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ABSTRACT: We investigate a new 8-dimensional Riemannian geometry which arises as
a critical point of Hitchin’s variational principle and is defined by a generic closed and
coclosed 3—form with stabiliser PSU(3), along with well-known almost quaternionic struc-
tures with Sp(1) - Sp(2)—invariant closed 4—form. We give a Riemannian characterisation
of these groups in terms of invariant isometries in Ay ® A, We prove that the integrabil-
ity condition on the forms is equivalent to the harmonicity of the corresponding isometry
with respect to the twisted Dirac operator and thereby derive integrability conditions on
the Ricci tensor. We also show how Spin(7)-structures fit into this picture and provide
thus a unified treatment to Spin(7)-, PSU(3)- and almost—quaternionic geometry. We
establish various obstructions to the existence of topological reductions to PSU(3) and
for compact manifolds we also give sufficient conditions for PSU(3)-structures that can
be lifted to SU(3)-structures. Finally, we construct the first known compact integrable
non-symmetric PSU (3)-structures.
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1. Introduction

The motivation for the present work was to investigate a new 8-dimensional Riemannian
geometry which arose as a critical point of Hitchin’s variational principle [7]. In terms
of G-structures, it is associated with PSU(3) acting on the tangent space via its adjoint
representation Ad : PSU(3) — SO(8). Equivalently, and in close analogy to the better
known Ga—geometry, this structure can be (topologically) characterised by a special 3—form
coming from the PSU (3)-invariant 3—form B([X,Y], Z), where B denotes the Killing form
and [, -] the Lie bracket of su(3). As in the Go—case, the PSU(3)—forms are stable [7] and
to make the analogy complete, a PSU (3)—form defines a critical point if and only if it is
closed and coclosed with respect to the metric it induces. The key difference between these
two geometries is that close— and cocloseness imply the Go—invariant 3—form to be parallel
with respect to the Levi—Civita connection, in other words, the holonomy reduces to Ga,
while for PSU(3) this can only happen for (locally) flat or symmetric metrics in virtue of
Berger’s theorem.

The inclusion of PSU(3) into SO(8) can be lifted to Spin(8) and as was already shown
in [7], the vector representation A' and the two irreducible spin representations Ay of
Spin(8) restricted to PSU(3) all coincide. By the triality principle, A', A, and A_ carry
the same Euclidean structure, so there exist two PSU (3)—equivariant isometries A' — A,
Moreover, these are elements of the kernel of Clifford multiplication, since as a Spin(8)—
module, AL @A = AL @A3AL and A3A; = ker p. In view of a Riemannian characterisation



of PSU(3)-structures, that is, a description of the coset space Spin(8)/PSU(3), we are
naturally led to ask: What is the stabiliser of a supersymmetric map, that is, an isometry
Iy : A — A_ which lies in an irreducible Spin(8)-component of A_ ® A'? If Ty €
A, € A_® A, then Ty is induced by a spinor of unit norm and the stabiliser inside
Spin(8) is Spin(7). For I'y € A3A, to define an isometry A! — A_ our first result
asserts this to be equivalent to the existence of a Lie bracket [-,-] on Ay such that the
adjoint group preserves the spin invariant metric ¢ (Thm. 3.1). Then as a 3-form over
Ay, T (XY, Z) = q([X,Y],Z). Since this involves only the metric structure, analogous
statements hold for isometries A' — A_ and A, — A_ by the triality principle. We can
classify the resulting Lie algebra structures by observing that they are necessarily reductive
(Prop. 3.2) and consequently determine the orbit structure of Spin(8) on supersymmetric
maps in ASA, (Thm. 3.4). The occurring stabiliser groups are given as follows:

e SU(2)-SU(2) x U(1) and Sp(1) - Sp(2) as stabiliser of one orientation—preserving
isometry I'y : A — A_ or I'_ : A' — A, where the inclusion covers the canonical
embedding of SO(3) x SO(3) x SO(2) and SO(3) x SO(5) into SO(8).

e PSU(3) as stabiliser of a pair of orientation-reversing isometries I'y : Al — A

Remarkably, Sp(1) - Sp(2) shows up in this context. It is one of the possible Riemannian
holonomy groups on Berger’s list which so far has been characterised by the existence of
a special self-dual 4—form [12], thereby similar to Spin(7). In our approach, this group
appears as the stabiliser of a supersymmetric map, rendering it akin to PSU(3).

The hybrid nature of almost—quaternionic structures defined by Sp(1) - Sp(2) also per-
sists when it comes to integrability. Although the orbits associated with Spin(7) and
Sp(1) - Sp(2) are not open, the provenance of PSU(3) from Hitchin’s variational principle
suggests close— and cocloseness of the corresponding invariant differential form as a natu-
ral integrability condition. However, this has quite distinct implications for the resulting
geometric properties. As in the Ga—case, closeness of the Spin(7)-invariant self-dual 4—
form is equivalent for the holonomy to be contained in Spin(7). This is also true for the
Sp(1) - Sp(k)-invariant self-dual 4-form provided k£ > 3 [16], but Salamon’s counterexam-
ple [14] shows this to fail for k = 2, begging thus for a suitable geometric interpretation of
this integrability condition. Put differently, integrable Spin(7)-structures are torsion—free,
while Sp(1) - Sp(2)— and PSU (3)-structures allow for non—trivial components of the intrin-
sic torsion in some irreducible Sp(1) - Sp(2)- and PSU(3)-modules. The intrinsic torsion
can also be captured by looking at the corresponding invariant supersymmetric map. It
turns out that the invariant Sp(1)-Sp(2)— and PSU(3)-forms are closed and coclosed if and
only if the corresponding supersymmetric map is harmonic for the twisted Dirac operator,
that is, it lies in the kernel of B : T'(AL ® A) —» I'(Ax ® A) (Thm. 6.2 and Thm. 6.4). In
the PSU(3)—case, the implication was already asserted in |7]. However, as we will explain,
there are problems with the proof, so we have to establish both the implication and the
converse. As a matter of fact, for Spin(7) this harmonicity condition is actually a reformu-
lation of the usual holonomy condition (Proposition 6.1). As a result, we obtain a unified
treatment of integrable Spin(7)—, Sp(1) - Sp(2)— and PSU (3)-structures in terms of super-



symmetric maps. Moreover, this spinorial approach has practical consequences, too. Using
a formula of Weitzenbock kind for the twisted Dirac operator [20] readily yields geometrical
obstructions on the Ricci tensor. Indeed, five respectively eight components of the Ricci
tensor of an integrable Sp(1) - Sp(2)— or PSU(3)-metric have to vanish (Proposition 6.5),
contrasting sharply with integrable Spin(7)-metrics which are Ricci flat.

This leaves us with finding integrable examples of PSU(3)-structures with non—trivial
torsion, in particular compact ones, a problem risen by Hitchin [7], [8]. We first examine
the obstructions to the existence of a topological reduction to PSU(3) acting in its adjoint
representation. These turn out to be quite severe. Indeed, among other obstructions, it
implies the existence of four linearly independent vector fields (Prop. 5.8). As a consequence,
the only homogeneous compact example of the form G/H where G is simple is SU(3)
(Prop. 5.3). Due to the non—trivial Spin(8)—orbit structure on supersymmetric maps in
A3AL, sufficient conditions for existence are hard to find and we will content ourselves
with a special case, namely PSU(3)-structures with vanishing ¢riality class. This class
is the cohomological obstruction for lifting the structure group from PSU(3) to SU(3)
which can be thought of as the analogue of lifting an orthonormal frame bundle to a spin
structure. With the complex structure at hand we can derive a complete set of necessary
and sufficient conditions for such a PSU(3)-structure to exist by invoking a K-theoretic
argument. As a result, it is not surprising that the examples we found are topologically
trivial. A family of local integrable examples with non—trivial torsion is built out of a 4—
dimensional hyperkdhler manifold times flat Euclidean 4—space and a compact example is
obtained out of a 6-dimensional nilmanifold times a 2-torus. By computing the diagonal
of the Ricci tensor, these examples also show that we cannot improve the integrability
condition on the Ricci tensor, nor that Ricci flatness implies the vanishing of the torsion.
We complement our discussion of PSU(3) with the corresponding results for Sp(1) - Sp(2)
where we mainly draw on the existing literature [19] and [14].

The paper is organised as follows. We first discuss the triality principle in Section 2
before we classify the Spin(8)-orbit structure of supersymmetric maps in Section 3. Since
much of the techniques are representation theoretic, Section 4 is dedicated to a thorough
discussion of the linear algebra of Sp(1) - Sp(2)- and PSU (3)-structures. We then move
on to global issues and investigate necessary and sufficient conditions for the existence of
topological reductions to Sp(1) - Sp(2) and PSU(3) in Section 5. Integrability issues are
discussed in Section 6, while in Section 7 we construct local and compact examples.
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2. Triality

The interplay between vectors and spinors is at the heart of the special geometric features
of various low-dimensional geometries like the exceptional geometries associated with G
or Spin(7). In this respect, dimension 8 plays a special role as the space of vectors and
spinors carry the same internal structure by the triality principle.

To see what this means recall that the vector representation A' and the two irreducible
spin representations Ay of Spin(8) are all 8—dimensional and real. A convenient way to
think of these spaces is to adopt the octonions @ as the underlying Euclidean vector space.
More concretely, let us fix an orthonormal basis eq,...,eg in Al and identify these vectors
with the standard basis 1,4,...,e -k of (O,] - ||). If R, denotes right multiplication by
u € O, the map

weD - (_(J)% %“) € End(0 & 0) (2.1)

extends to an isomorphism CLff(Q) = End(O & O) where A = O & O is the (reducible)
space of spinors for Spin(8). These two summands can be distinguished after fixing an
orientation, since a volume form acts on these by +id. We thus obtain the irreducible spin
representations Ay. The explicit matrix representation (2.1) we will use throughout this
paper is given in Appendix A. Moreover, the inner product on @ can be adopted as the
Spin(8)—invariant inner product g on Ay and A_. Consequently the three irreducible repre-
sentations g : Spin(8) — SO(AY), my : Spin(8) — SO(A,) and 7_ : Spin(8) — SO(A_),
albeit non-equivalent as representation spaces of Spin(8), carry the same Euclidean struc-
ture. In fact, they are related by two outer Spin(8)-automorphisms s and X of order two
and three respectively, namely

mo=myoroland T_ = my o A2

Morally this means that we can exchange any two of the representations A', AL and A_
by an outer automorphism, while the remaining third one is fixed.

Example: Consider Clifford multiplication py_ : A, ® A' — A_ which as a Spin(8)-
equivariant map gives rise to a decomposition into irreducibles A_ @ ker u_. The kernel
of Clifford multiplication is isomorphic to A3A_ and we will use both representations in-
terchangeably. Moreover, the unit sphere in A_ is isomorphic to Spin(8)/Spin(7)_, where
the subscript “—" stresses the fact that Spin(7) stabilises a spinor of negative chirality and
not a vector in the vector representation of Spin(8). By exchanging via triality A, with
A_ while keeping fixed A!, we see that A_ @ A' = AL ® A3A_ and the unit sphere in A is
isomorphic to Spin(8)/Spin(7),. Similarly, A_ ® A, = A' @ A3 and the unit sphere in A!
is isomorphic to Spin(8)/Spin(7)g. Summarising, the stabiliser of a vector or a spinor of
positive/negative chirality is isomorphic to Spin(7), but lives in distinct conjugacy classes
inside Spin(8) permuted by the outer triality automorphisms.



