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DIFFERENTIAL OPERATORS AND

ACTIONS OF LIE ALGEBROIDS

Y. Kosmann-Schwarzbach and K. C. H. Mackenzie

Abstract. We demonstrate that the notions of derivative representation of
a Lie algebra on a vector bundle, of semi-linear representation of a Lie group
on a vector bundle, and related concepts, may be understood in terms of
representations of Lie algebroids and Lie groupoids, and we indicate how these
notions extend to derivative representations of Lie algebroids and semi-linear
representations of Lie groupoids in general.

Introduction

This paper deals with actions on vector bundles. The first part (Sections 1–3)
deals with the infinitesimal actions of Lie algebras and Lie algebroids, while the
second part (Sections 4 and 5) deals with the global actions of Lie groups and Lie
groupoids.

When passing from the case of actions on vector spaces to that of actions on
vector bundles, the notions of linear endomorphism and linear isomorphism admit
straightforward generalizations which, however, have rarely been spelled out in the
literature. On the global level, it is clear that the analogue of a linear isomorphism
is a vector bundle automorphism, not necessarily base-preserving. Such an auto-
morphism gives rise to an isomorphism of the vector space of sections which has the
additional property of semi-linearity, i.e., when a section is multiplied by a function
on the base, the image of this section is multiplied by the given function composed
with the inverse of the diffeomorphism of the base defined by the vector bundle
automorphism. (This could be viewed as a morphism from the space of sections
to itself, equipped with two module structures.) Actions of Lie groups on a vector
bundle therefore give rise to representations in its space of sections by semi-linear
isomorphisms.

The infinitesimal counterpart of such a vector bundle automorphism can be
determined by differentiating a one-parameter group of semi-linear isomorphisms
of the space of sections. The result is a derivative endomorphism, a first-order dif-
ferential operator with the additional property that its symbol is a scalar multiple
of the identity. Thus the derivative endomorphisms of the space of sections of a
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2 Y. KOSMANN-SCHWARZBACH AND K. C. H. MACKENZIE

vector bundle generalize the linear endomorphisms of a vector space, and the repre-
sentations of Lie algebras on the space of sections of a vector bundle by derivative
endomorphisms generalize the linear representations.

These basic facts (and their cohomological interpretation, which we do not re-
peat here) were described by Kosmann-Schwarzbach in 1976 [22]. Actually, semi-
linear isomorphisms and derivative endomorphisms are both particular cases of
what Jacobson, in 1935, called pseudo-linear transformations [19], [20]. But Ja-
cobson’s purpose was to extend the theory of elementary divisors, and the relevance
of his work for differential geometry was, to the best of our knowledge, forgotten.

Meanwhile, the theory of Lie groupoids was created by Ehresmann during the
1950s, and their infinitesimal counterpart, the Lie algebroids, were introduced by
Pradines in 1967 [35]. Groupoid theory has been developed by many authors, in the
context of homotopy theory and C∗–algebras, as well as in differential geometry,
and it has come to differ in substantial respects from the elementary theory of
groups. However, there is a Lie functor which associates to a Lie groupoid, G, a Lie
algebroid, denoted AG, by a construction which extends in a straightforward way
the construction of the Lie algebra of a Lie group. The resulting Lie theory provides
a very broad framework which encompasses many of the infinitesimal constructions
of differential geometry.

The concept of action of a Lie groupoid on a fibered manifold goes back to
Ehresmann [8], who showed that when a groupoid acts on a space that is fibered
over the base of the groupoid, the pullback of the groupoid by the fibration map is,
in a natural way, a groupoid, called the action groupoid or transformation groupoid.
The development of an abstract theory of Lie algebroids is more recent: in [17]
Higgins and Mackenzie provided a basic set of algebraic constructions for abstract
Lie algebroids modelled on those known in groupoid theory. In particular, they
defined the infinitesimal action of a Lie algebroid on a fibered manifold and the
associated action Lie algebroid or transformation Lie algebroid. The Lie algebroid of
an action Lie groupoid is the action Lie algebroid of the corresponding infinitesimal
action; however the action Lie algebroid of an infinitesimal Lie algebra action may
integrate to a Lie groupoid which is not necessarily an action groupoid. This may
at first seem to be a negative feature, but in fact the groupoid in such a situation
provides a global object encoding the infinitesimal action even though a global
action is not available. Here, as is generally the case with abstract Lie algebroids,
determining the conditions under which a particular construction for Lie algebroids
will admit a global analogue is a difficult problem. See Dazord [7], and Moerdijk
and Mrčun [33] for a systematic account of the integration of Lie algebroid actions
which includes many applications.

