi+j

Ai+j+1··· · · · })

∼ (L(p)h, ρ(h−1){sA1···Ai
Ãi+1···Ãi+j

Ai+j+1··· · · · }) (7.17)

where we set

ρ(h){sA1···Ai
Ãi+1···Ãi+j

Ai+j+1··· · · · }

= {(−1)∆n(A+B,B+B̃)+∆n(A+B̃,Ã+B̃)ΛÃi+1

B̃i+1(h) · · ·ΛÃi+j

B̃i+j (h) · · ·

sB1···Bi
B̃i+1···B̃i+j

Bi+j+1··· · · ·

ΛB1
A1(h−1) · · ·ΛBi

Ai(h−1)ΛBi+j+1
Ai+j+1(h−1) · · · }. (7.18)

Here ∆n is the parity function as defined in Eq. (A.12), n denotes the total
number of indices and we have set ∆n(A,B + B̃) ≡ ∆n(A,B) + ∆n(A, B̃).
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We define the local section of a general supertensor bundle to satisfy the
following linearity property under left multiplication by an arbitrary pure su-
pernumber λ

λs(p)
def
= [(L(p), {(−1)λ(

∑

Ã)λsA1···Ai
Ãi+1···Ãi+j

Ai+j+1··· · · · })], (7.19)

where
∑

Ã ≡ (Ãi+1 + . . .+ Ãi+j + . . .) is the sum over the parities of the lower
indices. From Eq. (7.19) and from the fact that λs(p) = (−1)λss(p)λ we can
infer the linearity property under right multiplication

s(p)λ = [(L(p), {(−1)λ(
∑

A)sA1···Ai
Ãi+1···Ãi+j

Ai+j+1··· · · ·λ})]. (7.20)

From these last two equations we see that contravariant tensor bundles are
left-linear, i.e. they satisfy

λs(p) = [(L(p), {λsA1···An})], (7.21)

whereas covariant tensor bundles are right-linear, i.e.

s(p)λ = [(L(p), {sA1···Anλ})]. (7.22)

Defining the basis of a general supertensor bundle by5

E
(L)
A1

⊗ · · · ⊗ E
(L)
Ai

⊗ E
Ãi+1

(L) ⊗ · · · ⊗ E
Ãi+j

(L) ⊗ E
(L)
Ai+j+1

⊗ · · ·
def
= [(L(p),

{(−1)∆n(A,A)+∆n(Ã,Ã)δA1
B1 · · · δAi

BiδB̃i+1

Ãi+1 · · · δB̃i+j

Ãi+jδAi+j+1
Bi+j+1 · · · })]

(7.23)

we can rewrite the local section s(p) of Eq. (7.16) in terms of this basis as

s(p) = [(L(p), {sA1···Ai
Ãi+1···Ãi+j

Ai+j+1··· · · · })]

= (−1)∆n(A,A)+∆n(Ã,Ã)(−1)(s+
∑

A+
∑

Ã)(
∑

Ã)sA1···Ai
Ãi+1···Ãi+j

Ai+j+1··· · · ·

E
(L)
A1

⊗ · · · ⊗ E
(L)
Ai

⊗ E
Ãi+1

(L) ⊗ · · · ⊗E
Ãi+j

(L) ⊗ E
(L)
Ai+j+1

⊗ · · ·

= (−1)∆n(A+Ã,A+Ã)(−1)(s+
∑

Ã)(
∑

Ã)sA1···Ai
Ãi+1···Ãi+j

Ai+j+1··· · · ·

E
(L)
A1

⊗ · · · ⊗ E
(L)
Ai

⊗ E
Ãi+1

(L) ⊗ · · · ⊗E
Ãi+j

(L) ⊗ E
(L)
Ai+j+1

⊗ · · · ,

where we have used the linearity property Eq. (7.19). Note that in the case of
contravariant tensor bundles this formula simplifies to

s(p) = (−1)∆n(A,A)sA1···AnE
(L)
A1

⊗ · · · ⊗ E
(L)
An

(7.24)

and in the case of covariant tensor bundles we have

s(p) = (−1)∆n(A,A)EA1

(L) ⊗ · · · ⊗ EAn

(L)sA1···An . (7.25)

5One should note that the collection of δ’s that occurs in the definition of the basis is to
be understood as an ordered collection, i.e. the δ’s ought not be swapped.
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Using the definition of the action of H on a local section s(p) as given in
Eq. (7.5) we find after a slightly lengthy calculation for the transformation of
the basis under H

R̃
(L)
h

(

E
(L)
A1

⊗ · · · ⊗ E
(L)
Ai

⊗ E
Ãi+1

(L) ⊗ · · · ⊗ E
Ãi+j

(L) ⊗ E
(L)
Ai+j+1

⊗ · · ·
)

= E
(Lh)
A1

⊗ · · · ⊗ E
(Lh)
Ai

⊗ E
Ãi+1

(Lh) ⊗ · · · ⊗ E
Ãi+j

(Lh) ⊗ E
(Lh)
Ai+j+1

⊗ · · · (7.26)

as expected.
From the definition of the basis Eq. (7.23) and the linearity property Eq.

(7.19) one can easily deduce the following properties of the tensor product

λ(s1 ⊗ s2) = (λs1) ⊗ s2 ≡ λs1 ⊗ s2 (7.27a)

(s1 ⊗ s2)λ = s1 ⊗ (s2λ) ≡ s1 ⊗ s2λ (7.27b)

(s1λ) ⊗ s2 = s1 ⊗ (λs2) ≡ s1λ⊗ s2 (7.27c)

(s1 ⊗ s2) ⊗ s3 = s1 ⊗ (s2 ⊗ s3) ≡ s1 ⊗ s2 ⊗ s3, (7.27d)

where s1, s2 and s3 are local sections of general tensor bundles and λ is a
supernumber.

8 Bundle maps

Let us define the following (local) bundle maps

Lg : L(p)h 7→ gL(p)h (8.1a)

L(L)
g : L(p)h 7→ gL(p)h̃

(L)
L (p, g)−1h (8.1b)

R(L)
g : L(p)h 7→ L(p)gh. (8.1c)

While Lg, see Section 3.1, is a global bundle map from G → G – here written

locally in the patch π−1(U) – the map L
(L)
g depends on the local section L(p)

and, for it to be well-defined, both its domain and range must be restricted to
π−1(U). In the following we shall however, for convenience, also restrict both
the domain and range of the map Lg to π−1(U). Then the left H-compensator

h̃
(L)
L (p, g) is defined by the equation, see [9, 10, 11],

gL(p) = L(q)h̃
(L)
L (p, g) with p, q ∈ U, (8.2a)

i.e., we have
L(L)
g (L(p)h) = L(q)h (8.2b)

and
Lg (L(p)h) = L(q)h̃

(L)
L (p, g)h (8.2c)

and hence we see that the map L
(L)
g preserves the local section L(p), while this

is not true for the map Lg.

For the map R
(L)
g – which also depends on the local section L(p) – only the

domain need be restricted to π−1(U); in the following, however, we shall for
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convenience also require its range to be restricted to π−1(U). We can then, in

accordance with Eq. (8.2a), also define the right H-compensator h̃
(L)
R (p, g) by

L(p)g = L(q)h̃
(L)
R (p, g), with p, q ∈ U, (8.3a)

i.e.,

R(L)
g (L(p)h) = L(q)h̃

(L)
R (p, g)h. (8.3b)

Note that the map R
(L)
h introduced in Section 7.1, see Eq. (7.3), is just a specific

case of the map R
(L)
g introduced here.

The maps L
(L)
g and R

(L)
g induce maps on the base that we shall denote by

lg and r
(L)
g , respectively. We have

π ◦ L(L)
g = π ◦ Lg = lg ◦ π (8.4a)

π ◦R(L)
g = r(L)

g ◦ π, (8.4b)

where one should note that the map r
(L)
g on the base depends on the local section

L(p). We can then rewrite Eqs. (8.2b, 8.2c) and Eq. (8.3b), respectively, as

L(L)
g (L(p)h) = L(lg(p))h (8.5a)

Lg (L(p)h) = L(lg(p))h̃
(L)
L (p, g)h (8.5b)

R(L)
g (L(p)h) = L(r(L)

g (p))h̃
(L)
R (p, g)h. (8.5c)

Using Eqs. (8.4a, 8.4b) we can derive relations for the vectors π∗(A
♯|L(p)) and

π∗(A
♭|L(p)) similar to those in Eqs. (3.1a, 3.1b). We have

π∗

(

A♯
∣

∣

L(p)

)

[f ] = A♯
∣

∣

L(p)
[f ◦ π]

=
d

dt

(

f ◦ π
(

L(p)etA
))

∣

∣

∣

t=0

=
d

dt

(

f ◦ π ◦R
(L)

etAL(p)
)

∣

∣

∣

t=0

=
d

dt

(

f ◦ r
(L)

etA ◦ π ◦ L(p)
)

∣

∣

∣

t=0

=
d

dt
f(r

(L)

etA(p))
∣

∣

∣

t=0
(8.6)

and similarly we find

π∗

(

A♭
∣

∣

L(p)

)

[f ] =
d

dt
f(letA(p))

∣

∣

∣

t=0
. (8.7)

Note that the right hand side of this last equation is independent of the local
section L(p), and hence we have that

π∗

(

A♭
∣

∣

L(p)

)

= π∗

(

A♭
∣

∣

L(p)h(p)

)

. (8.8)

Thus we may unambiguously write π∗A
♭ as a well defined vector field on G/H

without the need to specify which point in the fibre the supervector A♭ was
based. Note that this not true for A♯.
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The maps Lg, L
(L)
g and R

(L)
g defined in Eqs. (8.1a–8.1c), respectively, can

be extended to maps on associated bundles as follows. Consider a local section
s(p) = [(L(p), ξ(p))] of some general associated bundle. We then define the

maps L̃g, L̃
(L)
g and R̃

(L)
g by

L̃g : [(L(p), ξ(p))] 7→ [(Lg
(

L(p)
)

, ξ(p))] (8.9a)

L̃(L)
g : [(L(p), ξ(p))] 7→ [(L(L)

g

(

L(p)
)

, ξ(p))] (8.9b)

R̃(L)
g : [(L(p), ξ(p))] 7→ [(R(L)

g

(

L(p)
)

, ξ(p))]. (8.9c)

8.1 Properties of the H-compensators

In this section we will discuss properties of the left and right H-compensators.

8.1.1 Properties of the left H-compensator

Recall that the left H-compensator is defined by the equation

L(lg(p)) = gL(p)h̃
(L)
L (p, g)−1. (8.10)

Now, setting lg(p) = q we can rearrange this formula to give

L(p) = g−1L(q)h̃
(L)
L (lg−1(q), g),

but we also have

L(p) = L(lg−1(q)) = g−1L(q)h̃
(L)
L (q, g−1)−1

from which we can deduce the relation

h̃
(L)
L (lg−1(q), g) = h̃

(L)
L (q, g−1)−1. (8.11)

This relation will be important when considering derivations on local sections
of associated bundles.