3. Supersymmetric maps

Let us take up the previous example and consider a unit spinor ¥, € A, . It can be seen
as an element in A_ ® Al giving rise to the isometry X € A' +— X - U, € A_.

Definition 3.1. A supersymmetric map is an isometry between two of the three spaces A,
Ay or Ay, which lies in an irreducible Spin(8)—submodule.

The jargon has its origin in particle physics where a supersymmetry is supposed to transform
bosons (particles which are elements in a vector representation of the spin group) into
fermions (particles which are elements in a spin representation of the spin group).

One easily verifies that a supersymmetric map in AL boils down to a unit vector or
spinor. Hence, there is only one Spin(8)-orbit which is isomorphic to the 7-sphere. More
interesting is the case of supersymmetric maps which are induced by a 3-form over A, A
or A_. As we are only concerned with the metric structure of the spaces A, Ay, and A_,
triality implies that we are free to consider the module A, ® A_ rather than Ay ® Al and
we subsequently do so for various reasons. We first try to exhibit the orbit structure of
Spin(8) on the set of supersymmetric maps in A3 which we denote by J,. A first step is
the following characterisation.

Theorem 3.1. If a p € A® lies in Jg, then p is of unit length and there exists a Lie bracket
[,-] on A' such that

p(z,y,z) = g([z,y], 2). (3.1)

Consequently, the adjoint group of this Lie algebra acts as a group of isometries on AL.
Conversely, if there exists a Lie algebra structure on A whose adjoint group leaves g
invariant, then the 3-form defined by (3.1) and divided by its norm belongs to J,.

Proof: Because of the skew—symmetry of p, the metric g is necessarily invariant under the
adjoint action of the induced Lie algebra, for

9([z,y], 2) = p(z,y,2) = —g([z, 2], y).

We are left to show with that an isometry induces a Lie bracket and vice versa. In fact,
inducing an isometry and defining a Lie bracket through (3.1) are both quadratic conditions
on the coefficients of p which we show to coincide. To begin with we define the linear map

Jac: A2 @ A3 — A?

by skew-symmetrising the contraction to A2 ® A2. This is most suitably expressed in index
notation with respect to some orthonormal basis {e;}, namely

k
Jac(pijlemn) = p[ij Tim)k
I k k
=5 (pij Timk + Pilkijk + pikajlk + Py Timk + Pjp Tlik + lekTijk)

and in particular

k g k
Jac(pijkpimn) = (P,'j Pkim + Pi Prjm + Pjy Phim) - (3.2)

Wl



If we are given a 3-form p and define a skew-symmetric map [-,-] : A2 — A by (3.1), then
the Jacobi identity holds, i.e. we have defined a Lie bracket, if and only if Jac(p @ p) = 0.

Next we analyse the conditions for p to induce an isometry. For a p—form p we have
q(pP - U1, Uy) = (=1)PEHD2¢(Ty, pP - Uy), so p defines an isometry Ay — A+ if and only
if for any pair of spinors of equal chirality q(p - p- V1, ¥s) = q(¥1, ¥3) holds. Considering
thus the Spin(8)-equivariant maps

Ti:pRTEN @A —p-TE C’]iﬂ”(Al)%End(A)pni%p-T‘AlL €AL ®A4,

this condition reads p € J, if and only if I't(p ® p) = Ida,. Using the algorithm in [13]
and labeling irreducible representations by their highest weight (expressed in the basis of
fundamental roots), we decompose both the domain and the target space into irreducible
components to find

NN 21e200 Al 0 A ©[1,4,3,3] ©[2,4,2,3] @ [2,4,3,2] @
[2747 272] 692[273727 2] @ [2727 171]
AL @AL = NAL @ @*AL 2 A0 1@ AL

The modules A% = [1,2,2,1] and A? = [1,2,1,2] are the spaces of self-dual and anti-
self-dual 4-forms respectively. Note that I't(p ® 7)" = I'_(7 ® p) and so it suffices to
consider the map I'y only. Since the map induced by p is symmetric, it follows that
Fi(p®p) € ®*Ar = 1 ® AL. Moreover the image clearly contains A%. As a result,
IFi(p® p)QSAi = 0 is a necessary condition for p to lie in J,,.

Next we identify this obstruction in A% with Jac(p ® p) by showing

Lilp@p) ®T_(p@p) = —3Jac(p @ p)ys+ || p I 1d. (3:3)
We first remark that Clifford multiplication induces a map
pRTeN QAN —p- TN BA2P A e A°

if we regard the product p- 7 as an element of CLiff(A',g) =2 A* under the natural isomor-
phism. The various components of p - 7 under this identification are accounted for by the
“coinciding pairs® (c.p.) in the expression p;jxTimn€ijkimn, @ < j < I, I < m < n. For
instance, having three coinciding pairs implies 7 = [, j = m and k = n, hence e;jrm, = 1.
Then p = Zi<j<k Cijkeijk gets mapped to

pp= Z PijkPlmnClmnijk = E PijkPlmnClmnijk + E PijkPlmnClmnijk-
i<j<k i<j<k i<j<k
» 3 ¢.p. , 1c.p.
I<m<n I<m<n I<m<n

There is no contribution by the sum of two c.p. as p- p is symmetric. Now the first sum is
just

2 2
[ pl”1= Zi<j<k Pijil



which leaves us with the contribution of the sum with one pair of equal indices. No matter
which indices of the two triples (i < j < k) and (I < m < n) coincide, the skew—symmetry
of the ¢;j, and e;;;, allows us to rearrange and rename the indices in such a way that the
second sum equals

E E PajkPamnCamnajk = — E E PajkPamnCmnjk
a a

<k, m<n j<k,m<n
7,k,m,n dist. 7,k,m,n dist.
= —3Jac(p @ p),
whence (3.3) and consequently the assertion of the theorem. |

The 3-forms in J, thus encapsulate the data of a Lie algebra structure whose adjoint action
preserves the metric on Al. We also say that the Lie structure is adapted to the metric g and
write [ if we think of A! as a Lie algebra. In order to exhibit the Spin(8)-orbit structure
on Jg, our next task is to classify the resulting Lie algebras.

Let us recall some basic notions (see for instance [11]). A Lie algebra g is said to be
simple if it contains no non—trivial ideals. A semi—simple Lie algebra is a direct sum of simple
ones which is to say that it does not possess any non—trivial abelian ideal. Equivalently,
g = [g,g] = g. On the other hand, if the derived series defined inductively by g*) =
[g(k—1)7 g(k—l)]

abelian Lie algebra is solvable and so is any sub-algebra of a solvable one. Moreover, every

becomes actually trivial from some integer k on, then g is solvable. Any

Lie algebra contains a maximal solvable ideal, the so—called radical t(g) of g. In particular,
the centre 3(g) is contained in t(g). If there is equality, then g is said to be reductive.
Reductive Lie algebras are a direct Lie algebra sum of their centre and a semi—simple Lie
algebra.

Proposition 3.2. An adapted Lie algebra | is reductive.

Proof: By the lemma below, t(g) is abelian, therefore g([R1, X|, R2) = —g(X, [R1, R2]) =0
for any X € [ and R, Ry € t(g). It follows that [X,Rs] € t(g) Nt(g)~ = {0} and
consequently, t(g) = 3(g). [

Lemma 3.3. Let s be a solvable Lie algebra which is adapted to some metric g. Then s is
abelian.

Proof: We proceed by induction over n, the dimension of s. If n = 1, then s is abelian
and the assertion is trivial. Now assume that the assumption holds for all 1 < m < n. Let
a be a non-trivial abelian ideal of s. This, of course, does exist, for otherwise s would be
semi—simple. The ad—invariance of g implies

g([A, X],Y)=0 forall X,Y €5, A€ aq,

for if X € a, then [4, X] = 0 and if X € at, then g([4, X],Y) = —g(X,[A,Y]) = 0 since
[A,Y] € a. Hence a C 3(s). We can therefore split s = 3 @ b into a direct sum of vector



spaces with h an orthogonal complement to 3 of dimension strictly less than n. Now for all
X €s,Z¢€zand H € b we have g([X, H],Z) = —g(H,[X,Z]) =0, s0 [X,H] € 31 = b, or
equivalently, b is an ideal of s. As such, it is adapted and solvable since s is adapted and
solvable. Our induction hypothesis applies and we deduce that s is abelian. |

As a result, we are left to determine the semi—simple part of an adapted Lie algebra [ of
dimension 8. Appealing to Cartan’s classification of simple Lie algebras, we obtain the
following possibilities where 37 denotes the centre of dimension p:

L. [} =su(3)

2. Iy = su(2) ®su(2) ® 32

3. I3 =su(2) @35
Hence there is a disjoint decomposition of J, into the sets Jg1, Jg2 and Jg3 acted on by
Spin(8) and pooling together the forms which induce the Lie algebra structure [y, 5 or [3.
Theorem 3.4. The sets Jg1, Jg2 and J43 can be described as follows:

1. 351 = Spin(8)/(PSU(3) x Zs)

2. Jg2 = (0,1) x Spin(8)/(SU(2) - SU(2) x U(1))

3. Jg3 = Spin(8)/5p(1) - Sp(2),
where SU(2) - SU(2) = SU(2) x SU(2)/Zy and Sp(1) - Sp(2) = Sp(1) x Sp(2)/Zy cover the
inclusions SO(3) x SO(3) — SO(8) and SO(3) x SO(5) — SO(R). Furthermore, consider
the Spin(8)—invariant decomposition Jg = Tg4 U Tg_ into 3-forms whose induced isometry
is orientation—preserving or reversing respectively. Then T, = Spin(8)/(PSU(3) x Zs)
and Jgy foliates over the circle ST with principal orbits Spin(8)/(SU(2) - SU(2) x U(1))
over St — {pt} and a degenerate orbit Spin(8)/Sp(1) - Sp(2) at {pt}.

Proof: We remark that the stabiliser of p; € Jg; in SO(8) is SO(8) N Aut(l;). Consider
then the case of a 3-form p; € Jg1, that is, p; induces an su(3)-structure on A. Since
the fixed Riemannian metric g is ad—invariant it must up to a negative constant ¢ coincide
with the (negative definite) Killing form B(X,Y) = Tr(adx o ady). It is well known (cf.
for instance [5]) that there exists an orthogonal basis ey, ..., eg such that the totally anti—

symmetric structure constants c;;i are given by

V3

1
c123 =1, €147 = —C156 = C246 = C257 = C345 = —C367 = 57 C458 = Ce78 = 7

and B(e;,e;) = —3. Hence f; = e;/v/—3c is g-orthonormal. The relation (3.1) and the
requirement to be of unit norm then implies that

P1=\/1—f123+2\/j 1(far — f56) +

2\/— fa(fas + fo7)

= §f123 + Zfl(f47 — fr6) + ifz(f% + f57) + %f3(f45 — fer) + gfs(f% + fo7).