The aim of this paper is to relate the concept of Lie algebroid action to the
earlier work [22] on representations by derivative endomorphisms (and, correspond-
ingly, Lie groupoid actions and representations by semi-linear isomorphisms.) There
are several aspects to the relationship. First, the derivative endomorphisms of the
space of sections of a vector bundle are the sections of a Lie algebroid (Theorem
1.4). In [30], Mackenzie called this Lie algebroid the Lie algebroid of covariant
differential operators, and denoted it by CDO(E), for a vector bundle E. Here,
we denote it by D(E). A derivative representation of a Lie algebra on a vector
bundle is defined as a morphism into the Lie algebra of sections of D(E), while a
representation of a Lie algebroid on a vector bundle is a morphism into this Lie
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algebroid. We prove that the derivative representations of Lie algebras on vector
bundles coincide with the representations of action Lie algebroids (Theorem 2.4).
Then, with a suitable definition of the derivative representations of a Lie algebroid
on a vector bundle, we show that this one-to-one correspondence can be extended
to the case of Lie algebroid actions (Theorem 3.5).

In Sections 4 and 5, we present global versions of the preceding results. We
define the semi-linear isomorphisms of the space of sections of a vector bundle. A
semi-linear representation of a Lie group on a vector bundle is defined as a mor-
phism into the group of semi-linear isomorphisms of its space of sections, satisfying
a smoothness condition, while a representation of a Lie groupoid on a vector bun-
dle is a morphism of Lie groupoids into the Lie groupoid of all linear isomorphisms
from a fiber to some (in general different) fiber of the bundle. In Theorem 4.8 we
prove that the semi-linear representations of Lie groups on vector bundles coincide
with the representations of their action groupoids. For a groupoid acting on a
fibered manifold, F , there is likewise an action groupoid; considering an action of
the groupoid on a vector bundle with base F , we show in Proposition 5.5 that there
is an associated semi-linear representation which is a group representation of the
group of bisections of the groupoid.

In the Appendix, we recall the definition of the twisted derivations of an algebra,
and we show that the pseudo-linear endomorphisms of the module of sections ΓE of
a vector bundle E with base M can be defined in terms of twisted derivations of an
algebra whose underlying vector space is C∞(M)⊕ΓE. In particular, the derivative
endomorphisms can be defined in terms of the derivations of this algebra. Similarly,
the semi-linear isomorphisms can be defined in terms of algebra automorphisms.

Throughout the paper, the manifolds that we consider are assumed to be
smooth and second countable, and all maps are assumed to be smooth.

Acknowledgments. The authors would like to extend their warmest thanks to Mike
Prest and Ted Voronov, the organizers of the workshop on “Quantization, defor-
mations and new homological and categorical methods in mathematical physics”
(Manchester, 2001) which was particularly rich in stimulating lectures. Although
the present paper does not reflect the contents of the authors’ lectures in Manch-
ester, it was the workshop that made its realization possible.

1. Infinitesimal automorphisms of vector bundles

Consider a vector bundle (E, q, M) and let C∞(M) be the algebra of R–valued
functions on M . We are concerned with first-order differential operators, D : ΓE →
ΓE, for which there exists a vector field DM on M such that

(1) D(fψ) = fD(ψ) + DM (f)ψ ,

for all f ∈ C∞(M) and all ψ ∈ ΓE. Below we explain that operators on modules
over a ring satisfying (1), or some variant of it, have been studied under a variety
of names. In the case of the module of sections of a vector bundle, we shall call
such a differential operator a derivative endomorphism of ΓE.

Definition 1.1. Let (E, q, M) be a vector bundle. A derivative endomorphism
of ΓE is an R–linear endomorphism D of ΓE such that there exists an R–linear
endomorphism, DM , of C∞(M) satisfying (1).
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It follows that D is a first-order differential operator. It also follows that DM

is a derivation of C∞(M), and therefore corresponds to a vector field on the base
manifold M . The differential operator D is of order 0 if and only if DM = 0.

Example 1.2. Given any linear connection ∇ in a vector bundle E, and any
vector field X on the base M , the covariant derivation ∇X satisfies (1).