Next we shall derive the composition rule for the left H-compensators. We
have

L(L)
g1 ◦ L(L)

g2 (L(p)h) = L(L)
g1 (L(lg2(p))h) = L(lg1 ◦ lg2(p))h (8.12a)

= g1L(lg2(p))h̃
(L)
L (lg2(p), g1)

−1h

= g1g2L(p)h̃
(L)
L (p, g2)

−1h̃
(L)
L (lg2(p), g1)

−1h. (8.12b)

On the other hand we have

L(L)
g1g2 (L(p)h) = L(lg1g2(p))h (8.13a)

= g1g2L(p)h̃
(L)
L (p, g1g2)

−1h. (8.13b)

Now, from Eqs. (8.12b, 8.13b), we see that

π ◦ L(L)
g1g2 (L(p)h) = π ◦ L(L)

g1 ◦ L(L)
g2 (L(p)h) (8.14)
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and hence we can deduce from Eqs. (8.12a, 8.13a) and Eqs. (8.12b, 8.13b), re-
spectively,

lg1g2 = lg1 ◦ lg2 (8.15a)

h̃
(L)
L (p, g1g2)

−1 = h̃
(L)
L (p, g2)

−1h̃
(L)
L (lg2(p), g1)

−1. (8.15b)

Now we shall also consider the transformation of h̃
(L)
L under a change of local

section L→ L′ = Lh, i.e. under a gauge transformation. We have

gL′(p)h̃
(L′)
L (p, g)−1 = L′(lg(p)) (8.16a)

= L(lg(p))h(lg(p))

= gL(p)h(p)h(p)−1h̃
(L)
L (p, g)−1h(lg(p)). (8.16b)

From Eqs. (8.16a, 8.16b) we thus find

h̃
(Lh)
L (p, g)−1 = h(p)−1h̃

(L)
L (p, g)−1h(lg(p)). (8.17)

In the following we shall consider infinitesimal versions of Eqs. (8.15a, 8.15b)
and Eq. (8.17). Defining

W
(L)
L (p,A)

def
= −

d

dt
h̃

(L)
L (p, etA)

∣

∣

∣

t=0
, (8.18)

we can write the expansion of h̃
(L)
L (p, g) for g = eǫA with ǫ ≪ 1 and A ∈ g to

first order as
h̃

(L)
L (p, eǫA) = 1 − ǫW

(L)
L (p,A) + O(ǫ2). (8.19)

Note that using Eq. (8.15b) we easily see that W
(L)
L (p,A) is left linear in A.

In the following we shall for the ease of notation suppress the p dependence in

W
(L)
L .
Now using the composition rule Eq. (8.15a) and the fact that (Adg1g2)g1 =

g1g2 we find for the infinitesimal version of Eq. (8.15a) with g1 = eǫ1A and
g2 = eǫ2B for A,B ∈ g

[π∗A
♭, π∗B

♭] = −π∗[A,B]♭. (8.20)

This result can also be seen as a consequence of the well definedness of the
supervector field π∗A

♭, Eq. (8.8), which allows us to take the action of the
pushforward under the projection, π∗, inside the Lie bracket of Eq. (3.4b).

Now consider Eq. (8.15b). We have for the expansion of h̃
(L)
L (lg2(p), g1)

−1

h̃
(L)
L (leǫ2B (p), eǫ1A)−1 = 1 + ǫ1W

(L)
L (A) + ǫ1ǫ2π∗B

♭[W
(L)
L (A)] + . . . .

The infinitesimal version of Eq. (8.15b) is thus given by

W
(L)
L ([A,B]) = π∗B

♭[W
(L)
L (A)]−π∗A

♭[W
(L)
L (B)]+[W

(L)
L (B),W

(L)
L (A)]. (8.21)

In the literature this last equation is normally referred to as the integrability
condition for the left H-compensator [9].
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Expanding Eq. (8.17) we find for the transformation of W
(L)
L under a gauge

transformation L→ Lh

W
(Lh)
L (A) = h(p)−1W

(L)
L (A)h(p) + h(p)−1π∗A

♭h(p). (8.22)

Therefore we see that W
(L)
L transforms like a connection under a change of local

section.

8.1.2 Properties of the right H-compensator

In a similar fashion as for the left H-compensator we can derive a composition

rule for the right H-compensator, Eq. (8.3a), h̃
(L)
R (p, g). We find

r(L)
g1 ◦ r(L)

g2 (p) = r
(L)
g2Ad

h̃
(L)
R

(p,g2)−1
g1

(p) (8.23a)

h̃
(L)
R (r(L)

g2 (p), g1)h̃
(L)
R (p, g2) = h̃

(L)
R (p, g2Ad

h̃
(L)
R (p,g2)−1g1). (8.23b)

Again proceeding in a similar fashion as in the case of the left H-compensator
we can derive an expression for the transformation properties of the right H-
compensator under a change of local section L → Lh. Note, however, that in

this case also the map r
(L)
g will transform under a change of local section. We

find

r
(Lh)
Adh(p)−1g

(p) = r(L)
g (p) (8.24a)

h̃
(Lh)
R (p,Adh(p)−1g)−1 = h(p)−1h̃

(L)
R (p, g)−1h(r(L)

g (p)). (8.24b)

In the following we shall consider the infinitesimal versions of Eqs. (8.23a–
8.24b). Defining

W
(L)
R (p,A)

def
= −

d

dt
h̃

(L)
R (p, etA)

∣

∣

∣

t=0
, (8.25)

we can write the expansion of h̃
(L)
R (p, g) for g = eǫA with ǫ ≪ 1 and A ∈ g to

first order as

h̃
(L)
R (p, eǫA) = 1 − ǫW

(L)
R (p,A) + O(ǫ2). (8.26)

Note that using Eq. (8.23b) one can show that W
(L)
R (p,A) is left linear in A.

In the following we shall for the ease of notation suppress the p dependence in

W
(L)
R .

We shall now show that W
(L)
R (A) for A ∈ k is related to the spin connection.

In order to do this consider first

R
(L)

etK (L(p)) = L(p)etK = L(r
(L)

etK (p))h̃
(L)
R (p, etK),

for K ∈ k. Now, setting γ̃(t) ≡ L(p)etK and γ(t) ≡ r
(L)

etK (p), we have π ◦ γ̃ = γ.

Clearly the tangent vector to the curve γ̃(t) is given by K♯ ∈ T h
γ̃(t)G and hence

γ̃(t) is the horizontal lift of the curve γ(t). Also note that γ̃(0) = L(p). As
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such we can identify the right H-compensator h̃
(L)
R (p, etK) with h̃(γ(t)) of Eq.

(4.14). We can thus write

ω(L)(π∗(K
♯
∣

∣

L(p)
)) = −

d

dt
h̃

(L)
R (p, etK)

∣

∣

∣

t=0
(8.27)

and hence
W

(L)
R (K) = ω(L)(π∗(K

♯
∣

∣

L(p)
)) for K ∈ k. (8.28)

On the other hand consider W
(L)
R (A) for A ∈ h. We have

R
(L)
h1

(L(p)h) = L(p)h1h = L(r
(L)
h1

(p))h̃
(L)
R (p, h1)h

and using the fact that r
(L)
h (p) = p we thus find

h̃
(L)
R (p, etH) = etH (8.29a)

and hence

W
(L)
R (H) = −

d

dt
h̃

(L)
R (p, etH )

∣

∣

∣

t=0
= −H. (8.29b)

For the ease of notation we shall for the rest of this section drop the explicit
L(p) dependence on π∗A

♯.
Now consider the infinitesimal versions of Eqs. (8.23a, 8.23b). We find with

g1 = eǫ1A and g2 = eǫ2B

[π∗A
♯, π∗B

♯] = π∗[A,B]♯ + π∗[W
(L)
R (A), B]♯ − π∗[W

(L)
R (B), A]♯ (8.30a)

W
(L)
R ([A,B]) = [W

(L)
R (A),W

(L)
R (B)] + π∗A

♯W
(L)
R (B) − π∗B

♯W
(L)
R (A)

+W
(L)
R

(

[W
(L)
R (B), A]

)

−W
(L)
R

(

[W
(L)
R (A), B]

)

. (8.30b)

Now, in the case where A,B ∈ k we find that Eq. (8.30a) corresponds to the
expression for the torsion as given in Eq. (6.8a), whereas Eq. (8.30b) corresponds
to the expression for the curvature as given in Eq. (6.8b).

The infinitesimal versions of Eqs. (8.24a, 8.24b) read

E
(Lh)
A = ΛA

B(h−1)E
(L)
B (8.31a)

W
(Lh)
R (Adh(p)−1A) = h(p)−1W

(L)
R (A)h(p) + h(p)−1π∗A

♯h(p). (8.31b)

In the case where A ∈ k we find using π∗((Adh(p)−1A)♯
∣

∣

L(p)h(p)
) = π∗(A

♯
∣

∣

L(p)
),

see Eq. (5.3), that Eq. (8.31b) gives the transformation of the spin connection
under gauge transformations, cf. Eq. (4.16).

8.1.3 Composition rules of mixed left and right actions

Finally let us consider the successive action of L
(L)
g and R

(L)
g on L(p). Pro-

ceeding in the same way as when deriving the composition rules for the left
H-compensators, Eqs. (8.15a, 8.15b), we find

lg1 ◦ r
(L)
g2 (p) = r

(L)
Ad

h̃
(L)
L

(p,g1)
g2

◦ lg1(p) (8.32a)

h̃
(L)
R (lg1(p),Ad

h̃
(L)
L (p,g1)

g2) = h̃
(L)
L (r(L)

g2 (p), g1)h̃
(L)
R (p, g2)h̃

(L)
L (p, g1)

−1. (8.32b)



24 9 ISOMETRIES

The infinitesimal versions of Eq. (8.32a) and Eq. (8.32b) with g1 = eǫ1A and
g2 = eǫ2B read

[π∗A
♭, π∗B

♯] = π∗[W
(L)
L (A), B]♯ (8.33a)

[W
(L)
L (A),W

(L)
R (B)] − π∗B

♯[W
(L)
L (A)] = W

(L)
R ([W

(L)
L (A), B]) − π∗A

♭[W
(L)
R (B)].
(8.33b)

9 Isometries

When studying the geometry of superspace we do not, in general, have a def-
inition of a metric on the superspace [3, 4]. Thus the notion of isometry from
ordinary geometry, i.e. transformations which leave the metric invariant, can-
not be carried over to supergeometry. Instead we must work with a definition
of isometries based on the geometrical objects at hand, that is the frame and
connection. Imposing that the frame and connection remain invariant under
an isometry turns out to be too restrictive and must be relaxed by demanding
them to be invariant only up to a gauge transformation, see e.g. [12]. This is
required to be a single gauge transformation transforming frame and connection
together, not independent transformations for each quantity. For instance, the
map f : G/H → G/H will be an isometry if

f∗
(

EA(L)

∣

∣

f(p)

)

= EA(Lh)

∣

∣

p
= EB(L)

∣

∣

p
ΛB

A(h) (9.1a)

f∗
(

ω(L)
∣

∣

f(p)

)

= ω(Lh)
∣

∣

p
= h−1ω(L)

∣

∣

p
h+ h−1dh, (9.1b)

for some h ∈ H which, as a gauge transformation, need not be constant. It
can be shown that if we impose such a condition on the map f for one choice
of local section L then it will automatically be satisfied for other choices of L
with a different value for the gauge transformation h.