2\/3 f2(fas + f57) + 2\/j f3(fas — for) +



where as usual, the notation f;;, will be shorthand for f; A fj A fi and vectors are identified
with their dual in presence of a metric. Any 3-form of J,1 being representable in this
way, it follows that SO(8) acts transitively on J,1. The stabiliser of p; in SO(8) is the
adjoint group SU(3)/Zs = PSU(3) which is covered by PSU(3) x Zs in Spin(8) (note that
71 (PSU(3)) = Z3), hence J41 = Spin(8)/(PSU(3) x Z3). Using the matrix representation
of CIiff(A') given in Appendix A with respect to some ordered basis W, of AL the isometry
Ay A — A4 induced by pq is

v3 0 0 3-/3 o0 o0 1

2 —v3 -1 0 2 -3 -1 0

0 3 —/3 0 0 -1 -3 0
A 1 -1 0 2 43 1 0 -2-3 54
P74l -3 0 o0 1 v3 o o 3|’ (34)

-2 —/3 -1 0 -2 —-/3 -1 0

0 -1 -v3 0 0 3 —V3 0

1 0 2 -3 -1 0 -2 V3

hence det(A,, ) = —1. Moreover, we have det 74 (a) = 1 for any a € Spin(8) as the genera-
tors e; - ej square to —Id and are therefore of determinant 1. The Spin(8)-equivariance of
the embedding A® — A ® A entails Ay (q)p, = m4(a) 0o Ay om_(a)~!, whence Ty C Tg_.

Next we turn to the Lie algebras [ and [3 where the latter can be seen as a degeneration
of the former. So assume py to be an element of J,o inducing an su(2) @ su(2) & 32—
structure. The restriction to g to any copy of su(2) must be as above a negative multiple
of the Killing form of su(2), so g = ¢1B1 @ c2B2 ® g|;»- There exists a basis e; of su(2) such
that [e;, ej] = €;xer (where €5, is totally anti-symmetric) and B(e;, e;) = —2. Choosing
such a basis for each copy of su(2) and extending this to an orthonormal basis f; of A by
normalising, the requirement on ps to be of unit norm implies

1 1
— +
p2 \/Tclf 123 \/Tclf456
1 2c1 +1
= + 4/ " fus6,
\/Tclf 123 e, fas6
where ¢; = —sin(ra)/2, a € (0,1) is the only SO(8)-invariant of py. It follows that Jgo

foliates in SO(8)—orbits over (0,1). The automorphism group is SU(2)/Zs x SU(2)/Zs x
GL(2) = SO(3) x SO(3) x GL(2) and since the Lie algebra structure is adapted to g,
the stabiliser of py in SO(8) is given by SO(3) x SO(3) x SO(2). This is covered twice by
SU(2)-SU(2)xU(1) C Spin(8) and we obtain Jgo = (0,1)xSpin(8)/(SU(2)-SU(2)xU(1)).



The induced isometry A_ — Ay is

0 0 2c1+1 1

— 0 0 0 0
1 2c1+1
0 0 -2 /2 0 0 0 0
2c1+1 1
VEE Ao 0 0 0 0 0 0
-1/ 0 0 0 0 0 0
A = V—2¢c1 201
P2 T 0 0 0 0 0 0 \/2c1+1 1
"2¢;  /—2cl
_ 1 2c1+1
0 0 0 0 0 0 — L /2
I
0 0 0 0 /BT Ao 0 0
1 2c1 T
0 0 0 0 — L /EE 0 0

and thus of positive determinant. We conclude as above that Jgo C Jgq.

We obtain the last case for co = 0, i.e. ¢; = —1/2. Here the stabiliser in SO(8) is
isomorphic to SO(3) x SO(5) whose double covering to Spin(8) is Sp(1) - Sp(2) (using the
isomorphism between SU(2) = Sp(1) and Spin(5) = Sp(2)). Moreover, Jg3 C Ty, whence
the theorem. |

By the triality principle, we can exchange A or A_ with A' while leaving A_ or A, fixed.
Hence we get an analogous orbit decomposition for A+ ® A' where the stabiliser subgroups
sit now in SO(Ag) and lift via 7+ to Spin(8). Note however that the characterisation of
Jg+ does depend on the module under consideration as the outer triality morphisms reverse
the orientation. In any case, the covering group in Spin(8) acts on all three representations
and we analyse now this action in detail, where again it suffices to discuss the case where
the stabiliser of the isometry lifts through 7.

We start with the group PSU(3) x Zg which projects to PSU(3) in SO(A'), SO(Ay)
and SO(A_). Hence PSU(3) C SO(A') gives also rise to PSU(3)-invariant isometries in
Ay ® A'. We immediately deduce that restricted to PSU(3) in Spin(8), the representation
spaces A', A, and A_ are equivalent. In particular, Clifford multiplication p: A' ® Ay —
A+ induces an orthogonal product

X N@AL 2NN - AL A, (3.5)

a fact previously noticed in |7].

Next we analyse the case of SU(2) - SU(2) x U(1). As before, we label irreducible
representations by their highest weight expressed in the basis of fundamental roots. Recall
that the irreducible representations of SU(2) are given by the symmetric power ¢” = @"C?
of the complex vector representation C? and labeled by the half-integer I = n/2. They are
real for n even and quaternionic for n odd. Consequently, the irreducible representations of
SU(2)-SU(2) x U(1) can be labeled by (l1,l2,m) = (I1) ® (I2) ® (m), where the third factor
denotes the irreducible S'-representation S,, : 0(z) — €.z which is one-dimensional and
complex. Moreover we will use, as we already did in Theorem 3.1, the notation from [13]
and denote a real module V' by [n1,...,n] if its complexification V @ C = (nq,...,n;) is
self-dual (that is, V @ C is complex irreducible). Otherwise, we write [n1,...,n;], which

means that V ® C = W @& W where W is an irreducible complex module non-equivalent to
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W. By assumption, we then have
A = s5u(2) ®su(2) ®R? = [1,0,0] ® [0,1,0] @ [0,0,2].

Hence, SU(2) - SU(2) x U(1) acts with weights 0, a1, o, 2m with a; and ag being the
fundamental roots of SU(2) x SU(2). Substituting

Tl =1, Ta =g, 3 =2m, x4 =0

into the Spin(8)—weights +x1,...,+x4 given by the parameters of the standard Cartan
sub—algebra of Spin(8) shows that as a SU(2) - SU(2) x U(1)-space

11
Ap=A_=[551]=[CeCSs]

(the Spin(8)—weights on Ay are (x1 £ ...+ x4)/2 with an even (respectively odd) number
of minus signs). In particular, the action of SU(2) - SU(2) x U(1) on Ay preserves a
complex structure. Note however that this structure does not reduce to SU(4) as the torus
component acts non-trivially on A*°A. Permuting with the triality automorphisms yields
a complex structure on Al and Ay if the isometry is an element of ASA~.

Finally we consider the group Sp(1) - Sp(2), that is

A =su(2) @3’ =1[1,0,0] @ [0,2, —1].

Here the first component refers to the representation labeled by «, the fundamental root of
sp(1) ® C = su(2) ® C, while the last two indices (my, mgo) designate the irreducible Sp(2)—
representation with respect to the basis of fundamental roots 1 and f2. The weights of
the action on Al are 0, «, 51 + %ﬁg, 61+ %ﬁg and substituting as above, we obtain

AL =A_=[1/2,1,1] = [C? @ H]

where the quaternionic space H? serves as a model for the irreducible spin representation
of Sp(2) = Spin(5).

In this paper we focus on the groups PSU(3) and Sp(1) - Sp(2) stabilising a supersym-
metric map '+ € ASAL € A_ ® A, thus acting irreducibly on A'. Before we can continue,
a thorough discussion of these is in order.

4. Algebraic reductions to Sp(1) - Sp(2) and PSU(3)

Definition 4.1. Let G be a Lie group. The choice of a subgroup H C G is called a(n)
(algebraic) reduction of G to H. One also says that G (algebraically) reduces to H.

Reductions are equivalent to the choice of an H-invariant in the coset space G/H, that
is, H arises as the stabiliser of an object acted on by G. For instance, choosing a su-
persymmetric map reduces G = Spin(8) to Spin(7), PSU(3), SU(2) - SU(2) x U(1) or
Sp(1) - Sp(2). This example stresses the importance of the embedding of H into G as the
induced representations depend crucially on how H sits inside G.
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First, we briefly review some facts about Spin(7) (cf. for instance [4]). Here, the
embedding is induced by a chiral unit spinor which we can always assume, possibly after
changing the orientation accordingly, to be of positive chirality. The induced representation
on Ay can be decomposed into Ay = 1 @ R”, where R” is the vector representation on
R7. It follows that regarded as a Spin(7)-module A' = [1/2,1,3/2], that is, A' becomes
the irreducible Spin(7)-spin representation A. Decomposing A* we also see that Spin(7)
stabilises a 4-form p which induces a reduction from GL(8) to Spin(7). To understand
where it comes from, equip A' with a quaternionic structure, i.e. A' = H?2. This induces, in
particular, the three Kéhler 2-forms w;, w; and wg. The Spin(7)-invariant 4-form is then

p=wi Nwi +wj Nwj —wi A wg.

Expressed in a suitable orthonormal frame we have w; = e12 — e34 + e56 — €73, wj =
€13 + eaq + e57 + egs and wyi, = e14 — ea3 + ess — egr, hence p is given by

p = —e1234 + €1256 — €1278 + €1357 + €1368 — €1458 1+ €1467

+e2358 — €2367 + €2457 + €2468 — €3456 1+ €3478 — €5678-

Its stabiliser gives rise to the decomposition s0(7) @ s0(7)* of irreducible Spin(7)-modules
inside s0(8) = A2. This determines the spinor ¥, as a solution of the equation a - ¥, =0
for all a € s0(7) C A2

This form point of view closely relates to Sp(1) - Sp(2)-structures to which we turn
next. Here the vector representation of GL(8) restricted to this group gives A! = [C2® H?].
Elevating this to the fourth exterior power yields an invariant 4—form which is obtained in
a similar way as in the Spin(7)-case, namely by

p=wi Nwi +wj Nwj +wi A wg
so that in the orthonormal basis given above

p = —3e1234 + €1256 — €1278 + €1357 + €1368 + €1458 — €1467

—e2358 + €2367 + €2457 + €2468 — €3456 + €3478 — 3€5678- (4.1)

We refer to any orthonormal basis such that p takes the form (4.1) as an Sp(1)-Sp(2)—frame
and whenever we are dealing with this group, we assume such a frame to be chosen unless
otherwise stated. The invariant 4—form induces a splitting of s0(8) into the Lie algebra of
the stabiliser and its orthogonal complement. For later applications we need to investigate
this decomposition further. If a*Q = 0 for )
of gl(8) on exterior forms, then

i<j ij€iNE; where a* denotes the usual action

agg — a13 — ag4 +as7 =0, age —a17 =0, ag7 —ags =0, azg +ax =0, ajg+axs =0
a3 — a14 — ag7 +asg =0, azs +a17 =0, agg+ a7 =0, asr —a1g =0, azs+aig =0,
azs —arg +ase — a2 =0, ag5 +a13 =0, ags —asg =0, a15 —asg =0, azr —asg = 0.
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A maximal torus is spanned for instance by a; = (e12 — e34 + €56 — e78) /2, as = e12 +e3q4 +

es6 + erg and ag = ejo + esq — esg — erg with corresponding fundamental roots o = ial,

B = 2i(a® — a®) and [ = 2ia®. The weights of A! = [C? ® H?] are
T a+ ), Tila—pB1), Eia+p)+ B Eia—p) - B (4.2)

and the weight vectors are given by &(q44,)/2 = €5 —1€6, T(q—p,)/2 = €7H1€8, T(ayp,)/2462 =
e1 — ieg and T(a—p)/2-p8, = €3t i€q. A different characterisation of the decomposition
A? = sp(1) @ sp(2) @ (sp(l) ® 5p(2))J‘ is given by the equivariant map a — acp. A
straightforward application of Schur’s Lemma yields

Proposition 4.1. We have sp(1) := {a € A?|(aQ) = 5a}, sp(2) = {a € A?|(aQ) =
—3a} and (sp(1) EBsp(Z))l = {a € A?| (o) = a}. Moreover, the projection operators
onto these modules are m3(a) = (— 3o+ 200.Q + (L)) /32, 7i(a) = (5a — 6L +
(e ).Q) /32 and 7i5(a) = (15a 4+ 200.Q — (aQ).Q) /16 respectively.