Recall that the symbol, σ(D), of a first-order differential operator D is defined
by

σ(D)(df) = [D, f ] ,

where f is any smooth function on M and [D, f ] is the commutator of the operators
D and multiplication by f . Condition (1) is equivalent to the requirement that the
symbol of D, evaluated at any 1–form ξ on M at x ∈ M , be a scalar multiple of
the identity of the fiber Ex at x, σ(D)ξ = 〈ξ, DM 〉IdEx . Therefore, a first-order
differential operator is a derivative endomorphism of ΓE if and only if it has scalar
symbol.

Whereas the first-order differential operators on a vector bundle of rank > 1 do
not constitute a Lie algebra under the commutator, a simple computation shows
that the commutator

(2) [D1, D2] = D1 ◦ D2 − D2 ◦ D1

of two derivative endomorphisms is also a derivative endomorphism, and that

(3) [D1, D2]M = [(D1)M , (D2)M ].

It is also clear that the derivative endomorphisms form a module over C∞(M). The
R–Lie algebra structure and the C∞(M)–module structure on the vector space of
derivative endomorphisms of E interact according to a Leibniz rule,

(4) [D1, fD2] = f [D1, D2] + (D1)M (f)D2 ,

which is a property characteristic of the sections of a Lie algebroid. We recall the
concept of Lie algebroid, introduced by Pradines in [35].

Definition 1.3. Let M be a manifold. A Lie algebroid on M is a vector
bundle (A, q, M) together with a vector bundle map a : A → TM over M , called
the anchor of A, and a bracket [ , ] : ΓA × ΓA → ΓA which is R–bilinear and
alternating, satisfies the Jacobi identity, and is such that

a([X, Y ]) = [a(X), a(Y )],(5)

[X, fY ] = f [X, Y ] + a(X)(f)Y,(6)

for all X, Y ∈ ΓA, f ∈ C∞(M).
Given Lie algebroids A and A′ on the same base M , a Lie algebroid morphism

from A to A′ is a vector bundle morphism ϕ : A → A′ over M such that

a′ ◦ ϕ = a,(7)

ϕ([X, Y ]) = [ϕ(X), ϕ(Y )],(8)

for all X, Y ∈ ΓA.

For Lie algebroids A and A′ on different base manifolds, the notion of morphism
is considerably more complicated; see [17].

Any Lie algebra is a Lie algebroid over M = {·}, and for any manifold M , the
tangent bundle TM is a Lie algebroid with anchor a = IdTM . Further examples
will be introduced below.
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Theorem 1.4. Given a vector bundle E on base M , there is a Lie algebroid
D(E) on M , the smooth sections of which are the derivative endomorphisms of
ΓE, for which the bracket is the commutator bracket (2) and the anchor is the map
D *→ DM .

Proof. The first-order differential operators are the sections of a vector bundle
Diff1(E) on M . The symbol map is a vector bundle morphism, σ : Diff1(E) →
Hom(T ∗M, End(E)), where End(E) is the vector bundle over M the fibers of which
are the endomorphisms of the fibers of E. It is a surjective submersion and has as
its kernel the differential operators of order 0. There is thus a short exact sequence
of vector bundles over M ,

End(E)
⊆

>−−−> Diff1(E)
σ

−−−+ Hom(T ∗(M), End(E)) .

Identifying Hom(T ∗(M), End(E)) with TM ⊗ End(E) in the canonical way, we
define D(E) to be the pullback vector bundle defined by the symbol map and the
injection TM → TM ⊗ End(E), X *→ X ⊗ IdE , according to the diagram:

D(E) −−−−−−−−→ TM

"
"

Diff1(E) −−−−−−−−→ TM ⊗ End(E).
σ

The pullback exists because σ is a surjective submersion. Since the right-hand
vertical arrow is an injective immersion, it follows that so is the left-hand arrow,
and we can therefore regard D(E) as a vector subbundle of Diff1(E). Similarly,
because σ is a surjective submersion, it follows that so is the top arrow, which we
denote by a. Clearly the kernel of a is still End(E), and there is an exact sequence
of vector bundles over M ,

End(E) >−−−> D(E)
a

−−−+ TM,

where the sections of D(E) are those first-order differential operators D : ΓE → ΓE
for which there exists a vector field DM = a(D) on M such that (1) is satisfied.