As stated earlier the left action Lg on G induces a map lg on the coset
space G/H. Such maps can be thought of as isometries of the coset space, as
can be demonstrated by considering how the frame and connection transform
under the action of lg. Recall from Eq. (6.1) that the pullback of the Maurer-
Cartan form under a local section provides us with both the local coframe and
connection. Thus we will consider how L∗ζ behaves under a pullback by lg.

Consider a curve in the base γ : [0, 1] → G/H with tangent vector X and
γ(0) = p. Using a matrix representation we have

L∗
(

ζ|L(p)

)(

X|p
)

= L(p)−1 d

dt
L(γ(t))

∣

∣

∣

t=0
. (9.2)

Now the curve lg ◦ γ has tangent vector lg∗X and thus

L∗
(

ζ|L(lg(p))

)(

lg∗(X|p)
)

= L(lg(p))
−1 d

dt
L(lg(γ(t)))

∣

∣

∣

t=0

= L(lg(p))
−1 d

dt

(

gL(γ(t))h̃
(L)
L (γ(t), g)−1

) ∣

∣

∣

t=0

= h̃
(L)
L (p, g)L(p)−1 d

dt

(

L(γ(t))h̃
(L)
L (γ(t), g)−1

) ∣

∣

∣

t=0
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= h̃
(L)
L (p, g)L∗

(

ζ|L(p)

)(

X|p
)

h̃
(L)
L (p, g)−1

+ h̃
(L)
L (p, g)dh̃

(L)
L (p, g)−1

(

X|p
)

.

Here we have used Eq. (8.10) to obtain the second and third lines, the final line
follows from evaluating the derivative and using Eq. (9.2). From this we thus
see that

l∗gL
∗
(

ζ|L(lg(p))

)

= Ad
h̃
(L)
L (p,g)

L∗
(

ζ|L(p)

)

+ h̃
(L)
L (p, g)dh̃

(L)
L (p, g)−1. (9.3)

If we now decompose this equation into its k and h parts, we find

l∗g
(

EA(L)|lg(p)

)

= EB(L)|pΛB
A
(

h̃
(L)
L (p, g)−1

)

, (9.4a)

l∗g
(

ω(L)|lg(p)

)

= Ad
h̃
(L)
L (p,g)

ω(L)|p + h̃
(L)
L (p, g)dh̃

(L)
L (p, g)−1. (9.4b)

Comparing with Eqs. (9.1a, 9.1b) we see that the pulled back coframe and
connection from lg(p) to p are simply a gauge transform of the coframe and
connection already at p; the parameter of the gauge transformation is given by

the H-compensator h̃
(L)
L (p, g).

From how the coframe transforms under the pullback by lg we may deduce
how the frame transforms under the pushforward by lg. We find

lg∗
(

E
(L)
A |p

)

= ΛA
B

(

h̃
(L)
L (p, g)−1

)

E
(L)
B |lg(p). (9.5)

The maps lg therefore are isometries of G/H. They may be composed
as in Eq. (8.15a) and thus form a group of isometries isomorphic to G. The
maps lg may, however, not be all the isometries. For instance, in the case
when the normalizer N(H) = {g ∈ G : gHg−1 = H} is non-trivial then right
multiplication in G by an element g ∈ N(H) results in a well defined map on
the coset space which, if non-trivial, i.e. g /∈ H, also satisfies the conditions for
it to be an isometry. For a more detailed discussion of this see [9, 13].

For an infinitesimal isometry given by lg with g = eǫA we have the associated
supervector field π∗A

♭, c.f. Eq. (8.7). The supervectors π∗A
♭ are therefore

Killing supervectors for the coset space, i.e. supervectors which give infinitesimal
isometries. We see from Eq. (8.20) that the Killing supervectors satisfy an
algebra. The set of π∗T

♭
p , p = 1, . . . ,dim g, form a set of independent Killing

supervectors, and from Eq. (8.20) satisfy

[π∗T
♭
p , π∗T

♭
q ] = −fpq

rπ∗T
♭
r . (9.6)

The definition of Killing supervectors will be discussed in more detail in Section
11.

10 Derivations on associated bundles

In this section we shall consider derivations, – such as the covariant derivative,
the Lie derivative and the so-called H-covariant Lie derivative – on associated
bundles. A derivation, or more precisely a graded derivation, is here defined as
a linear map on an abstract algebra satisfying the graded Leibniz rule.
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10.1 Covariant derivative

In the following we shall define the covariant derivative ∇π∗(K♯|L(p)) on a local

section s(p) = [(L(p), ξ(p))] of a general associated bundle in the direction of

the push-forward of an even horizontal vector K♯ in terms of the map R
(L)
g .

Before we do this let us, however, first review the standard definition of the
covariant derivative on associated bundles, see [6].

Consider a curve γ(t) in the base with t ∈ [0, 1] and γ(0) = p. We can then
write, using Eq. (4.10),

s(γ(t)) =
[(

L(γ(t)), ξ(γ(t))
)]

=
[(

γ̃(t)h̃(t)−1, ξ(γ(t))
)]

=
[(

γ̃(t), ρ(h̃(t)−1)ξ(γ(t))
)]

. (10.1)

Now, setting η(γ(t)) ≡ ρ(h̃(t)−1)ξ(γ(t)), we have for the standard definition of
the covariant derivative

∇Xs(p)
def
=

[(

γ̃(0),
d

dt
η(γ(t))

∣

∣

∣

t=0

)]

, (10.2)

where X is the tangent vector to γ(t) at p. From this we see that a local section
s(γ(t)) is parallel transported along γ(t) if η is constant along γ(t). It is easy
to see that the covariant derivative does not depend on the specific choice of
horizontal lift γ̃(t).

On the other hand we shall now see that one can also define the covariant
derivative of a local section s(p) in terms of the map R

(L)
g . We will define

∇π∗(K♯|L(p))s(p)
def
= lim

ǫ→0

1

ǫ

(

(

R̃
(L)

eǫK

)−1
s(r

(L)

eǫK (p)) − s(p)

)

. (10.3)

Using the definition of the map R̃
(L)
g on s(p), see Eq. (8.9c), this can be rewritten

as

∇π∗(K♯|L(p))s(p) = lim
ǫ→0

1

ǫ

([(

(R
(L)

eǫK )−1L(r
(L)

eǫK (p)) , ξ(r
(L)

eǫK (p))
)]

−
[(

L(p), ξ(p)
)])

= lim
ǫ→0

1

ǫ

([(

R
(L)

Ad
h̃
(L)
R

(p,eǫK )
e−ǫKL(r

(L)

eǫK (p)) , ξ(r
(L)

eǫK (p))
)]

−
[(

L(p), ξ(p)
)])

= lim
ǫ→0

1

ǫ

([(

L(p)h̃
(L)
R (p, eǫK)−1 , ξ(r

(L)

eǫK (p))
)]

−
[(

L(p), ξ(p)
)])

= lim
ǫ→0

1

ǫ

([(

L(p) , ρ(h̃
(L)
R (p, eǫK)−1)ξ(r

(L)

eǫK (p)) − ξ(p)
)])

=
[(

L(p),
d

dt

(

ρ(h̃
(L)
R (p, etK)−1)ξ(r

(L)

etK (p))
)

∣

∣

∣

t=0

)]

. (10.4)
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Note that in deriving this we have used

(R(L)
g )−1(L(p)h) = R

(L)
Ad

h̃
(L)
R

(p,g)
g−1(L(p)h)

as well as the equivalence relation Eq. (7.2). Noting that γ̃(0) = L(p) and

h̃ = h̃
(L)
R we easily see from Eq. (10.4) that our definition of the covariant

derivative, Eq. (10.3), is – in the specific case of the vector π∗
(

K♯|L(p)

)

–
equivalent to the standard definition given by Eq. (10.2). Note that although

the range of the map R
(L)

eǫK is considered to be restricted to π−1(U) this does
not pose a problem for our definition of the covariant derivative as ǫ can always

be chosen sufficiently small such that R
(L)

eǫKL(p) ∈ π−1(U).
Now, from Eq. (10.4) we easily find

∇π∗(K♯|L(p))s(p) =
[(

L(p) ,
d

dt
ξ(r

(L)

etK (p))
∣

∣

∣

t=0
+

d

dt
ρ(h̃

(L)
R (p, etK)−1)

∣

∣

∣

t=0
ξ(p)

)]

=
[(

L(p) , π∗(K
♯|L(p))[ξ(p)] + ρ

(

ω(L)(π∗(K
♯|L(p)))

)

ξ(p)
)]

.

(10.5)

Here we consider ω(L) in the representation appropriate for acting on ξ(p). It
is easy to see that the covariant derivative is invariant under the equivalence
transformations on associated bundles, see Eq. (7.1). We have

∇π∗(K♯|L(p))[(L(p)h, ρ(h−1)ξ(p))]

= lim
ǫ→0

1

ǫ

([(

(R
(L)

eǫK )−1
(

L(r
(L)

eǫK (p))h
)

, ρ(h−1)ξ(r
(L)

eǫK (p))
)]

−
[(

L(p)h, ρ(h−1)ξ(p)
)])

= lim
ǫ→0

1

ǫ

([(

L(p)h̃
(L)
R (p, eǫK)−1h , ρ(h−1)ξ(r

(L)

eǫK (p))
)]

−
[(

L(p)h, ρ(h−1)ξ(p)
)])

= ∇π∗(K♯|L(p))[(L(p), ξ(p))].

The covariant derivative of s(p) is therefore, as a section, well defined.