We also need to investigate the action of Sp(1) - Sp(2) on the remaining exterior powers.
As already introduced in the previous section, ¢ = (1/2) = C? denotes the vector repre-
sentation of Sp(1) = SU(2) and H? = [1/2,1] the vector representation of Sp(2). More
generally, there is a kind of Clebsch—Gordan decomposition

[r/2]
AN =Pl e V], 0<r<s,
s=0

where the irreducible GL(2, H)-module V is the direct sum of irreducible Sp(2)-modules
r [3 +s
2

]), 0<r—2s<k

([16] — note that our choice of a basis differs from [13]). In particular, Al = (3,1) = H2
We then obtain

Proposition 4.2.
1. N = [S® Ay] = [3,3,1] is irreducible.

2. A =[5% @[N] @[S ® ] =[1,0,00@0,1,2] @ [1,1,1].

1,1,1] @ [1,1,2] @ [2,0,0]

The decomposition of the remaining modules follow from the Hodge-duality A} =2 A7,

As proven in the previous section, Sp(1) - Sp(2) also stabilises a supersymmetric map
I'y in A>A, which describes the reduction from Spin(8) to Sp(1) - Sp(2). It is determined
(up to a scalar) by the equation

1
a(l'y) = 5/{(&) Ty —Tioa =0.
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supposed to hold for all a € sp(1) @ sp(2) and can be computed using the matrix represen-
tation x in Appendix A. Given as a matrix with respect to some Sp(1) - Sp(2)—frame and
fixed orthonormal basis of At we find

10 0 0 0 0 0 O

0-1 0 0 0 0 O0 O

0 0 0 0 0 0 0 1

Its determinant is —1 in accordance with Theorem 3.4 since the outer triality morphisms
reverse the orientation.

Finally, we investigate the group PSU(3) = SU(3)/Z(SU(3)) [21]. It is the compact,
8-dimensional identity component of the automorphism group of su(3). In particular, the
adjoint representation Ad : SU(3) — SO(8) descends to an embedding PSU(3) — SO(8) C
GL(8), so that Al = su(3). The group PSU (3) arises as the stabiliser of the 3—form

p(X.Y,2) =~ <B(X,Y],2)
inside GL(8). Since dim GL, (8) — dim PSU(3) = dim A3, the GL.(8)-orbit of PSU(3)-

invariant forms is open which means that these forms are stable following the language of |7].
As we have already used above, a PSU(3)-invariant form p can be expressed in a suitable

frame as
1 1 1 1 3
p= ez + 161(647 —es6) + 162(646 +es7) + 163(645 —ep7) + T68(€45 +e67).  (4.4)

When dealing with PSU(3), we will always assume to work with such a frame (to which
we also refer as a PSU(3)—frame) unless otherwise stated.

Next we will discuss some elements of the representation theory for PSU(3). The
Lie algebra of its stabiliser is given by the vectors zLp € A% and a maximal torus is
spanned by x3 = e3Lp and xg = egLp with roots are given by +a; = 4i(2® + v/32%)/2,
+ay = Fi(2® — v/32%)/2 and +(a; + ag) = Fiz® and weight vectors (in Al = su(3))
Ta, = €4 —i€5, T, = €5 + i€ and Ty, 1a, = €1 — tez. For the exterior algebra we find the
following decomposition.

Proposition 4.3.
1. A = su(3) = [1,1] is irreducible.

2. =N aoAy=[11o]L,2]
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3 N =NoAoAor, =10[1,1]0[1,2]® (2,2
4. At =2A @ 2A%, = 2[1,1] ©2[2,2]

We used the standard notation whereby Af represents a ¢-dimensional irreducible sub-
space of AP.

In the situation of PSU(3), we can approach this decomposition also from a cohomologi-
cal point of view well-suited for our later purposes. The Lie algebra structure on Al = su(3)
induces a PSU (3)-invariant operator by, : A¥ — AFT! by extension of

be; = Zcijkej N €.
j<k
Since b is built out of the structure constants, it is just the exterior differential operator
restricted to the left—invariant differential forms of SU(3) with adjoint b* = d* = — % d*.
The resulting elliptic complex is isomorphic to the de Rham cohomology H*(SU(3),R)
which is trivial except for the Betti numbers by = b3 = 1 = b5 = bg. Hence, im by, = ker by 41
for k=0,1,3,5,6 and im by = ker b1 & R for k = —1, 2, 4, 7. Schematically, we have

AY A? A7 A}
AL 2y A2 AP 2 Al AS 2 AT
b
i Ag — Ag ) (45)
Ago - Ago Ago - Ago

b
A3 — A3,
b
A3 — A3,
with an arrow indicating the non—trivial maps. In particular, we will use the more natural
splitting of A* into A% = ker b3 and A} = im b* instead of the SO(8)-equivariant splitting
into self- and anti—self-dual forms.

Using the b—operator and its co—differential, we can easily construct the projection op-
erators for A2,

Proposition 4.4. For any a € A? we have b(a) = —a*p. Moreover, A2 = ker by and the
projection operator on the complement is m3y(a) = %b:’;bg(a). For the complexification, we
find A3y @ C = A}y, ®Afy_ =(1,2) ® (2,1) where

A ={a e A20C| % (pAa) = +iV3a"p}).
The projection operators are w3, (o) = 2b3ba(c) F BT\@Z' * (ba(a) A p).

The proof can be readily verified by applying Schur’s Lemma with the sample vectors
ZTag A Tagt+as € (1,2) and o, A Zay+as € (2,1).

Finally, we want to characterise PSU(3) in Riemannian terms. It stabilises two super-
symmetric maps I'y € ASAy. These are characterised (up to a scalar) by the equations

1
xp(ly) = §m(x|_p) Ty —Tioxp = 0.
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For their matrices with respect to a PSU(3)—frame and a fixed orthonormal basis of Ay,
we find

403 f 4-F 4o 0o-f o 3-f - F
o-f o} F } f 4 4 o-3-f 3-F - o
o044 1% 1o 04 0 3-F 3oy
O I T e i I I IR N
SRR SR 03 0 -3 F 3oy
0o 3 0o 3 F } £ b0 4 -1-F -4 o
R 0-p 0 3-f 3oy
0 3 o -i-F § 4 4 0 4-F 3 £ oo

They are of determinant 1 in accordance with what we found for the Sp(1) - Sp(2)-case.

5. Topological reductions to Sp(1) - Sp(2) and PSU(3)

Definition 5.1. Let G be a Lie group and M"™ be a manifold endowed with a principal
G—fibre bundle Pg. The choice of a subgroup H C G together with an principal H—fibre
subbundle Py C Pg such that the action of H on Py coincides with the restriction of the
action of G on Pg to H and Py is called a (topological) reduction of Pg to Pg. One also
says that Pg (topologically) reduces to Pp.

We usually drop the adjective “topological® if there is no risk of confusion with algebraic or
geometric reductions (where a fixed G-connection restricts on Py to an H-connection).

Definition 5.2. Let M® be an 8-fold. A topological reduction from the (GL(8)-) frame
bundle to an Sp(1) - Sp(2)— or PSU(3)—principal fibre bundle, where ¢ : Sp(1) - Sp(2) —
GL(8) is the natural inclusion and Ad : PSU(3) — GL(8), is called an Sp(1) - Sp(2)- or
PSU(3)-structure.

Akin to its algebraic analogue, topological reductions from G to H are in 1-1-correspondence
with sections of the associated bundle with fibre G/H. Therefore, an Sp(1) - Sp(2)— or
PSU(3)-structure exists if and only if there is a global 4- or 3—form which locally can
always be written as in (4.1) or (4.4) for some basis of T'. The existence of such a section
is usually topologically obstructed. Since both groups live in a group conjugated to SO(8),
an Sp(1)-Sp(2)- or PSU(3)-structure induces a principal SO(8)-fibre bundle by extension
and thus a globally defined metric as well as an orientation. Moreover this inclusion can
be lifted to Spin(8), so we also get a canonic spin structure. In particular, the manifold is
spinnable, that is, the first two Stiefel-Whitney classes vanish, wy = wo = 0. The problem
of reducing GL(8) to one of these groups then boils down to the problem of reducing Spin(8)
to PSU(3) or Sp(1)-Sp(2), or equivalently, to the existence of a supersymmetric map. For
Spin(7)s—structures, this obstruction can be identified with the Euler class of x(A4) as
we are asking for a section in the bundle with associated fiber Spin(8)/Spin(7)+ = S7.
The following result is classical [9] and is an easy consequence of the Borel-Hirzebruch
formalism [3] illustrated below.
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Proposition 5.1. The Spin(8)-structure of a spinnable 8—fold reduces to Spin(7)+ if and
only if 16e(A+) = +8e + p? — 4py = 0.

This proposition stresses once more the importance of the embedding H — G as the
topological obstructions are not invariant under the outer triality morphism.

To tackle this question in the case of Sp(1) - Sp(2)- and a PSU(3)-structures, let
+x1,...,+tx4 denote the weights of the vector representation of Spin(8). Formally, the
total Pontrjagin class p and the Euler class e of M are expressed as the product

D= H(l—l-x?), e :Hxi.