We have already observed that for any pair of derivative endomorphisms D1, D2

in ΓE, the bracket (2) is also a derivative endomorphism of ΓE, with a([D1, D2]) =
[a(D1), a(D2)], and that (4) is satisfied. Thus the proof that D(E) is a Lie algebroid
on M with anchor a is complete.

In general, a Lie algebroid is called transitive if the anchor is surjective. It was
shown in the course of the proof of Theorem 1.4 that D(E) is transitive. A right-
inverse ∇ : TM → D(E) to the anchor is a linear connection in E in the standard
sense. The curvature R∇ : TM ⊕ TM → End(E) of ∇ is given by

(9) R∇(X1, X2) = ∇[X1,X2] − [∇X1
,∇X2

].

In particular, the connection is flat if and only if ∇ is a morphism of Lie algebroids.
Now consider the case of a trivial vector bundle, E = M × V , and define a

morphism from the vector bundle TM ⊕ (M × gl(V )) into D(E) by

(X + u)(ψ) = X(ψ) + u(ψ) : M → V ,
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where X(ψ) is the Lie derivative. For an arbitrary vector bundle, such a direct
sum decomposition of D(E) is given locally by a trivialization of E, while a global
decomposition is defined by the choice of a linear connection, ∇, on E. Let ∇ also
denote the extension of the chosen connection to the sections of End(E). Then for
D1 = X1 + u1 and D2 = X2 + u2,

[D1, D2] = [X1, X2] + (∇X1
u2 −∇X2

u1 + [u1, u2] − R∇(X1, X2)) .

By definition, when R∇ = 0, this bracket gives TM ⊕ End(E) the trivial Lie
algebroid structure. Thus the Lie algebroid D(E) is trivial if and only if E admits
a flat connection.

The following result follows from a theorem of Bourbaki [4, III.10.9, Prop. 14].

Proposition 1.5. The derivative endomorphisms of ΓE are the R–linear en-
domorphisms of ΓE which can be extended to derivations of the algebra of sections
of the tensor algebra of E.

The notion of derivative endomorphism is in essence purely algebraic. Given
a left module E over a ring C, a derivation of E over a derivation DC of C is an
additive map D : E → E such that

(10) D(fψ) = fD(ψ) + DC(f)ψ

for all f ∈ C and ψ ∈ E. We can also refer to a derivation of E over a derivation DC

of C as a derivative endomorphism of E. Note, however, that in the general case,
D does not determine DC.

Bourbaki [4] defines a very general notion of derivation (involving six possi-
bly different modules over a ring, three bilinear maps and three linear maps), and
shows that the set of those derivations that belong to the “cas I” is closed under
the commutator. The definition of the derivations in “cas I” includes the derivative
endomorphisms as a particular case. The derivative endomorphisms of E are also
a special case of the pseudo-linear endomorphisms, introduced and studied in the
case of a finitely generated module over a ring by Jacobson in [19]. In fact, Jacob-
son uses the term ‘vector space over a field’ for module over a ring and the term
transformation for endomorphism. His definition of the pseudo-linear transforma-
tions involves an automorphism f *→ f of C such that the following generalization
of (10) is satisfied,

D(fψ) = fD(ψ) + DC(f)ψ.

This generalization is applicable, for instance, when one considers modules over
rings of complex-valued functions, in which case f *→ f is the conjugation of com-
plex numbers. Jacobson gave what amounts to the covariant derivation of vector
fields in Rn as an example of such transformations, and derived the transformation
law for connections under a change of basis. Then he studied the generalization of
the theory of elementary divisors to the case of these pseudo-linear transformations.
In [20], he called differential transformations those pseudo-linear transformations
for which f = f .

Working in this algebraic setting, Herz [15], [16], referring to Jacobson, showed
that the differential transformations of a vector space over a commutative field form
a Lie pseudo-algebra, a notion which he introduced. This may now be seen as an
algebraic form of the notion of Lie algebroid in which vector bundles over manifolds
are replaced by modules over rings, vector fields by derivations of rings, and so on.
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Herz studied the sub-Lie-pseudo-algebras of a Lie pseudo-algebra over a skew field,
and then showed that what he called the kernel of the Lie pseudo-algebra is a Lie
algebra. (There is a corresponding result in the theory of Lie algebroids, that the
kernel of the anchor in a transitive Lie algebroid is a Lie algebra bundle. However,
the algebraic results proved for Lie pseudo-algebras do not automatically imply
the corresponding theorems in the category of Lie algebroids, since submodules
of finitely generated projective modules do not necessarily correspond to vector
subbundles.)