Using π∗
(

K♯|L(p)

)

= XAE
(L)
A and ∇

E
(L)
A

≡ ∇
(L)
A , we have

∇
(L)
A s(p) =

[(

L(p) , E
(L)
A [ξ(p)] + ρ

(

ω
(L)
A

)

ξ(p)
)]

, (10.6)

which will transform under a change of local section as

∇
(L)
A s(p) = ΛA

B(h)∇
(Lh)
B s(p). (10.7)

From Eq. (10.6) we see that our definition of the covariant derivative, Eq.
(10.3), gives us an expression for the covariant derivative in the direction of

the basis vectors E
(L)
A . As such it extends to a derivative in the direction

of an arbitrary vector field X = XAE
(L)
A , although our initial definition was
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only given for vector fields X = XAE
(L)
A with XA constant. Note that for

convenience of notation we shall for the rest of this section drop the explicit

L(p) dependence on the vectors π∗(K
♯
∣

∣

L(p)
) as well as on E

(L)
A .

As a practical example let us consider calculating the covariant derivative of
a local section of a contravariant vector bundleX(p) = [(L(p), {XA})] = XAEA.
We have

∇π∗K♯X(p) = lim
ǫ→0

1

ǫ

([(

L(p)h̃
(L)
R (p, eǫK)−1 ,

{

XA(r
(L)

eǫK (p))
} )]

−
[(

L(p), {XA(p)}
)])

= lim
ǫ→0

1

ǫ

([(

L(p) ,
{

XA(r
(L)

eǫK (p))ΛA
B(h̃

(L)
R (p, eǫK))

} )]

−
[(

L(p), {XA(p)}
)])

, (10.8)

where we have used the equivalence relation for tensor bundles, see Eqs. (7.17, 7.18).

Using Eqs. (8.26, 6.5) we can expand ΛA
B(h̃

(L)
R (p, eǫK)) as

ΛA
B(h̃

(L)
R (p, eǫK)) = δA

B + ǫωI(π∗K
♯)fIA

B + O(ǫ2),

where we have also dropped the L(p) dependence on ω. Using Eq. (8.6) we can

expand XA(r
(L)

eǫK (p)) as

XA(r
(L)

eǫK (p)) = XA(p) + ǫπ∗K
♯[XA(p)] + O(ǫ2),

which allows us to rewrite Eq. (10.8) as

∇π∗K♯X(p) =
[(

L(p),
{

π∗K
♯[XA(p)] +XB(p)ωI(π∗K

♯)fIB
A
})]

. (10.9)

Finally let us consider the commutator of two covariant derivatives

[∇
π∗K

♯
1
,∇

π∗K
♯
2
]s(p) = lim

ǫ1→0
ǫ2→0

1

ǫ1ǫ2

([(

L(p),

ρ(h̃
(L)
R (p, eǫ1K1)−1)ρ(h̃

(L)
R (reǫ1K1 (p), e

ǫ2K2)−1)ξ(reǫ2K2 (reǫ1K1 (p)))

− ρ(h̃
(L)
R (p, eǫ2K2)−1)ρ(h̃

(L)
R (reǫ2K2 (p), e

ǫ1K1)−1)ξ(reǫ1K1 (reǫ2K2 (p)))
)])

.

Expanding and taking the limit we have

[∇
π∗K

♯
1
,∇

π∗K
♯
2
]s(p) =

[(

L(p), [ω(π∗K
♯
1), ω(π∗K

♯
2)]ξ(p)

+ [π∗K
♯
1, π∗K

♯
2]ξ(p) + π∗K

♯
1[ω(π∗K

♯
2)]ξ(p) − π∗K

♯
2[ω(π∗K

♯
1)]ξ(p)

)]

.

Note that for the ease of notation we have suppressed the representation ρ on
ω(π∗K

♯
2). Now, using the expressions for the curvature as given in Eq. (6.9),

we can rewrite this last equation as

[∇
π∗K

♯
1
,∇

π∗K
♯
2
]s(p) =

[(

L(p),

R(π∗K
♯
1, π∗K

♯
2)ξ(p) + [π∗K

♯
1, π∗K

♯
2]ξ(p) + ω([π∗K

♯
1, π∗K

♯
2])ξ(p))

)]
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and hence we finally have, using the expression for the covariant derivative as
given in Eq. (10.5),

[∇
π∗K

♯
1
,∇

π∗K
♯
2
]s(p) = R(π∗K

♯
1, π∗K

♯
2)s(p) + ∇

[π∗K
♯
1,π∗K

♯
2]
s(p), (10.10)

whereR(π∗K
♯
1, π∗K

♯
2)s(p) is an abbreviation for the action of R̃

(L)
H on the section

s(p) withH = R(π∗K
♯
1, π∗K

♯
2). Now, setting π∗K

♯
1 = XAEA and π∗K

♯
2 = Y AEA

we can rewrite the left hand side of this equation as

[∇XAEA
,∇Y BEB

]s(p) = XA(∇AY )B∇Bs(p) − Y B(∇BX)A∇As(p)

+ Y BXA[∇A,∇B ]s(p)

= Y BXA[∇A,∇B ]s(p)

− Y BXA
(

ωAB
C∇C + (−1)ABωBA

C∇C

)

s(p),

where we have used Eq. (10.9) for constant X. The right hand side of Eq.
(10.10) can be rewritten as

R(XAEA, Y
BEB) + ∇[XAEA,Y BEB ] = Y BXA

(

RAB + CAB
C∇C

)

and we hence find in total, using the component expression of the torsion, Eq.
(6.8a),

[∇A,∇B] = RAB + TAB
C∇C . (10.11)

10.2 Lie derivative

In this section we will introduce the Lie derivative on a local section s(p) in the
direction of an isometry. We define

Lπ∗A♭s(p)
def
= lim

ǫ→0

1

ǫ

(

(

L̃eǫA

)−1
s(leǫA(p)) − s(p)

)

. (10.12)

We can rewrite the Lie derivative as

Lπ∗A♭s(p) = lim
ǫ→0

1

ǫ

([(

Le−ǫA (L(leǫA(p))) , ξ (leǫA(p))
)]

−
[(

L(p), ξ(p)
)])

= lim
ǫ→0

1

ǫ

([(

e−ǫAL(leǫA(p)), ξ (leǫA(p))
)]

−
[(

L(p), ξ(p)
)])

= lim
ǫ→0

1

ǫ

([(

L(p)h̃
(L)
L (p, e−ǫA), ξ (leǫA(p))

)]

−
[(

L(p), ξ(p)
)])

= lim
ǫ→0

1

ǫ

[(

L(p), ρ(h̃
(L)
L (p, e−ǫA))ξ (leǫA(p)) − ξ(p)

)]

=
[(

L(p),
d

dt

(

ρ(h̃
(L)
L (p, e−tA))ξ(letA(p))

)
∣

∣

∣

t=0

)]

. (10.13)

One should note the similarity to the expression of the covariant derivative
given in Eq. (10.4). Note also that, although the range of the map LeǫA is
considered to be restricted to π−1(U), this does not pose a problem for our
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definition of the Lie derivative as ǫ can always be chosen sufficiently small such
that LeǫAL(p) ∈ π−1(U). Now we easily find

Lπ∗A♭s(p) =
[(

L(p) ,
d

dt
ξ(letA(p))

∣

∣

∣

t=0
+

d

dt
ρ(h̃

(L)
L (p, e−tA))

∣

∣

∣

t=0
ξ(p)

)]

=
[(

L(p) , π∗A
♭[ξ(p)] + ρ

(

W
(L)
L (A)

)

ξ(p)
)]

, (10.14)

where we have used Eqs. (8.7, 8.18). Here we consider W
(L)
L to be in the

representation appropriate for acting on ξ(p). It is easy to see that the Lie
derivative is invariant under the equivalence transformations [(L(p), ξ(p))] =
[(L(p)h, ρ(h−1)ξ(p))]. The Lie derivative of s(p) is therefore, as a section, well
defined. Again for the ease of notation we shall for the rest of this section drop

the explicit L(p) on the E
(L)
A .

As an example we shall now calculate the Lie derivative of a vector and a
one-form, respectively. First consider a local section of a vector bundle X(p) =
[(L(p), {XA})] = XAEA. We have

Lπ∗A♭X(p) = lim
ǫ→0

1

ǫ

([(

L(p)h̃
(L)
L (p, e−ǫA) ,

{

XA(leǫA(p))
} )]

−
[(

L(p), {XA(p)}
)])

= lim
ǫ→0

1

ǫ

([(

L(p) ,
{

XA(leǫA(p))ΛA
B(h̃

(L)
L (p, e−ǫA)−1)

} )]

−
[(

L(p), {XA(p)}
)])

, (10.15)

where we have used the equivalence relation for tensor bundles, see Eqs. (7.17, 7.18).

Using Eqs. (8.19, 6.5) we can expand ΛA
B(h̃

(L)
L (p, e−ǫA)−1) as

ΛA
B(h̃

(L)
L (p, e−ǫA)−1) = δA

B + ǫW I
LfIA

B + O(ǫ2),

where we have now also dropped the L(p) dependence on WL. Using Eq. (8.7)
we can expand XA(leǫA(p)) as

XA(leǫA(p)) = XA(p) + ǫπ∗A
♭[XA(p)] + O(ǫ2),

which allows us to rewrite Eq. (10.15) as

Lπ∗A♭X(p) =
[(

L(p),
{

π∗A
♭[XA(p)] +XB(p)W I

L(A)fIB
A
})]

. (10.16)

In the particular case of the Lie derivative of the basis vector EA we find from
this

Lπ∗A♭EA =
[(

L(p),
{

δA
BW I

L(A)fIB
C
})]

=
[(

L(p),
{

W I
L(A)fIA

BδB
C
})]

= W I
L(A)fIA

BEB . (10.17)
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By a similar calculation as in the case of the Lie derivative of a vector we
find for the Lie derivative of a one-form φ(p) = [(L(p), {φA})] = EAφA

Lπ∗A♭φ(p) =
[(

L(p),
{

π∗A
♭[φA(p)] −W I

L(A)fIA
BφB(p)

})]

(10.18)

and hence in the particular case of the Lie derivative of the basis vector EA

Lπ∗A♭EA =
[(

L(p),
{

−W I
L(A)fIB

CδC
A(p)

})]

=
[(

L(p),
{

− δB
CW I

L(A)fIC
A
})]

= −ECW I
L(A)fIC

A. (10.19)

Now, in the case of the connection one-from ω we find from Eq. (10.18) together
with the composition rule of the right and left H-compensators, see Eq. (8.33b),

Lπ∗A♭ω(p) =
[(

L(p),
{

π∗A
♭[ωA(p)] −W I

L(A)fIA
BωB(p)

})]

=
[(

L(p),
{

EA[ρ
(

WL(A)
)

] − [ρ
(

WL(A)
)

, ωA]
})]

. (10.20)

Now consider the algebra of two Lie derivatives. We find, writing for sim-
plicity WL(A) instead of ρ

(

WL(A)
)