Now consider Sp(1) - Sp(2). Here, the weights of R® = [0 ® A}] are given by (4.2). Substi-
tuting this into the Spin(8)-weights

1

= Sla— )~ o wa= glat )+

1 1
$1_§(a—ﬁ1), $2—§(a+ﬁ1), T3 5

yields p1 = o+ B2 + 26162+ 263, 16py = 60t + 40?372 + 82231 B2 +8a2 33 + 631 + 323155 +
4033 33 4 2453 B2 4+ 1685 and 16e = a* — 20237 — 40?31 o — 4032 + B} + 48352 + 45233,
Consequently, a necessary condition for the existence of an Sp(1) - Sp(2)-structure is 8e +
p? — 4ps = 0. An exhaustive treatment of all topological obstructions was given in [18].
By using Moore-Postnikov factorisations, the authors also found sufficient conditions for
existence.

Theorem 5.2. 18] Let M be an oriented closed connected spinnable manifold of dimen-
sion 8. If M carries an Sp(1) - Sp(2)-structure, then S8e + p? — 4ps = 0. Moreover,
provided that H?(M,72) = 0, we have wg = 0 and there evists an R € H*(M,Z) such that
Sq*poR = 0, (Rpy — 2R*)[M] = 0mod 16 and (R? + Rp, — e)[M] = 0mod 4, where [M]
denotes the fundamental class of M. Conversely, these conditions are sufficient (regardless
of H*(M,Zs) = 0) to ensure the existence of an Sp(1) - Sp(2)-structure.

In the PSU(3)—case, the tangent space is associated with the adjoint representation, so the
PSU (3)—weights are just the roots. Substituting

T = Q, ..’172:/8, 3:3:04+ﬁ, ‘T4207

a reduction to PSU(3) implies p; = 2(a?+af+5?) and po = a*+2033+3a2 32+ 203 a+ 54,
hence 4ps = p1. Moreover, we obviously have e = 0. A first consequence is the following
classification result.

Proposition 5.3. Let (G/H, g) be a compact Riemannian homogeneous space with G sim-
ple. If M = G/H admits a topological PSU (3)-structure, then G/H is diffeomorphic to
SU(3).

Proof: Since G sits inside the isometry group of (M, g), its dimension is less than or equal
to 9-8/2 = 36. If we had equality, then M would be diffeomorphic to a torus or, up to
a finite covering, to an 8—sphere. While the first case is ruled out for G has to be simple,
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G H up to a covering dim(H) | rk(H)
A, {1} 0 0
A3 Al X A1 X Sl 7 3
A4 A3XSI, ngSlel, AQXAQ 16 4
A5 Al X A4, Al X Al X Bg, Al X Al X Cg 27 )
By Stx st 2 2
Bg Al X A2 13 3
Cg Al X A2 13 3
D4 Al X Al X G2 20 4
G2 A x Ay 6 2

Table 1:

the second case is excluded since e(S®) # 0. Hence G must be, up to a covering, a group
of type A1,...,As, Bo, B3, C3, Dy or Go. As a closed subgroup of G, H is compact and
hence reductive. Therefore H is covered by a direct product of simple Lie groups and a
torus, that is the Lie algebra of H is isomorphic to h = g1 @ ... @ g ® t. If we denote by
rk(G) the rank of the Lie group G, we get the following necessary conditions:

kE <rk(Q)
L+ rk(gi) < rk(G)
14> dim(gi) = dim(G) — 8,

which yields the possibilities displayed in Table 1. It follows that H is of maximal rank,
that is 7k(H) = rk(G), unless G = SU(3) and H = {1}. By [15] the first case however
implies that e(G/H) # 0. |

By a straightforward computation using the definition of the flfgenus and the signature we
derive the following.

A~

Lemma 5.4. If M is a compact spin manifold such that p? = 4ps, then sgn(M) = 16 A[M].
In particular, sgn(M) =0 mod 16.

Let (b],b;) be the signature of the Poincaré pairing on H*(M,Z) i.e. sgn(M) = bf —bj.

Corollary 5.5. Let M be a compact simply—connected manifold with a PSU(3)-structure.
If A[M] = 0 (e.g. if there exists a metric with strictly positive scalar curvature), then
1+ by + bf = b3.

Example: As we have already used in Section 4, H*(SU(3),R) is isomorphic to the space
of ad-invariant forms in A*su(3) which is spanned by {1, p,*p,vol}. Therefore, by = 0,
bs =1 and b;f = 0 in accordance with the corollary.

As e =0 and sgn(M) = Omod 4, we can assert the existence of two linearly independent
vector fields [17]. The orthogonal product x in (3.5) produces a third one. In particular,
this causes the sixth Stiefel-Whitney class of M to vanish. Taking & = 0 in the following
proposition establishes the existence of four linearly independent vector fields.
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Proposition 5.6. [19] Let M be a closed connected smooth spin manifold of dimension 8.
If wg(M) =0, e(M) =0 and {4p2(M) — p2(M)}[M] = 0mod 128, and if there is a k € Z
such that 4pay(M) = (2k — 1)*p3(M) and k(k + 2)p2(M)[M] = 0mod 3, then M has four
linearly independent vector fields.

As a consequence, the fifth Stiefel-Whitney class has to vanish.

Proposition 5.7. We have w3 = 0. In particular, all Stiefel-Whitney numbers vanish.

Proof: By Wu’s formula,

k m
Sq (wm) = WipWm, + 1 Wg—1Wm++1 + ...+ I WO Win+k-
A further theorem of Wu asserts that

wp =Y Sq'(v;),

i+j=k

where the elements v, € H*(M, Z3) are defined through the identity v, Uz[M] = Sq* (z)[M]
which holds for any € H"*(M,Zs). In particular, we have v; = 0 for i > 4. Tt follows
that v1 = v9 =v3 =0, wg = v4 andw8:Sq4w4:wi:0. [ |

We summarise our results in the following proposition.

Proposition 5.8. If a closed and oriented 8—manifold M carries a topological PSU(3)-
structure, then w; = 0 for all Stiefel-Whitney classes except for i = 4 where w3 = 0.
Moreover, we have e = 0 and p? = 4py. There exist four linearly independent vector fields

on M and all Stiefel-Whitney numbers vanish.

The question of sufficient conditions occupies us next. Again, let M® be again a connected,
closed and spinnable 8-manifold. The idea will be to derive conditions for an SU(3)-
structure and to ask when this arises as the 3—fold covering of an PSU (3)-structure. More
concretely, consider the complex rank 3 vector bundle E associated with the vector rep-
resentation of SU(3). If the adjoint bundle su(E) = Pgy3) x su(3) is isomorphic to the
tangent bundle, then T is associated with a PSU(3)-structure coming from the projection
SU(3) — PSU(3) = SU(3)/ ker Ad. However, not every PSU (3)-structure arises in this
way. A basic Cech cohomology argument implies that principal G-fibre bundles over M are
classified by H'(M,G) (see, for example, [9] Appendix A). The exact sequence (where Z3
is central)
1 —Zs — SU(3) & PSU3) — 1

gives rise to an exact sequence
.. — HY(M,Z3) — Pringy sy (M) % Prinpgya) (M) 5 H2(M, Z3).

(where Pring(M) denotes the set of G-principal bundles over M). Hence, a principal
PSU(3)-bundle P is induced by an SU(3)-bundle if and only if the obstruction class ¢(P) €
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H?(M,Z3) vanishes. Following [2] where the authors consider PSU(3)-structures over 4—
manifolds, we call this class the triality class. By the universal coefficients theorem this
obstruction vanishes trivially if H2(M,Z) = 0 and H3(M,Z) has no torsion elements of
order divisible by three.

If f: M — BPSU(3) is a classifying map for P, then ¢(P) = f*t for the uni-
versal triality class ¢t € H?(BPSU(3),Zs). It is induced by ci(Eys)), the first Chern
class of the universal U(3)-bundle Eys) [23]. Concretely, let p : U(3) — PU(3) denote
the natural projection. The inclusion SU(3) C U(3) induces an isomorphism between
PSU(3) and PU(3) and therefore identifies BPSU(3) with BPU(3). Since BPU(3) is
simply connected and 72 (BU(3)) = Z — mo(BPU(3)) = Zs is the reduction mod 3 map
p3  Z — Zs, the Hurewicz isomorphism theorem and the universal coefficients theorem
imply H2(BPU(3),Z3) = Zs and that Bp* : H2(BPU(3),Zs) — H2(BU(3),Z3) is an
isomorphism. Then

t = (BP") ™' pacci(Eys)-

If the triality class vanishes the problem of finding sufficient conditions for the existence
of a PSU(3)-structure reduces to the problem of the existence of a complex rank 3 vector
bundle E with su(F) = T. This question is settled in the next theorem.

Theorem 5.9. Suppose that M is a connected, closed and spinnable 8—manifold. Then the
frame bundle reduces to a principal PSU(3)-fibre bundle P with t(P) = 0 if and only if
e=0, 4py = p?, we = 0, p1 is divisible by 6 and p3[M] € 2167Z.

Proof: Let us first assume that there exists a PSU(3)-fibre bundle P coming from a
reduction Ad : SU(3) — SO(8) with principal bundle P. In virtue of Proposition 5.8
we only need to establish the last two conditions. We define the complex vector bundle
E=P XsU(3) C? so that su(E) = T, and compute the Pontrjagin classes of M. We
have su(3) @ C = s((3,C), hence T ® C equals Endy(E), the bundle of trace—free complex
endomorphisms. The Chern character of 7' ® C equals (see for instance [12])

1
ch(T ®C) =8+ p1 + E(pf — 2ps).
On the other hand,
ch(End(E)) = ch(E ® E) = 1+ ch(Endy(E)).

Now for a complex vector bundle with ¢;(E) = 0,

h(E) = 3 — eo(E) + ~es(E) +

B —CQ(E)2

and ¢;(E) = (—1)i¢;(E) which implies
h(E @ F) = ch(E) U ch(E) = 9 — 6c2(E) + ;CQ(E)Z.

As a consequence

p1 =p1(su(E)) = =6¢3(E), pa = pa(su(E)) = 9ca(E)>. (5.1)
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In particular, p; is divisible by 6 (we also rederive the relation 4ps = p?). Moreover M is
spinnable, hence the spin index A U ch(E)[M] is an integer. Since

A 1 1 1 1
A=1-— — (-4 ) =1— — 2
51P1 + 5760 (T2 + 71 211t 9601
it follows
. ) 1 1 A 1
AU ch(E)[M] = 3A[M] + ﬁplcQ(E) + EC2(E)2 = 3A[M] — mp%[M] €Z,

which means p?[M] € 216Z, proving the necessity of the conditions.

For the proof of the converse I am indebted to ideas of M. Crabb. Let B C M be an
embedded open disc in M and counsider the exact sequence of K—groups

K(M,M — B) — K(M) — K(M — B).
We have K (M, M — B) = K(S%) = Z and the sequence is split by the spin index
ze K(M)— AUch(z)[M] € Z

which therefore classifies the stable extensions over M — B to M. The first step consists
in finding a stable complex vector bundle £ over M — B such that ¢;(§) = 0 and su(3) is
stably equivalent to Tjp;_p. To that end, let [(M — B)y, BSU(cc)] C K(M — B) denote
the set of pointed homotopy classes, the subscript + indicating a disjoint basepoint. Let
(c2,c3) be the map which takes an equivalence class of [(M — B)+, BSU(o0)] to the second
and third Chern class of the associated bundle.