,

[Lπ∗A♭ ,Lπ∗B♭ ]s(p) =
[(

L(p) , [π∗A
♭, π∗B

♭]ξ(p)

+ (π∗A
♭[WL(B)] − π∗B

♭[WL(A)] + [WL(A),WL(B)])ξ(p)
)]

and hence, using Eq. (8.21), we find

[Lπ∗A♭ ,Lπ∗B♭ ]s(p) =
[(

L(p) , [π∗A
♭, π∗B

♭]ξ(p) +WL([B,A])ξ(p)
)]

. (10.21)

Now, noting that the algebra element corresponding to the vector [π∗A
♭, π∗B

♭] =
π∗[B,A]♭ is given by [B,A], cf. Eq. (8.20), we find

[Lπ∗A♭ ,Lπ∗B♭ ] = L[π∗A♭,π∗B♭]. (10.22)

Finally let us consider the commutator of the Lie derivative with the covari-
ant derivative on a local section s(p) = [(L(p), ξ(p))]. We find

[Lπ∗A♭ ,∇π∗B♯ ]s(p) =
[(

L(p) , [π∗A
♭, π∗B

♯]ξ(p) + π∗A
♭[ω(π∗B

♯)]ξ(p)

− π∗B
♯[WL(A)]ξ(p) + [WL(A), ω(π∗B

♯)]ξ(p)
)]

=
[(

L(p) , [π∗A
♭, π∗B

♯]ξ(p) + ω([π∗A
♭, π∗B

♯])ξ(p)
)]

= ∇[π∗A♭,π∗B♯]s(p),

where we have used Eqs. (8.33a, 8.33b). We thus have

[Lπ∗A♭ ,∇π∗B♯ ]s(p) = ∇(L
π∗A♭π∗B♯)s(p). (10.23)
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Now, setting π∗B
♯ = XAEA, XA constant, we have, evaluating the left hand

side of Eq. (10.23) directly

[Lπ∗A♭ ,∇π∗B♯ ]s(p) = (Lπ∗A♭π∗B
♯)A∇As(p) +XA[Lπ∗A♭ ,∇A]s(p).

Combining this with Eq. (10.23) we finally find

[Lπ∗A♭ ,∇A] = 0. (10.24)

10.3 H-covariant Lie derivative

In this section we shall define the so-called H-covariant Lie derivative, the
characteristic property of which is that when differentiating the frame it gives
zero.

We define the H-covariant Lie derivative of a section s(p) of a general tensor
bundle in the direction of an isometry asL(L)

π∗A♭s(p)
def
= lim

ǫ→0

1

ǫ

(

(

L̃
(L)

eǫA

)−1
s(leǫA(p)) − s(p)

)

. (10.25)

We can rewrite the H-covariant Lie derivative asL(L)

π∗A♭s(p) = lim
ǫ→0

1

ǫ

([(

L
(L)

e−ǫA (L(leǫA(p))) , ξ (leǫA(p))
)]

−
[(

L(p), ξ(p)
)])

= lim
ǫ→0

1

ǫ

([(

e−ǫAL(leǫA(p))h̃
(L)
L (leǫA , e−ǫA)−1, ξ (leǫA(p))

)]

−
[(

L(p), ξ(p)
)])

= lim
ǫ→0

1

ǫ

([(

e−ǫAL(leǫA(p))h̃
(L)
L (p, eǫA), ξ (leǫA(p))

)]

−
[(

L(p), ξ(p)
)])

= lim
ǫ→0

1

ǫ

[(

L(p), ξ (leǫA(p)) − ξ(p)
)]

=
[(

L(p),
d

dt
ξ(letA(p))

∣

∣

∣

t=0

)]

, (10.26)

where we have used Eq. (8.11). Again note that, although the range of the map

L
(L)

eǫA is considered to be restricted to π−1(U), this does not pose a problem
for our definition of the H-covariant Lie derivative as ǫ can always be chosen

sufficiently small such that L
(L)

eǫAL(p) ∈ π−1(U). Now we immediately find from
Eq. (10.26) L(L)

π∗A♭s(p) =
[(

L(p) , π∗A
♭[ξ(p)]

)]

. (10.27)

It is easy to see that the H-covariant Lie derivative is invariant under the
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equivalence transformations on associated bundles, see Eq. (7.1). We haveL(L)

π∗A♭ [(L(p)h, ρ(h−1)ξ(p))]

= lim
ǫ→0

1

ǫ

([(

L
(L)

e−ǫA (L(leǫA(p))h) , ρ(h−1)ξ (leǫA(p))
)]

−
[(

L(p)h, ρ(h−1)ξ(p)
)])

= lim
ǫ→0

1

ǫ

([(

L(p)h, ρ(h−1)ξ (leǫA(p))
)]

−
[(

L(p)h, ρ(h−1)ξ(p)
)])

= lim
ǫ→0

1

ǫ

[(

L(p), ξ (leǫA(p)) − ξ(p)
)]

= L(L)

π∗A♭ [(L(p), ξ(p))].

On the other hand we find for the transformation of L(L)

π∗A♭ under gauge trans-
formationsL(Lh)

π∗A♭s(p) = lim
ǫ→0

1

ǫ

([(

L
(Lh)

e−ǫA (L(leǫA(p))) , ξ (leǫA(p))
)]

−
[(

L(p), ξ(p)
)])

= lim
ǫ→0

1

ǫ

([(

L(p)h(p), ρ(h(leǫA (p))−1)ξ (leǫA(p)) − ρ(h(p)−1)ξ(p)
)]

= R̃
(L)
h(p) lim

ǫ→0

1

ǫ

([(

L(p), ρ(h(leǫA(p))−1)ξ (leǫA(p)) − ρ(h(p)−1)ξ(p)
)]

= R̃
(L)
h(p) L(L)

π∗A♭

(

R̃
(L)
h(p)−1s(p)

)

,

i.e. L(Lh)

π∗A♭ = R̃
(L)
h(p) L(L)

π∗A♭R̃
(L)
h(p)−1 . (10.28)

From Eq. (10.27) we easily find for the algebra of twoH-covariant derivatives

[L(L)

π∗A♭ ,L(L)

π∗B♭ ] = L(L)

[π∗A♭,π∗B♭]
. (10.29)

Now, from Eq. (10.27) we immediately find that the H-covariant Lie deriva-

tive of the frame E
(L)
A gives zeroL(L)

π∗A♭E
(L)
A =

[(

L(p) ,
{

π∗A
♭[δA

B ]
} )]

= 0. (10.30)

The H-covariant Lie derivative of the spin connection ω(L) is given byL(L)

π∗A♭ω
(L) =

[(

L(p),
{

π∗A
♭[ω

(L)
A ]

} )]

=
[(

L(p),
{

E
(L)
A [W

(L)
L (A)] − [W

(L)
L (A), ω

(L)
A ] +W

(L)I
L (A)fIA

Bω
(L)
B

})]

,

(10.31)

where we have used the infinitesimal composition rule for the left and right
H-compensators, Eq. (8.33b).
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10.4 Comparison to the literature

H-covariant Lie derivatives have been mentioned in various places in the liter-
ature, see for example [1, 9]. In this section we shall show how our definition
relates to those given in the literature. In order to do this we shall first derive a
relation between the ordinary Lie derivative and the H-covariant Lie derivative
on a general section of an associated bundle.

Recall the expression for the Lie derivative given in Eq. (10.14),

Lπ∗A♭s(p) =
[(

L(p) , π∗A
♭[ξ(p)] + ρ

(

W
(L)
L (A)

)

ξ(p)
)]

.

Using the definition of the action of the algebra of H on a local section, see Eq.
(7.7), and the expression for the H-covariant Lie derivative given in Eq. (10.27)
we find from this

Lπ∗A♭s(p) =
(L(L)

π∗A♭ + R̃
(L)

W
(L)
L (A)

)

s(p). (10.32)

From this we see that the Lie derivative consists of two parts, namely the H-
covariant Lie derivative and a gauge transformation. Let us understand this in
more detail.

First consider the H-covariant Lie derivative on a local section s(p) =
[(L(p), ξ(p))]. This measures the difference between ξ(letA(p)) at L(letA(p)) and
ξ(p) at L(p) by dragging ξ(letA(p)) back constantly along the curve γ1(s1) =

L
(L)

es1A(L(p)), see Figure 1.
In contrast, the ordinary Lie derivative measures the difference between

ξ(letA(p)) at L(letA(p)) and ξ(p) at L(p) by dragging ξ(letA(p)) back constantly

along the curve γ(s) = LesA(L(p)h̃
(L)
L (p, etA)−1). Alternatively this can be

understood as dragging ξ(letA(p)) back constantly first along the local sec-
tion L(p), namely along the curve γ1(s1), and then along the curve γ2(s2) =

R
h̃
(L)
L (p,es2A)

(L(p)h̃
(L)
L (p, etA)−1), see Figure 1.

As such the Lie derivative splits up into two parts: The first one, the H-
covariant Lie derivative, measures the change along the local section L(p), the
second one measures the change in the direction ‘perpendicular’ to the local
section L(p).

Now consider the H-covariant Lie derivative. This is given by, see Eq.
(10.27), L(L)

π∗A♭s(p) = [(L(p), π∗A
♭[ξ(p)])].

Recall that ξ(p) ∈ F stands for the components of the supertensor s(p) with

respect to the basis of the E
(L)
A . E.g., for s(p) = X a vector, ξ(p) stands for

the components XA of this vector in the basis E
(L)
A , see Section 7.3. As such

π∗A
♭[ξ(p)] is equal to the Lie derivative of the components of the supertensor

s(p). E.g., in the case of s(p) = X a vector, we have π∗A
♭[XA(p)] = ℓπ∗A♭XA(p),

where we wrote the Lie derivative of the scalar quantity XA as ℓπ∗A♭XA(p) in
order to distinguish this from (Lπ∗A♭X)A, i.e. from the Ath component of the
Lie derivative ofX. Note that the difference we make between the Lie derivative
ℓπ∗A♭ and the usual Lie derivative Lπ∗A♭ is a purely notational one.
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p

F

ξ(letA(p))

H

π

letA(p)

γ2

γ

L(p)h̃
(L)
L (p, etA)−1

ξ(p)

U ⊆ G/H

L(p)

γ1

L(letA(p))

ρ(h̃
(L)
L (p, etA))ξ(p)

Figure 1: Illustration of the dragging operation associated with the Lie deriva-
tive and the H-covariant Lie derivative, respectively.

We can thus rewrite the H-covariant Lie derivative asL(L)

π∗A♭s(p) = [(L(p), ℓπ∗A♭ .ξ(p))] (10.33)

Now let us consider the Lie derivative. Using the above notation we can
define l(L)

π∗A♭

def
= ℓπ∗A♭ + ρ

(

W
(L)
L (A)

)

, (10.34)

where ρ
(

W
(L)
L (A)

)

transforms the tangent space indices in the way following
from Eq. (7.18). This allows us to rewrite the Lie derivative of a local section
s(p) as

Lπ∗A♭s(p) = [(L(p), l(L)

π∗A♭ξ(p))]. (10.35)

In the literature it is l(L)

π∗A♭ , defined in Eq. (10.34), that is commonly referred
to as the H-covariant Lie derivative. One should note the similarity of Eq.
(10.34) to the expression for the Lie derivative in terms of the H-covariant Lie
derivative, see Eq. (10.32).

As an example consider the Lie derivative and the H-covariant Lie deriva-
tive, respectively, of s(p) = X a vector. We find

(Lπ∗A♭X)A = l(L)

π∗A♭(X
A) (10.36a)

(L(L)

π∗A♭X)A = ℓπ∗A♭(XA), (10.36b)
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where l(L)

π∗A♭(X
A) = π∗A

♭[XA] +XBW
(L)I
L (A)fIB

A. (10.36c)

Now consider the covariant derivative. We have, see Eq. (10.6),

∇
(L)
A s(p) =

[(

L(p) , E
(L)
A [ξ(p)] + ρ

(

ω
(L)
A

)

ξ(p)
)]

and setting

D
(L)
A

def
= E

(L)
A + ρ

(

ω
(L)
A

)

(10.37)

we can rewrite the covariant derivative as

∇
(L)
A s(p) =

[(

L(p) , D
(L)
A ξ(p)

)]

. (10.38)

Now, considering the commutator of the covariant derivative with the Lie
derivative we have from Eq. (10.24)

[Lπ∗A♭ ,∇EA
]s(p) =

[(

L(p), [l(L)

π∗A♭ ,D
(L)
A ]ξ(p)

)]

= 0

and hence
[l(L)

π∗A♭ ,D
(L)
A ] = 0. (10.39)

11 Killing supervectors

We have, in Section 9, touched upon the notion of Killing supervectors, the
supervectors associated to infinitesimal isometries. In this section we shall
analyze in more detail how the Killing supervectors may be defined, particularly
in terms of the derivations we discussed in Section 10.

11.1 The generalized Lie derivative

Let us first introduce what we shall call the generalized Lie derivative. Just as
the Lie derivative and covariant derivative were constructed from the action of
certain local bundle maps so will the generalized Lie derivative. The map we
use will be a local bundle map of the form

F
(L)
t : π−1(U) → π−1(U)

: L(p)h 7→ L(ft(p))h̃t(p)
−1h. (11.1)

Here ft : U → U is a one parameter family of maps on the base and the maps

h̃t : U → H are a one parameter family of H-valued functions. The map F
(L)
t

is required to satisfy F
(L)
0 = idπ−1(U), and so, associated with the map is a

supervector field on π−1(U) defined by

V |g[f ] =
d

dt
f(F

(L)
t (g))

∣

∣

∣

t=0
. (11.2)

Following from the decomposition of the map F
(L)
t as mentioned above we have

a decomposition of the supervector field V as

V |L(p) = L∗

(

X|p
)

−H♯|L(p). (11.3)
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Here X|p = π∗
(

V |L(p)

)

is the supervector associated to the map ft on the base

and H is the algebra element associated to h̃t(p) given by h̃ǫ(p) = 1 + ǫH(p) +
O(ǫ2). It can be shown that the supervector field V at points off the local
section is given by

V |L(p)h = Rh∗
(

V |L(p)

)

. (11.4)

As a consequence of this π∗V is a well defined supervector field on the base
manifold, without the need to specify from which point the supervector V was
taken to originate, analogously to the situation for π∗A

♭.

The map F
(L)
t can then be extended to a map on an associated bundle

analogously to Eqs. (8.9a–8.9c)

F̃
(L)
t : [(L(p), ξ(p))] 7→ [(F

(L)
t (L(p)), ξ(p))]. (11.5)

We then define the generalized Lie derivative of a (local) section s(p) of the
associated bundle by

KV s(p)
def
= lim

ǫ→0

1

ǫ

(

(

F̃ (L)
ǫ

)−1
s(fǫ(p)) − s(p)

)

. (11.6)

Note that here we have indexed the generalized Lie derivative with the super-
vector V . To see how KV depends on the components X and H, first note
that

(

F
(L)
t

)−1
L(ft(p)) = L(p)h̃t(p). (11.7)

Using this we find from the definition of KV that

KV s(p) = lim
ǫ→0

1

ǫ

([(

L(p)h̃ǫ(p), ξ(fǫ(p))
)]

−
[(

L(p), ξ(p)
)])

= lim
ǫ→0

1

ǫ

([(

L(p), ξ(fǫ(p)) − ξ(p)
)]

+
[(

L(p), (ρ(h̃ǫ(p)) − 1)ξ(fǫ(p))
)])

=
(L(L)

X + R̃
(L)
H

)

s(p). (11.8)

In the last line we have introduced a generalization of the H-covariant Lie
derivative, see Eq. (10.25), to act in the direction of an arbitrary supervector
field X rather than just in the direction of a Killing supervector π∗A

♭L(L)
X s(p)

def
=

[(

L(p),X[ξ(p)]
)]

. (11.9)

Also we have used the map R̃
(L)
H defined in Eq. (7.7) for the algebra element H

defined by h̃ǫ(p) = 1 + ǫH(p) + O(ǫ2). Eq. (11.8) should be compared to the
similar result for the Lie derivative, Eq. (10.32). Note that KV may or may not
depend on the local section, we will not explicitly indicate this dependence.

The generalized Lie derivatives can be shown to form an algebra

[KU ,KV ] = K[U,V ]. (11.10)
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For the supervector U we will write the decomposition, Eq. (11.3), as U =

L∗XU −H♯
U , and similarly for the supervectors V and [U, V ]. Then, the algebra

of the generalized Lie derivatives decomposes as

X[U,V ] = [XU ,XV ] (11.11a)

H[U,V ] = XU [HV ] −XV [HU ] + [HU ,HV ]. (11.11b)

These equations can be seen to encompass the various properties of the left
and right H-compensators discussed in Section 8.1. For instance, if we take the
supervectors U = A♭ and V = B♭ then [U, V ] = [B,A]♭. The decomposition

gives XU = π∗A
♭ and HU = W

(L)
L (A), and similarly for V and [U, V ]. Using

these values we see that Eqs. (11.11a, 11.11b) give precisely Eqs. (8.20, 8.21).
Following a similar approach with more elaborate choices of the supervectors
U and V we may likewise obtain Eqs. (8.30a, 8.30b) and Eqs. (8.33a, 8.33b).

We see from Eq. (11.8) that the action of KV can be thought of as com-

prised of two parts. The first part, L(L)
X , can be thought of as arising from an

infinitesimal general coordinate transformation in the direction of the supervec-

tor X. The second part, R̃
(L)
H , can be thought of as arising from an infinitesimal

local gauge transformation. Thus KV can be thought of as giving the general
infinitesimal transformation of a section. This is also apparent from the form

of the map F
(L)
t that was used to define KV .

11.2 Definition of Killing supervectors

We seek a definition of Killing supervectors which is consistent with our notion
of infinitesimal isometries as discussed in Section 9. Since KV represents a
general infinitesimal transformation we would like to find a condition on KV

such that it represents an infinitesimal isometry. Once we have this, then the
supervector field X in the decomposition Eq. (11.3) will be the desired Killing
supervector.

Recall from Section 9 that we defined isometries to be the group of transfor-
mations which leave the supergeometry, i.e. the frame and connection, invariant
up to a single gauge transformation. Now the covariant derivative is a quantity
which contains both the frame and the connection, thus we would suspect that
there is some way of utilizing the covariant derivative to give a condition for
KV to be an infinitesimal isometry.

Now, recall that the Lie derivative in the direction π∗A
♭ commutes with

the covariant derivative, Eq. (10.24). With this in mind let us consider the
commutator of the covariant derivative with the generalized Lie derivative. We
have

[KV ,∇
(L)
A ]s(p) = KV

[(

L(p), (E
(L)
A + ω

(L)
A )ξ(p)

)]

−∇
(L)
A

[(

L(p), (X +H)ξ(p)
)]

=
[(

L(p),
(

[X,E
(L)
A ] − V IfIA

BE
(L)
B +X[ω

(L)
A ] −E

(L)
A [H]

+ [H,ω
(L)
A ] − V IfIA

Bω
(L)
B

)

ξ(p)
)]

, (11.12)
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where we have taken the algebra valued quantities ω
(L)
A and H = V IHI to

be acting in the appropriate representation. Thus supposing we impose the
condition

[KV ,∇
(L)
A ] = 0 (11.13)

then we see from Eq. (11.12) that this implies

[X,E
(L)
A ] = V IfIA

BE
(L)
B , (11.14a)

X[ω
(L)
A ] − V IfIA

Bω
(L)
B = E

(L)
A [H] − [H,ω

(L)
A ]. (11.14b)

Now, we note that6 LXE
(L)
A = [X,E

(L)
A ], thus the first equation gives us an

expression for the Lie derivative of the frame. Also we have

X[ω
(L)
A ] = ℓX

(

ω(L)(E
(L)
A )

)

=
(

LXω
(L)

)

(E
(L)
A ) + ω(L)

(

LXE
(L)
A

)

=
(

LXω
(L)

)

(E
(L)
A ) + V IfIA

Bω
(L)
B , (11.15)

where in the last line we have used the expression for LXE
(L)
A given by Eq.

(11.14a). Using Eq. (11.15) we see that Eq. (11.14b) gives us an expression for
the Ath component of the Lie derivative of ω(L). Thus in total we may rewrite
Eqs. (11.14a, 11.14b) as

LXE
(L)
A = V IfIA

BE
(L)
B (11.16a)

LXω
(L) = dH − [H,ω(L)]. (11.16b)

These equations are simply the first order contributions to

fǫ∗

(

E
(L)
A

∣

∣

p

)

= ΛA
B(h̃ǫ)E

(L)
B

∣

∣

fǫ(p)
(11.17a)

fǫ
∗
(

ω(L)
∣

∣

fǫ(p)

)

= h̃−1
ǫ ω(L)

∣

∣

p
h̃ǫ + h̃−1

ǫ dh̃ǫ. (11.17b)

If we compare this result to Eqs. (9.1a, 9.1b) we see that infinitesimally the
transformation fǫ represents an isometry, as under its action the frame and
connection both transform by the gauge transformation given by h̃ǫ.