Lemma 5.10. The image of the map
(ca,c3) : [(M — B)y, BSU(c0)] — H*(M,Z) @ H°(M,7Z)
is the set {(u,v) | Sq%pau = pov}, where p : Z — Zy is reduction mod 2.
Proof: We first prove that for a complex vector bundle & with ¢1(§) = 0, we have
S¢°paca(€) = pacs(§). (5.2)

Now if W; denote the Stiefel-Whitney classes of the real vector bundle underlying £ this is
equivalent to Sq2Wy = Ws. On the other hand, Wu’s formula implies

S¢PWy = WoWy + W

and thus (5.2) since Wy = pac; = 0. Next let i : F — K(Z,4) x K(Z,6) denote the
homotopy fibre of the induced map

Sq? o py+ p2 1 K(Z,4) x K(Z,6) — K(Zs,6).

The relation (5.2) implies that the map (cg,c3) : BSU(00) — K(Z,4) x K(Z,6) is null-
homotopic. Consequently, (cq,c3) lifts to a map k : BSU(co) — F, thereby inducing
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an isomorphism of homotopy groups m;(BSU(00)) — m;(F) for i < 7 and a surjection
for ¢« = 8. By the exact homotopy sequence for fibrations we conclude on one hand that
ma(F) = Z, m6(F) = 2Z and m;(F) = 0 for i otherwise. On the other hand, the Chern
class ¢ : my(BSU(00)) = K(S*) = Z — m(K(Z,4) x K(Z,6)) = H*S*Z) = Z is an
isomorphism and ¢z : 74(BSU(c0)) = K (S%) = Z — n6(K(Z,4) x K(Z,6)) = H5(S%,7) =
Z is multiplication by 2. Since M — B is 8—dimensional, it follows that the induced map
ke : [(M — B)4,BSU(c0)] — [(M — B)4, F] is surjective. The horizontal row in the
commutative diagram

' 2
(0 = B, F] — e 1 (00,2) & 1O, 2) 2L pro(ay, 7
k* (627 03)
(M — B),, BSU(c0)]
is exact, hence im (¢, c3) = im i, = ker (Sq? o py + p2). O

By assumption p; € H*(M,Z) is divisible by 6 and therefore we can write p; = —6u for
u € H*(M,Z). On the other hand, p; = 2¢;, where q; is the first spin characteristic class
that satisfies pa(q1) = wy. Hence Sq%pa(u) = Sq?ws = wowy + wg = 0, and the previous
lemma implies the existence of a stable complex vector bundle £ such that ¢1(§) = 0,
c2(€) = w and ¢3(&) = 0. From (5.1) it follows that pi(su(§)) = p1 and since wa(su(€)) =0,
su(¢) and T are stably equivalent over the 4-skeleton M® [22]. Then su(¢) and T are
stably equivalent over M — B as the restriction map KO(M — B) — KO(M®) is injective.
This follows from the exact sequence

KoMUY MOy - KoMDY - KOM®).

By definition KO(M D) M®) = KOM+D /M @) and MY /MO is a disjoint union of
spheres S'*1. But I/(\é(SHl) =0 for i = 4, 5 and 6 and therefore the map KO(MU+D) —
KO(M®) is injective. Since M = M®) is the disjoint union of M (7 and a finite number of
open embedded discs, the assertion follows. Next we extend £ over B to a stable bundle on
M. The condition to be represented by a complex vector bundle E of rank 3 is ¢4(£) = 0.
As pointed out above, such a bundle exists if the spin index

AU ch(&)[M] = 3A[M] + pru/24 + u?/12

is an integer, but this holds by assumption. Next pa(su(¢)) = 9u? = py and as a conse-
quence, su(§) is stably isomorphic to 7' [22]. Finally, two stably isomorphic oriented real
vector bundles of rank 8 are isomorphic as SO(8)-bundles if they have the same Euler class.
Since e(su(E)) = 0, we conclude T' = su(E). |

Corollary 5.11. If M s closed and carries a PSU(3)-structure with vanishing triality
class, then A[M] € 407 and sgn(M) € 640Z.
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6. The Dirac equation

For Spin(7)-structures we have a natural integrability condition, namely for the invariant
spinor to be parallel with respect to the Levi-Civita connection it induces. This, on the
other hand, turns out to be equivalent for the invariant self-dual 4-form to be closed. While
the latter point of view can also be adopted for PSU(3)— and Sp(1) - Sp(2)-structures, par-
allelity of the invariant supersymmetric maps is to strong a requirement. Indeed, PSU(3)
does not appear on Berger’s list; any irreducible PSU(3)-structure with parallel supersym-
metric map is either locally symmetric or flat. Moreover, closeness of the Sp(1) - Sp(2)-
invariant 4—form does not imply for the holonomy of the induced metric to be contained
in that group [14]| and consequently, the corresponding supersymmetric will not be parallel
either. In order to find a natural integrability condition on the supersymmetric map, we
first reformulate the integrability condition in the Spin(7)—case by introducing the twisted
Dirac operator D on A ® A, locally given by

PU®X)=) e VoV X+e VU X,

where V denotes the Levi-Civita connection as well as its lift to the spin bundle. With
respect to the splitting A ® A = A @ ker p the Dirac operator D takes the shape [20]

3 -1
—2toDot ™ 21o0d
D:( A%Pofl 0 ) (6.1)

As in Section 2, the map ¢ : A — A ® A is given by «(¥)(X) = —X -4/8. Moreover,
D:A — Aand P: A — ker u denote the usual Dirac— and Twistor—operator. Locally,

D(¥)=) € V¥, PXRT)=) €®V,V— 8e,®el D(¥),
and d: A' ® A — A is the twisted co-differential,
X @T)=-2) (eiVe,X) U+ (LX) V,,T.

The operator @ : ker yp — ker i is the so—called Rarita—Schwinger operator.

Now assume to be given a Spin(7);—structure with associated spinor ¥, so I'y =
Yiei-Vy®e € Ap < A_®AL Then I'; solves the Dirac equation D(I';) = 0, i.e. Ty is
harmonic if and only if D(¥) =0 and P(¥4) = 0. This is equivalent to the parallelity of
U, (and thus of I'}) as follows from substituting the first condition into the local definition
of P and contracting with e;, whence V., W = 0 for all ¢ and thus V¥ = 0. The well-known
theory of manifolds with holonomy Spin(7) (see, for instance, [4]) then implies the

Proposition 6.1. For a Spin(7)-structure, the following statements are equivalent.

(i) The supersymmetric map I'y is harmonic with respect to the twisted Dirac—operator, i.e.
b(Iy)=0.

(ii) The Spin(7)—invariant 4—form p* is closed, dp* = 0.

(iii) The holonomy of the induced metric is contained in Spin(7).
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Definition 6.1. Let I' be a supersymmetric map on M®. The corresponding topological

structure 4s satd to be harmonic if and only if
D) =0. (6.2)

Examples of integrable structures will be given in the next section. For the moment be-
ing, we want to establish an analogue of Proposition 6.1 for Sp(1) - Sp(2)— and PSU(3)-
structures. To that end we will apply the standard representation theoretic machinery.
For a general Riemannian G—structure, the Levi—Civita connection form acts through
s0(n) & A? on any G-invariant . Since it is acted on trivially by its stabiliser algebra g,

Vy =T(y), (6.3)

where T is the so—called intrinsic torsion of the G-structure, a tensor contained in A' @ g,
subsequently referred to as the torsion module. It vanishes if and only if the holonomy of
the metric is contained in G, so Theorem 6.1 could be rephrased by saying that harmonicity
of the Spin(7)-structure is equivalent to the vanishing of its torsion, i.e. 7' = 0.

In our case, the invariants of G = Sp(1) - Sp(2) and PSU(3) live in ker us C Ayp ® AL
We define the maps

b: X®a€A1®gJ‘r—>,u(X®a(Fi))GAi®A1,

where a acts via the induced action of A2 on Ay @ A, i.e.
1
XANY(PLeV)= Z(X~Y—Y—X)~\Ifi®V+\IJi®(X(V)Y—Y(V)X)

and Clifford multiplication takes X @ ¥ @V € A@AL @A to X -V, @V € Ax ®Al. From
this definition and (6.3) we deduce for T' = Y e; ® a; that D(T) = Y ¢; - Ai(y) = D(v).
Hence the G—structure is harmonic in the sense of Definition 6.1 if and only if 7" € ker B.
On the other hand, we can also consider the equivariant maps defined by the invariant
forms pP, namely

d: XQacAgt— X Aa(pP) e AP, d*: X ®acA@gh— Xia(pP) € AP7L

Since the differential operators d and d* are induced by the skew—symmetrisation and (minus
the) contraction of the Levi-Civita connection, we see that the G-invariant p—form pP is
closed or coclosed if and only if pP € kerd or pP € ker d*. Consequently, our task consists
in showing that ker B = kerd Nkerd*. The maps P, d and d* are all G—equivariant, so
their kernel can be computed by using Schur’s lemma and G-representation theory. From
a technical point of view, the Sp(1)-Sp(2)-case is a lot easier to deal with, so we start with
this one. Here, the invariant 4-form p? is self-dual, so we only need to show ker B = kerd.

For an application of Schur’s lemma, we first have to decompose the torsion module
A ® (sp(1) ®sp(2))" =[1,0,1] ®1,1,1] into Sp(1) - Sp(2)-irreducibles which yields

Ko (pmen?) =550k 35100332,
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On the other hand, we find for the target spaces of P and d

A+ ®A1 = 2[%7 %7 1] S5 [%7

\S][SV]

2ol 51 A=Gslellded 51
We are now in a position to prove the following theorem.

Theorem 6.2. For an Sp(1) - Sp(2)-structure over M® with invariants p € QM) and
Iy €eT(A_®A), the following statements are equivalent.

(i) The Sp(1) - Sp(2)—structure is harmonic, i.e. D(T'y) = 0.

(ii) The Sp(1) - Sp(2)—invariant 4—form p is closed, i.e. dp = 0.

(i) The intrinsic torsion T of the Sp(1) - Sp(2)-structure takes values in [3,3,2].

Proof: By Schur’s lemma, it is enough to evaluate the maps P and d for a sample vector
of a given module in order to check whether or not it maps non—trivially. The operator
d is known to be surjective [13], that is, kerd = [%, %,
Obviously, [%, %,2] C kerB and the assertion follows if we can show that the remaining
irreducible modules in A' ® (sp(1) & 5p(2))J‘ map non-trivially. To that end it will be

convenient to consider the operator L : A2 — A3 built out of B, followed by composition

|, hence we are left to with D.

with id ® I'y and the projection A, ® A_ — A3 which expressed in an orthonormal basis
is given by > q(V4,er - ¥_)er (¢ being the Spin(8)-invariant inner product on A). Since
all the representations involved are of real type, L restricted to an irreducible module
of A is multiplication by a real scalar, possibly zero. To begin with, we map the element
dejp € [%, %, 1] into A'®A? in the natural way, namely zAyAz — (z@yAz+cyc. perm.)/3.
Projecting the second factor onto [1,1,1] = (sp(1) 619513(2))l by means of the projection
operator given in Proposition 4.1, yields the element

11 = e ®
e4®
e &
eg ®

e12 — €34 — €56 + e78) + e3 @ (e13 + €21 — e57 — eps) +
e14 — €23 — €58 + €67) + €5 @ (3e15 — e26 — €37 — €48) +
3e16 + €25 — e3s + e47) + e7 ® (3e17 + eag + e35 — e46) +
3e1g — €97 + €36 + €45) € [%, %, JcAe®1,1,1].