Based on these considerations we take Eq. (11.13) as defining the Killing
supervectors: The supervector X = π∗V associated with a transformation KV

is a Killing supervector if the transformation KV commutes with the covariant

derivative ∇
(L)
A . The advantage of this definition of Killing supervectors is

that it is easily generalized to superspaces which are not written as a coset
space. So long as we have a covariant derivative we just seek the infinitesimal
combined coordinate and gauge transformation which commutes with it. This
is the approach taken in [3], however there the derivations used are viewed as
acting on the components of a section rather than on the section itself.

6Here we shall use the definition of the Lie derivative LX (and ℓX) in an arbitrary direction
X as opposed to π∗A

♭, this is defined in the usual way when acting on vectors, scalars and
forms.
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11.3 Killing supervectors for the super coset space

We know from Section 9 that the supervector fields π∗A
♭ are Killing supervec-

tors of the coset space G/H. We would like to see how we may obtain these
Killing supervectors from Eq. (11.13). Let us first start by rewriting Eq. (11.13)
as, cf. Eq. (10.23),

[KV ,∇π∗B♯ ] = ∇(KV π∗B♯), ∀B ∈ k (11.18)

which is easily checked noting that B = Y AKA for some constants Y A. Note
we again here use the shorthand of dropping the dependence on L(p) in the
vector π∗B

♯. The supervector V will be decomposed into components X and

H as in Eq. (11.3). Then as the Y A are constants we have that L(L)
X π∗B

♯ = 0,
hence

KV π∗B
♯ = R̃

(L)
H π∗B

♯ = π∗[H,B]♯. (11.19)

Then, either by direct calculation or by using Eqs. (11.11a, 11.11b), we see that
Eq. (11.18) decomposes into the following two conditions

π∗[H,B]♯ = [X,π∗B
♯] (11.20a)

ω(L)(π∗[H,B]♯) = X[ω(L)(π∗B
♯)] − π∗B

♯[H] + [H,ω(L)(π∗B
♯)], (11.20b)

which must be satisfied for all possible choices of the algebra element B. We
know from Eqs. (8.33a, 8.33b) that a solution to these conditions is X = π∗A

♭

and H = W
(L)
L (A) for some algebra element A. We shall now show that all

solutions to these equations can be expressed in this form. Stated differently,
we will show that the unique solution to Eq. (11.13) is given by

KV = Lπ∗A♭ , (11.21)

and the Killing supervectors are thus of the form π∗A
♭.

Let us expand X = XAEA and H = V IHI , then Eqs. (11.20a, 11.20b) may
be rewritten as

π∗B
♯[XA] = XB [EB , π∗B

♯]A − V I(π∗[HI , B]♯)A

π∗B
♯[V I ] = XAEA[ωI(π∗B

♯)] + V J [HJ , ω(π∗B
♯)]I − V Jω(π∗[HJ , B]♯)I ,

which should be satisfied for all choices of B ∈ k. As usual we drop the depen-
dence on L(p) for the vectors π∗B

♯. Thus, if we group the components into a
single object Zp = (XA, V I) these equations take the simple form

π∗B
♯[Zp] + ZqMq

p(B) = 0, ∀B ∈ k (11.22)

where the objects Mq
p(B) depend linearly on the choice of B, they are also

functions of the frame and connection. This equation is linear and homogeneous
in Z, thus solutions may be combined linearly to give other solutions. Clearly
also Zp = 0 is a solution for all choices of B. In fact we already have a
whole family of solutions parameterized by the algebra elements A ∈ g, we
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will denote these solutions by Zp(A) whose components are X(A) = π∗A
♭ and

H(A) = W
(L)
L (A). We will now show that all solutions are of this type.

Suppose we have some solution Zp to Eq. (11.22). Let us focus on a partic-
ular point, p, in the base manifold and consider a curve γ(t) joining the point
p = γ(0) to some nearby point q = γ(1). At each point γ(t) along the curve
the tangent to the curve can be expressed as π∗B(t)♯ for some choice of algebra
element B(t), this can be viewed as simply the expansion of the tangent vector
in the basis EA. Now, our solution Zp to Eq. (11.22) is a solution for all choices
of B at all points, and thus in particular the choice B(t) at the point γ(t).
Abbreviating Zp|γ(t) = Zp(t) and Mq

p(B(t)) = Mq
p(t) Eq. (11.22) becomes, for

this specific choice,
d

dt
Zp(t) + Zq(t)Mq

p(t) = 0 (11.23)

which should then be satisfied for all t along the curve.

Now, Eq. (11.23) is a linear first order differential equation. Thus, given the
initial conditions, Zp(0), the solution Zp(t) is uniquely determined for t > 0.
In particular Zp(1) is uniquely determined. In fact, since the curve γ and the
point q are arbitrary we only need to specify Zp at one single point in the base
manifold from which Zp will be uniquely determined for all other points. Thus,
to show that all solutions to Eq. (11.22) can be expressed in the form Zp(A)
for some algebra element A it is sufficient to show that at a single point p an
arbitrary Zp can be expressed as Zp(A) for some A.

So let us consider a solution Zp at the point p composed of some supervector
X|p and algebra element H|p ∈ h. First note that it is always possible to choose
an algebra element A ∈ g such that

π∗

(

A♭|L(p)

)

= X|p. (11.24)

For instance it is straightforward to show that the choice A = X|p[L]L(p)−1

satisfies this equation. However, this choice of A is not unique, there is a
freedom in the choice of A under which π∗A

♭ at the point p remains unchanged.
This can be seen in the following way. Let H̃ be an arbitrary element of h, then

L(letA(p))h̃
(L)
L (p, etA) = etAL(p)

= etAetLH̃L
−1
L(p)e−tH̃

= et(A+LH̃L−1)L(p)e−tH̃ + O(t2)

= L(l
et(A+LH̃L−1)(p))h̃

(L)
L

(

p, et(A+LH̃L−1)
)

e−tH̃ + O(t2).

From which we immediately deduce

π∗
(

A♭
∣

∣

L(p)

)

= π∗
(

(A+ L(p)H̃L(p)−1)♭
∣

∣

L(p)

)

(11.25a)

W
(L)
L

(

p,A+ L(p)H̃L(p)−1
)

= W
(L)
L (p,A) + H̃. (11.25b)

Therefore, after choosing the algebra element A so that at p we have π∗A
♭ = X

we still have the freedom to change A → A + L(p)H̃L(p)−1, and under such
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a transformation the H-compensator W
(L)
L (A) at p can be changed arbitrarily.

Thus as well as choosing A so that Eq. (11.24) is satisfied we may simultaneously
choose A such that

W
(L)
L (p,A) = H|p. (11.26)

This concludes the proof.

12 Flat superspace

In this section we will apply the concepts discussed in the previous sections to
the well known case of flat superspace. We start with the super Poincaré group
G = SΠ and its subgroup of Lorentz transformations H. Flat superspace is
defined to be the coset space SΠ/H. The non-zero commutators of the super
Poincaré algebra, g = sπ, are

[Mab,Mcd] = ηadMbc + ηbcMad − ηacMbd − ηbdMac (12.1a)

[Mab, Pc] = ηcbPa − ηcaPb (12.1b)

[Mab, Qα] = −(σab)α
βQβ (12.1c)

[Qα, Qβ] = 2k(γaC−1)αβPa. (12.1d)

Here the γa are the Dirac gamma matrices for the flat metric ηab, σab = 1
4 [γa, γb],

C is the charge conjugation matrix, and k is a phase factor. The indices may be
grouped as A = (a, α) and the antisymmetric pair I = [ab]. We will distinguish
between tangent space indices A = (a, α) and coordinate indices M = (m,µ),
however both sets range over the same values. Comparing Eqs. (12.1a–12.1d)
to Eqs. (4.3a–4.3c) we have that the even generators Mab generate the Lorentz
subgroup and play the role of the HI whereas the even generators Pa generating
translations and the odd generators Qα generating supersymmetry transforma-
tions play the role of the KA. We see that, further to the reductive property, k

forms a nilpotent subalgebra of g. We have

[k, k] ⊆ k (12.2a)

[k, [k, k]] = 0. (12.2b)

In the expansion of a general element of the super Poincaré algebra, X =
XAKA +XIHI , it is possible to restrict the XI to be ordinary real numbers.
This is a result of the reductive property of the super Poincaré algebra and
the following: The HI are all even, the structure constants fIJ

K are ordinary
real numbers (i.e. H is conventional [3, 5]) and the coset space is flat, i.e. the
structure constants fAB

I vanish, cf. Eq. (6.11). While such a choice for the
super Poincaré algebra is not necessary it does allow one to deal simply with
the ordinary Lorentz group.

As a consequence of the reductive property any element g ∈ SΠ can be
written as g = ex

MKM ey
IHI for some xM and yI [3]. Further, using Eq. (12.2a),

one can show that xM and yI are uniquely determined by g. It follows that the
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principal bundle is trivial, admitting a global section

L : SΠ/H → SΠ

: p 7→ ex
M (p)KM (12.3)

where xM (p) are uniquely determined in terms of p and thus can be used as
the coordinates of the point p. This section is horizontal and can be thought of
as a special choice of gauge.

Let us calculate the action of an isometry on these coordinates. Consider
left multiplication by g = eA. For A = Y AKA ∈ k we can use the Baker-
Campbell-Hausdorff formula, which combined with Eq. (12.2b) gives

eY
AKAex

MKM = eY
AKA+xMKM+ 1

2
[Y AKA,x

MKM ].

From Eq. (12.2a) we see that under this transformation we do not leave the
section L. We thus find

xM (l
eY AKA

(p)) = xM (p) + Y A
(

δA
M −

1

2
xN (p)fNA

M
)

(12.4a)

h̃
(L)
L

(

p, eY
AKA

)

= 0. (12.4b)

For the algebra element A = Y IHI ∈ h we have

eY
IHIex

MKM = ex
M ΛM

N (e−Y IHI )KN eY
IHI ,

where ΛM
N (e−Y

IHI ) is the coadjoint representation of e−Y
IHI ∈ H, see Eq.

(5.5). This gives

xM (l
eY IHI

(p)) = xM (p)ΛM
N (e−Y

IHI ) (12.5a)

h̃
(L)
L

(

p, eY
IHI

)

= eY
IHI . (12.5b)

As in this case the normalizer of the Lorentz subgroup N(H), see Section 9,
is simply H we may determine all Killing supervectors by considering the in-
finitesimal versions of these transformations. We find

π∗P
♭
a = ∂a (12.6a)

π∗Q
♭
α = ∂α − kxβ(γaC−1)βα∂a (12.6b)

π∗M
♭
ab = xa∂b − xb∂a − xα(σab)α

β∂β . (12.6c)

It is standard to refer to these vectors as the differential operator representation
of the super Poincaré algebra. Note, however, that due to Eq. (8.20) the algebra
will have an extra minus sign compared to sπ.

A similar analysis for right multiplication leads to an expression for the
vectors π∗

(

K♯
A|L(p)

)

, i.e. the frame. We find

E(L)
a = ∂a (12.7a)

E(L)
α = ∂α + kxβ(γaC−1)βα∂a. (12.7b)
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The coframe and the connection may be calculated from the pullback of the
Maurer-Cartan form as in Eq. (6.1). We have

L∗
(

ζ|L(p)

)

= L(p)−1dL(p)

= e−x
MKM dex

MKM

= dxMKM +
1

2
[dxMKM , x

NKN ]

= dxM(δM
A −

1

2
xNfNM

A)KA.

We may then read off the coframe and connection

Ea(L) = dxa − k dxmxn(γaC−1)nm (12.8a)

Eα(L) = dxα (12.8b)

ω(L) = 0. (12.8c)

As ω(L) = 0 we see from Eq. (10.37) that D
(L)
A = E

(L)
A . This explains how – as

is usually stated in the literature – in flat superspace the covariant derivative is
obtained directly in terms of right multiplication on the coset space. In general

we must obviously consider the map R
(L)
g of Eq. (8.1c).

The covariant derivative D
(L)
A is usually considered as the operator which

(anti)commutes with the differential operator representation of the KA, i.e.
the π∗K

♭
A, particularly for A = α. This can be seen as a special case of Eq.

(10.39) since the H-compensator W
(L)
L (KA) vanishes. Note that the covariant

derivative will not commute with the π∗M
♭
ab as W

(L)
L (Mab) 6= 0.

Starting with the frame and connection one can construct the Killing su-
pervectors of flat superspace using the method discussed in Section 11, i.e. by
imposing that the commutator of the generalized Lie derivative with the covari-
ant derivative be zero. This procedure, in the four-dimensional case, is treated
in [3].

The curvature, Eq. (6.2), of flat superspace is clearly zero. The only non-zero
components of the torsion are given in terms of the algebra structure constants,
see Eq. (6.11). They are

Tαβ
a = 2k(γaC−1)αβ . (12.9)

While flat superspace is a very useful example of a super coset space its
geometry is relatively simple. The same techniques we have discussed here
may, however, be applied directly to more complex geometries. A particularly
well studied super coset space is the AdS5 × S5 superspace which arises as a
coset space of the super Lie group SU(2, 2|4), see for example [10, 12]. A lower
dimensional example of a super coset space is provided by the supersphere
[14, 15] which is a coset space of the super Lie group UOSp(1|2).

13 Conclusions

We have discussed in detail the geometry of super coset spaces with the focus
on how the geometric structures of the coset space G/H are inherited from G.



45

While the concepts and methods presented in this paper apply to coset spaces
in general, our main aim has been to analyze the geometry of super coset
spaces and their isometries. As such one important aspect of our work was to
review and clarify the notion of Killing supervectors in the context of super
coset spaces. Due to the fact that the notion of supermetric is not physically
relevant for the construction of superspace the standard definition of isometries
in terms of the metric cannot be applied and must be given in terms of the
supergeometry – the frame and connection. Although the definition of Killing
supervectors we give is derived from the understanding of the geometry of coset
spaces it clearly extends to more general situations.
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A Appendix

A.1 Conventions for super differential forms

We define a super n-form φ on a supermanifoldM at the point p to be a mapping
from n copies of the tangent supervector space to R∞, the real supernumbers,
i.e.

φ : TpM × . . .× TpM → R∞. (A.1)

The target space can be generalized to any vector space with a “multiplication”,
e.g. a super Lie algebra. While in this paper we write the supervectors on which
a form acts on the right, its properties are more conveniently represented with
the vectors on the left, we define

φ(X1, . . . ,Xn)
def
= (Xn, . . . ,X1) · φ. (A.2)

We then require the following properties to be satisfied

(X + Y,Z, . . .) · φ = (X,Z, . . .) · φ+ (Y,Z, . . .) · φ (A.3a)

(λX, Y, . . .) · φ = λ(X,Y, . . .) · φ (A.3b)

(. . . ,X, Y, . . .) · φ = −(−1)XY (. . . , Y,X, . . .) · φ, (A.3c)

where in the last equation the supervectors X and Y must be pure (i.e. even or
odd). From these relations we may further deduce

(. . . ,X + Y,Z, . . .) · φ = (. . . ,X,Z, . . .) · φ+ (. . . , Y, Z, . . .) · φ (A.4a)

(. . . ,Xλ, Y, . . .) · φ = (. . . ,X, λY, . . .) · φ. (A.4b)

Given a p-form φ and a q-form ψ we define the exterior (wedge) product
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φ ∧ ψ by its action on a set of p+ q pure supervectors as

(Xp+q, . . . ,X1) · φ ∧ ψ
def
=

1

p!q!

∑

σ

(−1)sgn σ(−1)νσ(Xp+q ,...,X1)

(−1)(Xσ(p+q)+...+Xσ(p+1))(Xσ(p)+...+Xσ(1)+φ)

(Xσ(p), . . . ,Xσ(1)) · φ (Xσ(p+q), . . . ,Xσ(p+1)) · ψ. (A.5)

Here σ is a permutation on p+ q elements. The quantity νσ is defined as

aσ(1) . . . aσ(n) = (−1)νσ(a1,...,an)a1 . . . an, (A.6)

where the ai, i = 1, . . . , n, are pure supernumbers. It is possible to show that
the definition Eq. (A.5) does indeed define a (p + q)-form. Further, if φ and ψ
are pure forms we have

φ ∧ ψ = (−1)φψ+pqψ ∧ φ, (A.7)

where the φ and ψ occurring in the exponent denote the parities of φ and ψ,
respectively.

In the case when the target space in Eq. (A.1) is generalized to a super Lie
algebra we have an algebra valued form. The product used in the definition Eq.
(A.5) must be replaced by the Lie algebra bracket, to indicate this we denote
the wedge product instead by [φ,ψ]. The symmetry of this wedge product has
an additional minus sign

[φ,ψ] = −(−1)φψ+pq[ψ, φ]. (A.8)

If we work in a matrix representation of the algebra we could instead use matrix
multiplication as the product and define φ∧ψ. While this latter wedge product
does not in general result in an algebra valued form we do however have the
relation

[φ,ψ] = φ ∧ ψ − (−1)φψ+pqψ ∧ φ. (A.9)

In particular φ ∧ φ is algebra valued.

The exterior derivative is defined initially on 0-forms (functions) by

df(X) = X[f ], (A.10a)

for an arbitrary supervector X. This definition is then extended to n-forms by
requiring the following properties to hold

d(φ+ χ) = dφ+ dχ (A.10b)

d(λφ) = λdφ (A.10c)

d(φ ∧ ψ) = dφ ∧ ψ + (−1)pφ ∧ dψ (A.10d)

d2 = 0. (A.10e)

Here φ and χ are p-forms, ψ is a q-form, and λ is an arbitrary supernumber.
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Let us suppose we have a basis of one-forms EA(L), A = 1, . . . ,dimM . Our

conventions for expanding the form φ in this basis are, cf. Eq. (7.25)

φ
def
=

1

p!
(−1)∆p(A,A)EA1

(L) ∧ . . . ∧ E
Ap

(L)φA1···Ap . (A.11)

Here we have used the parity function, defined as

∆p(A,B) =

p
∑

t,u
t<u

AtBu, (A.12)

where At and Bu represent the parities of the indices. This function could in fact
take as arguments any set of objects with parity, for example see Eq. (A.14)
below. Note that this function is clearly linear in both arguments. Further,
∆p(A,A) is just the sum over all non-equal pairs of indices and is invariant under
any index permutation. Using this it is possible to show that the components
of φ are given by

φA1···Ap = (−1)∆p(A,A)(E
(L)
Ap
, . . . , E

(L)
A1

) · φ. (A.13)

We can then also show that

(Xp, . . . ,X1) · φ = (−1)∆p(X,A)X
Ap
p · · ·XA1

1 φA1···Ap . (A.14)

A.2 Proof of Eq. (4.11) and Eq. (4.15)

Consider two curves γ1, γ2 : [0, 1] → G in the group which both project down
to the same curve γ : [0, 1] → G/H in the base, i.e. π ◦ γi = γ, for i = 1, 2.
Clearly then we have

γ2(t) = γ1(t)h(t) (A.15)

for some function h(t) ∈ H. LetX1, X2 denote the tangent vectors to the curves
in the group, and X the tangent vector to the curve in the base. Working in a
matrix representation we thus have

X2

∣

∣

γ2(0)
=

d

dt
γ2(t)

∣

∣

∣

t=0

=
d

dt
(γ1(t)h(t))

∣

∣

∣

t=0

=
d

dt
γ1(t)

∣

∣

∣

t=0
h(0) + γ1(0)

d

dt
h(t)

∣

∣

∣

t=0

=
d

dt
(γ1(t)h(0))

∣

∣

∣

t=0
+ γ2(0)h(0)

−1 d

dt
h(t)

∣

∣

∣

t=0
. (A.16)

Now consider

Rh(0)∗
(X1

∣

∣

γ1(0)
)[f ] = X1

∣

∣

γ1(0)
[f ◦Rh(0)]

=
d

dt
f ◦Rh(0) ◦ γ1(t)

∣

∣

∣

t=0

=
d

dt
f(γ1(t)h(0))

∣

∣

∣

t=0
,
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from which we deduce

Rh(0)∗
(X1

∣

∣

γ1(0)
) =

d

dt
(γ1(t)h(0))

∣

∣

∣

t=0
. (A.17)

Also we have

(h(0)−1dh(X
∣

∣

γ(0)
))♯

∣

∣

γ2(0)
=

d

dt

(

γ2(0)e
th(0)−1dh(X|γ(0))

)

∣

∣

∣

t=0

= γ2(0)h(0)
−1dh(X

∣

∣

γ(0)
)

= γ2(0)h(0)
−1 d

dt
h(t)

∣

∣

∣

t=0
. (A.18)

Thus if we use both Eqs. (A.17, A.18) in Eq. (A.16) we find

X2

∣

∣

γ2(0)
= Rh(0)∗

(X1

∣

∣

γ1(0)
) + (h(0)−1dh(X

∣

∣

γ(0)
))♯

∣

∣

γ2(0)
.

Note that the point t = 0 is not special, and in general we have

X2

∣

∣

γ2(t)
= Rh(t)∗

(X1

∣

∣

γ1(t)
) + (h(t)−1dh(X

∣

∣

γ(t)
))♯

∣

∣

γ2(t)
. (A.19)

Eq. (4.11) follows immediately from this result by choosing γ1(t) = L(γ(t))
and γ2(t) = γ̃(t), whereas Eq. (4.15) follows by choosing γ1(t) = L(γ(t)) and
γ2(t) = L′(γ(t)).
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