~~ N

With these choices, the matrix of I'; is given by (4.3) and evaluating L on t; yields
L(t1) = —6e234 + 2e256 — 2e278 + 2e357 + 2e368 + 2e458 — 2€467 = 211.

In particular, t; maps non—trivially under P. Next we turn to the module [%, %, 1]. Using
the weight vectors provided in (4.2), we see that the vector

T(atp1)/2+8 "\ T(a—B1)/2 N T(atpy)/2 = €157 + i€158 — 1€167 + €168 —

€257 + €258 — €267 — 1€268

is of the highest weight occurring in A*> ® C. Hence it is actually the weight vector of
(3,4,1) € A3 ® C. Proceeding as before yields then the sample vector to € (2,4,1) C
A'®][1,1,1] ® C and this is mapped to 20t5 under L. For the remaining module [3, 2, 2] we
consider the vector —ej34/3+e17s. Wedging with p yields zero, so it is necessarily contained
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1
2
) %, 1] we denote by t3, and t3,. The image under L is

L(t3a + tgb) = c-t3q, + 20 -t

= (—12e134 — 8eys6 + 44e178 + dessg — desgr — degsy — deses) /3

Since L(t3) — 20t3 # 0, we see that [3,2,2] maps also non-trivially under ¢ (applying L

202
again to L(t3) — 20t3 shows that restricted to this module, L is actually multiplication by
12). Hence ker D = [2, 2, 2] which proves the theorem. [

Corollary 6.3. Let L : A3 — A3 denote the Sp(1) - Sp(2)—invariant map defined in the
proof of Theorem 6.2. The irreducible Sp(1)-Sp(2)-modules can be characterised as follows:

[c@Ay)] =[1/2,1/2,1] = {a € A3| L(a) = 2a}
0@ ] =1[1/2,3/2,2] = {a € A3| L(a) = 12a}
(03 @A) = [3/2,1/2,1] = {a € A?|L(a) = 20a}

Next we turn to PSU(3). Here, the invariant form p is of degree 3 so we also need to
take the operator d* into account. This situation is also more involved due to the presence
of modules with multiplicities greater than one.

Again we begin by decomposing the torsion module. Let A : A' ® A2, — A® denote the
natural skewing map. Then A' ® A3, = ker A @ p*, where p~ = [1,1] @ [1,2] @ [2,2] is
the orthogonal complement of p in A3. Moreover, the natural contraction map L: ker A C
AN®A3, — A splits ker A into a direct sum isomorphic to ker LA where ker L2 [2,2]®[2, 3].
Consequently, the complexification of A' ® A%O is the direct sum of

NoAf = (1L1)+@(1,2) ®(2,2)+ @ (2,3)
ANeAy,eC= &
AeoA,_ =01)_o((2,1)a(2,2)-(3,2).
The modules (1,1)1+ and (2,2)+ have non-trivial projections to both ker A and pt. In

particular, they map non-trivially under A. With the decomposition of the target spaces
of B, d and d*, namely

Aro AN =1021,1]a[1,2]®2,2, A'=2[1,1]®2[2,2, A*=[1,1a]L2],
we can now prove the analogue of Proposition 6.1.

Theorem 6.4. For a PSU(3)-structure over M8 with invariants p> € Q3(M) and T' =
I'yoT_ eI(A®A), the following statements are equivalent.

(i) The PSU(3)-structure is harmonic, i.e. D(I") = 0.

(ii) The PSU(3)-invariant 3—form p is closed and coclosed, i.e. dp =0, d*p=0.

(iii) The intrinsic torsion T of the PSU(3)-structure takes values in [2,3].

Proof: We first establish the equivalence between (i) and (iii) and start by determining
the kernel of d*. Recall that at(p) = £v/3i% (ax A p) for any as € A3, (Proposition 4.4).
By complexifying, it follows that restricted to the PSU(3)—-invariant modules A' @ A%,

d* (D e @ar) =FV3i > ejixlar Ap) =£V3i Y x(e; AaT Ap). (6.4)
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In virtue of the remarks preceding the theorem, the kernel of the skewing map A' ® A% is
isomorphic to (2,3) and (3,2), so this vanishes if and only if 3" e; A aF lies in 1 & [2,2],
the kernel of the map which wedges 3—forms with p. Invoking Schur’s Lemma, ker d* =
[1,1] @ 2[2,2] @ [2, 3], where the precise embedding of [1,1] will be of no importance to us.

Next we consider the operator d. If we can show that it is surjective, then kerd =
[1,2] ® [2,3] and consequently, the kernels of d* and d intersect in [2,3]. Let ¢,. denote
the injection of p into A' ® A3, obtained by projecting the natural embedding of A? into
A ® A2, We first prove the relation

b3(a) = %d(LpJ_(OZ)), a€pt C A3 (6.5)

which shows that kerby C imd. By (4.5), the kernel of bs is isomorphic to 1 @ [1,2], so
the claim needs only to be verified for the module [1,1] @ [2,2] in A3. A sample vector is
obtained by

p3(erns) = as ® asr = (5eras + V3esus + V3eser — 2eass + 2e67s), (6.6)

where p3 = bjbs. That both components ag and a7 are non—trivial can be seen as follows.
Restricting p3 to A3 and A3; is multiplication by real scalars 1 and x5 since the modules
are representations of real type. If one, say x1, vanished, then p3(ejag) = p3(agr) = 22 aar.
However

p3(e12s) = a5 (39e128 + 7v/3ez45 + TV/3es67 — 18e4ss + 18e67s)

which is not a multiple of (6.6). Moreover, we have indeed

bsps(ei2s) = n5(7V3e1245 + TV/3e1267 — e146s — Yeis7s + Ieaurs — 9eases)
3d (1,1 p3(e12s))

which proves (6.5). For the inclusion imbf C imd we consider the vector e; ® ejg in
ker A. Then d(e; ® e18) = —e1238/2 — e1478/4 + e1568 /4 takes values in both components of
im b C A% since bjd(e; ® e13) = 0 and otherwise

bibsd(er ® e18) = 35(—10€1238 — Serars + Seises + 3eases + 3esrs + 3€z458 — 3e3678)

would be a multiple of d(e; ® e1g). Hence d is surjective and the equivalence between (i)
and (iii) is established.

Finally, we turn to the Dirac equation. Since the PSU(3)-invariant supersymmetric
map I' = 'y @ T'_ has now components in both A_ ® A' and A, ® A!, we will split the
Dirac operator B = By ® P_ accordingly, i.e. P+(X ® a) = p+(X - a(l+)) € Ay @ AL
We now have to show that

ker Dy NkerD_ = [2,3] = kerd Nkerd*.
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The intersection ker By N ker P_ contains at least the module [2,3]. First we show that
[1,2] is not contained in this intersection by taking the vector

T[[LQH = id@ﬂ'%o (Lpr2(4€18))
= —V3e1 ® es5 — V3e1 ® egr + 262 ® e35 — 2e3 @ eag + V3ea ® €15 +
€4®678—\/§€5®€14—65@6684-\/366@6174-66@658—\/§67®€16—

e7 ® eyqs + 2eg ® eg3 + eg ® eq47 — eg R ex6.-

A straightforward, if tedious, computation shows B(7p; o)) # 0. For the remainder of the
proof, it will again be convenient to complexify the torsion module A' ® A3, and to consider
(1,1)+ and (2,2)4. The invariant 3-form p induces equivariant maps p+ : Ay — Ay
whose matrices with respect to the choices made in (A.1) are given by (3.4) for p; and by
its transpose for p_. By Schur’s Lemma, we have

P_((2,2)4) =2-p-®idoD((2,2)4) (6.7)

for a complex scalar z. Since the operators Py are real and (2,2)_ is the complex conjugate
of (2,2)4, the same relation holds for (2,2)_ with z. The vector 79 = 6(e1 ® e15 — 2 ® eag)
is clearly in ker . C ker A and projecting the second factor to A%O 4 yields

id ® 7T%0+(7'0) =1 ® (3618 + ’L'\/§623 — ’L'\/§€47 + i\/§€56) +
e @ (ivV3e13 — 3esg + i\/§€46 + i\/§e57).

Since any possible component in (2,3) gets killed under B, we can plug this into (6.7) to
find z = (1 +4+/3)/8 which shows that (2,2)+ map non-trivially under B. On dimensional
grounds, ker Py therefore contains the module (2,2) with multiplicity one. Their intersec-
tion, however, is trivial, for suppose otherwise. Let (2,2)¢ denote the corresponding copy
in ker B . It is the graph of an isomorphism P : (2,2); — (2,2)_ since it intersects (2,2)4
trivially. Now if 7 = 7. @ P1y € (2,2)0 were in ker D_, then

b_(ry©@Pry) =2 pRidoDy(r4) © 2 - pRido Py (Pry)
=pRidoP(z-7L ®Z-P1y)
=0.
Consequently, z -7y & zZ- Pt € kerP,, that is, z- Pty = Pz -7y or Z = z which is a
contradiction. This shows that the kernels of P intersect at most in 2(1,1) & [2, 3] and
furthermore, that the condition B(I'y) = 0 or BD(I'_) = 0 on its own is not sufficient to
guarantee the close— and cocloseness of p. This argument also applies to (1,1)+. However,

since (1,1) appears twice in AL ® A, we first need to project onto As = (1, 1) via Clifford
multiplication before asserting the existence of a complex scalar z such that

pp oD ((1,1)4) = 2z py (- o D1 ((1,1)4)).
For the computation of z, we can use the vector

2\/§i61 ® 77%0.:,.(618) =e1® (\/gielg — €93 + eyq7 — 656) S (1, 1)+ ) (2, 2)+ ) (2, 3),
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as possible non-trivial components in (2,2); @ (2,3) get killed under p. We find z =
2(1 — +/3i) which as above shows that (1,1) occurs with multiplicity at most one in ker P4
and that it is not contained in their intersection. Consequently, ker By NkerB_ = [2, 3],
which proves the equivalence between (ii) and (iii). [

Remark: The implication (i) = (i) was already asserted in [7]. However, the proof is
inconclusive. Firstly, some of the sample vectors provided in the proof are not contained in
the right module. For instance, T, ® Ta, A Ta, is not contained in (2,1) C A' ® A3,_ as
claimed for from the general properties of root vectors it follows that application of [z4,, ]
yields zo, ® £, A Tay+ay- Moreover, due to the presence of modules with multiplicity two,
the modules (1, 1)+ and (2,2)+ can map non-trivially under say d@ while ker d still contains
a component isomorphic to (1,1) or (2,2).

As in the case of harmonic Spin(7)-structures, there are geometrical obstructions to
harmonic Sp(1) - Sp(2)- and PSU (3)-structures imposed upon the Ricci tensor. It is well-
known that metrics whose holonomy is contained in Spin(7) are necessarily Ricci flat; a
weaker statement is still true in the case of Sp(1)-Sp(2)— or PSU(3)-structures. According
to Proposition 2.8 in [20], we have

(Dod—doD)I) = %p(r o Ric)

for any I' € T'(T*M @ A). Now write I' = ). ¢; ® I'; and regard Ric as an endomorphism
of T so that
I'o Ric= Y Ricije; @T);.
0.
Integrability implies
p(r e} Ric) = Z Ricijei . Fj =0.
0.

This means that Ric is in the kernel of the map

Ae @ —p(Aol) = ZAijeij €A,
i
which is invariant under the stabiliser of I'. In the case of an Sp(1) - Sp(2)-structure,
I'=T, € A_®A, hence ®> = 1@ [0,1,1] ©[1,1,2] and A = [2,0,0] ® [0,1,1]. Since
this map is non-trivial, Ric vanishes on the module [0,1,1]. For a PSU(3)-structure, we
have ®2 = 1@ [1,1] ©[2,2] and Ay 2 [1,1], so Ric vanishes on the module [1,1], a fact
previously established in [7].

Proposition 6.5. If g is a metric induced by a harmonic Spl(1) - Sp(2)- or PSU(3)-
structure, then Ric vanishes on the 5—dimensional component [0,1,1] or the 8—dimensional
component [1,1].

Other than for special cases we cannot hope to strengthen this statement as the examples
in the next section will show.
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7. Examples

If B denotes the Killing form of the Lie algebra su(3), trivial examples of PSU (3)-structures
are provided by the 3-form p(X,Y,Z) = —B(X,[Y, Z])/6 on su(3), the symmetric space
SU(3) = SU(3) x SU(3)/SU(3) and its non-compact dual SL(3,C)/SU(3). Since p and xp
are ad-invariant forms, they are closed and hence they define integrable PSU (3)-structures.
The metric is Einstein and of zero, positive and negative scalar curvature respectively. Its
holonomy is contained in su(3) since Vp = 0. As a consequence, the torsion vanishes and
the example in some sense “trivial“. The aim of this section is to construct non—trivial

examples.

Local examples

The first example is built out of a hyperkihler 4-manifold M* with a triholomorphic vector
field. Let U = U(z,y, z) be a strictly positive harmonic function defined on some domain
D C R? and 6 a 1-form on R? with dU = xdf. By the Gibbons-Hawking ansatz [6], [1], the
metric on D x R

1
g = U(do* + dy* + d2*) + ﬁ(dt +6)? (7.1)
is hyperkéhler with associated Kéhler forms given by

w_1 = Udy ANdz +dx A (dt +6)

w_g = Udzx Ndy + dz A (dt +6)

w_g = Udx Ndz —dy A (dt + 0).
The vector field X = % is triholomorphic, that is it defines an infinitesimal transformation
which preserves any of the three complex structures induced by w_1, w_o or w_3. Con-
versely, a hyperkdhler metric on a 4-dimensional manifold which admits a triholomorphic

vector field is locally of the form (7.1).
Next we define the 2—form w43 by changing the sign in w_s, that is

w3 =Udx Ndz+dy A (dt +6).

This 2-form is closed if and only if U = U(z, z) for dws3 = 0 implies

d(Udz Ndz) = d(dy A (dt + 9)), (7.2)
so that
ou
dwys =2d(Udz Ndz) = 28_ydy ANdx A dz.
Pick such a U and take the standard coordinates 1, ..., x4 of the Euclidean space (R*, go).
Put

el =dz, €?=duxo, e3 = dxs e® = duy
et =\VUdy, e® = —%(dzH— 6), 8 = —/Udz, " =/Udz

which we take as an orthonormal basis on M* x R*. Endowed with the orientation defined
by (e4,...,e7), the forms w_; are anti-self-dual on M*, while the forms w,; = Udy A dz —
dz A (dt+0), wyo = Udzx ANdy — dz A (dt + 0) and w3 are self-dual, that is

wi+ Nwjz = 0, wi+ A Wit = i25ije4567' (73)
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The 3—form

1 1 1 1 3
p= 56123 + Zel ANw_1+ Zeg ANw_o + Zeg ANw_3+ %eg A wWas (7.4)

defines a PSU(3)-structure which is closed by design. Moreover, the same holds for

1 1 1 1 3
xp = Seas6T8 — JW-1 N ea3g + Wi A eq3g — 793 N eqog + W+ A e123 (7.5)

= %Ud:n/\dz/\dy/\(dt—i—@)/\du— %w_l/\dibg/\d$3/\d$4

1 1 3
+Zw_2 Adxy Adxs Adxy — Zw_g Adxy Adxg Adryg + %w.;.g Adx1 Adxg A dxs.

To check that this family of PSU(3)-structures is rich enough to provide also non-trivial
examples, we consider the specific ansatz defined by U(zx,y,2) = z on {z > 0} and 0 = ydz
and show that Vp; # 0. The metric g on M* x R* is given by

g = da? + dad + da? + da? + zde® + ady? + (a2 + L )dz + = dt2+2 dzdt

with orthonormal basis

€1 = 8x17 €2 = 8%27 €3 = 6:837 €g = 8%47
€4 = \/1— ys €5 = \/781% €6 = \/_amv €7 = \}5(82 _yat)

The only non—trivial brackets are

1 1
— (& €5, | = e
2\/534[5, 6] 2\/535

[64767] = ﬁe&'y [66767] = 2\/153 er.

lea, eg] =

Since the anti-self-dual 2—forms wi, wo and w3 are the associated Kéahler forms of the
hyperkéhler structure on M, we have Vw; = 0. From this and Koszul’s formula

29(Veej,er) = g(lei, 5], ex) + g([ex, eil, €5) + g(lex, 5], €i) = cijk + crij + crji

we deduce 1 1
V(S ne) =V(et Ae) = T \/?(64 ®wi1 +e5 Qwya)
and thus 1
Vp=— (€4®W+1/\68+65 ®W+2/\68)
8V3 Va3

Note that this metric is Ricci-flat despite non—vanishing torsion.

Compact examples

Counsider the nilpotent Lie algebra g = (eq, . . ., eg) whose structure constants are determined
by
0, 1=2,...,7
de; = , , (7.6)
eq7 + €56 = w14, t = 8
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that is the only non-trivial structure constants are cy78 = —cr48 = €568 = —Cgs8 = 1.
Let G be the associated simply-connected Lie group. The rationality of the structure
constants guarantees the existence of a lattice I' for which N = I'\G is compact [10]. We
let M = T? x N with e; = dt;, i = 1,2 on the torus, hence de; = 0. We take the basis
e1,...,es to be orthonormal on M and denote by g the corresponding metric.

As in (7.4), the 3-form p = e123/2 + Y. e; Aw_;/4 + v/3eg Awy3/4 defines a PSU(3)-
structure whose 4—form invariant is given by (7.5). Then (7.3) and (7.6) imply

V3

3
dp = 7(168 ANwsgy = 5 Wi+ ANwsy =0
and

1 1 1
eqs67 N\ deg — 5&)1_ A eag A deg + 5&)2_ Aeig A deg — 50.)3_ Aeqa Adeg

=y
>*

)
I

1 1 1
= e4567 N\ Wit — §w1— N ez Nwiq + §w2— ANe3 Nwiq — §w3— Nepo Nwig
=0,

so the PSU(3)-structure is harmonic. To show its non-triviality, we compute the covariant
derivatives V,,e; for which we obtain

p

0, i=1,2,3
—%(e7®68+68®67), 1=4
—%(66@)684—68@66), 1=25
Ve; = T(es ®es+es@es), =06
%(€4®€8+€8®64), 1=17
%(—64@67-{—67@64—€5®€6+€6®€5),i:8

Now V¢, (es A wst) = eqs57 and since the coefficient of eg A wsy is irrational while all the
remaining ones are rational, we deduce V., p # 0. Moreover, a straightforward computation
shows the diagonal of the Ricci—tensor Ric;; = Zj g(V[ei,ej]ei —[Ve;5 Ve,leis e5) to be given

by
0, i=1,2,3,8
RZC — 9y ) ) )
" {— ,i=4,5,6,7
In particular, it follows that (M, g) is of negative scalar curvature, but not Einstein, that
is, Ric has a non—trivial 1- and [2, 2]-component.
A non-trivial compact example of a harmonic Sp(1) - Sp(2)-structure was given in [14],
where Salamon constructed a compact almost quaternionic 8—manifold M whose structure

form € is closed, but not parallel. The example is of the form M = N6 x T2 where N6 is
a compact nilmanifold associated with the Lie algebra given by

0, i=1,2,3,5
dei: 615,i:4
613,i26
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Therefore, the structure constants are trivial except for cis4 = —c514 = c136 = —c316 = 1
which implies

0, 1=2,4,6,7,8
Ve, — —%(63®661—|—64®65+65®64+66®63),i:1
§(€1®66+66®61), 1=3
%(61 ®€4+64®61), 1 =20.

It follows that
0, i=2,4,6,7,8

Ricii— %,’L—l
1
) 123, )

so (M, g) is of negative scalar curvature, but not Einstein, that is, Ric has a non—trivial 1-
and [1, 1, 2]-component.

Summarising, we obtain our final proposition.

Proposition 7.1. Non-trivial compact harmonic Sp(1) - Sp(2)— and PSU(3)-structures
do exist. For a generic harmonic structure, the Ricci tensor takes values in 1 @ [2,2] and
1@ [1,1,2] and in particular, we cannot improve Proposition 6.5.

A. Appendix: A matrix representation of CILff{R®, g)

For a fixed orthonormal basis e1,...,es of (Al,g) 2 (R%, go) let E;; = e; A e; denote the
basis of A% which we identify with skew-symmetric matrices via

Then the matrix representation x : CLff(R3 go) — End(A, @ A_) computed from (2.1)
with respect to the standard basis ey = 1,e3 =1i,...,eg = e-k of (O, || - ||) is given by

k(e1) = —Ev9 — Ey10 — E311 — Es12 — E513 — Ee 14 — E715 — Eg 16,

k(ez) = Ey10— Eog — E312 + Ey11 — Es14 + Ee 13 + E716 — L3 15,

k(e3) = Ey11+ Eopo — Ezg — Ey0 — Es15 — Ee 6 + E713 + E3 14,

k(es) = FEi12—FEa11+ E310— E19 — Es 16+ Es 15 — E714 + Eg 13, (A1)
k(es) = FEi13+ FEo1a+ E3 15+ Ey16 — Es9 — Es 10 — E711 — Eg 12, '
k(es) = Ei1a — FEoa3+ E316 — Ea15 + Es10 — Ee9 + Er12 — Eg 11,

k(er) = Eiis5 — Eou6 — E313 + Eyia + Es 11 — Es 12 — Er9 + Eg 10,

k(eg) = FEi116+ FEo15 — E314 — Eq13+ Es 12 + Es 11 — E710 — Es 9.
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