A Lie pseudo-algebra that generalizes the Lie algebroid D(E) to the more
general setting of modules over Lie pseudo-algebras was constructed in [29]; the
construction is also given in [18]. For references dealing with Lie pseudo-algebras,
also now known as Lie-Rinehart algebras, see [31]. Rubtsov [40] also introduced
the notion of a derivation of an A-module over a derivation of an algebra A in the
study of the algebraic counterpart of Lie algebroid cohomology.

While the algebraic properties of covariant derivatives were already stated ex-
plicitly by Schouten in 1924, in his book, Ricci Kalkül, the algebraization of the
theory of connections is due to Koszul [25], and a very general formalization was
later accomplished by a student of Ehresmann, C. M. de Barros, in his thesis [2].
There, he introduced the translations infinitésimales graduées, of which the de-
rivative endomorphisms are a particular case, and he studied the représentations
infinitésimales graduées, which generalize the lois de dérivation of Koszul. (We
shall deal with such Lie algebra representations in the next section.) When the
module being considered is that of the sections of a vector bundle, the derivative
endomorphisms and their higher-order analogues were introduced by Palais [34]
under the name quasi-scalar differential operators in his analysis of elliptic self-
adjoint operators on Riemannian vector bundles. At about the same time, Ngô
Van Que [36], [37], [38] used operators satisfying (1) in his work on Lie groupoids.
In [22], the name derivative endomorphisms of ΓE for operators satisfying (1) was
introduced, and it was remarked that such operators are the first-order differential
operators on E with scalar symbol. Such operators were independently introduced
in [30], [31] where, because of the important example 1.2, they are called covariant
differential operators. A number of papers [3], [39] introduce an Atiyah algebra of
a vector bundle E, which is again the module of sections of D(E).

Derivative endomorphisms arise whenever the infinitesimal of a representation
of a group defined by an action on a vector bundle is considered. In [14], Her-
mann introduced the first-order differential operators satisfying relation (1) and
he briefly indicated “the geometric genesis of these operators”. In [22], the semi-
linear endomorphisms of ΓE were introduced (see Section 4) and it was shown that
an action of a Lie group on the sections of a vector bundle by semi-linear trans-
formations differentiates to an action of its Lie algebra by differential operators
which are derivative endomorphisms. It was stated (p. 86) that the Lie algebra
of derivative endomorphisms of ΓE is to be considered “as the Lie algebra of the
‘infinite-dimensional Lie group’ of all automorphisms of the vector bundle E”. One
may say that a derivative endomorphism of ΓE is an infinitesimal automorphism
of the vector bundle E, in the same way that a vector field is an infinitesimal auto-
morphism of a manifold. Derivative endomorphisms play a crucial role throughout
the theory of Lie algebroids; it was argued in detail in [30] that D(E) is the correct
generalization to vector bundles of the general linear Lie algebra gl(V ) of a vector
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space V. Theorem 1.4 was proved in [30]. We will discuss the relationships between
these approaches further below.

2. Derivative representations of Lie algebras and action Lie algebroids

We again consider a vector bundle (E, q, M). Since the derivative endomor-
phisms of ΓE play the role of the infinitesimal automorphisms of the vector bundle
E, it is natural to define:

Definition 2.1. A derivative representation of a Lie algebra g on E is a mor-
phism of g into the Lie algebra Γ D(E).

Associated to a derivative representation, ρ, of g on E, there is an infinitesimal
action of g on E, X *→ (ρ(X))M . Of course, if the base M of E is a point, we
recover the usual notion of linear representation.

Example 2.2. Let us consider invariant prequantization as defined in [13].
Let (M, ω) be a symplectic manifold, and suppose that ω is integral. Then there
is a complex line bundle E on M , together with a Hermitian fiber-metric, and a
connection ∇ in E with respect to which the metric is parallel, and such that the
curvature R∇ of ∇ satisfies

R∇ = −iω.

The prequantization action of C∞(M) on sections of E is the map, δ : C∞(M) →
Γ D(E), defined by

δ(f)(ψ) = ∇Xf
(ψ) + ifψ,

where f ∈ C∞(M), ψ ∈ ΓE, and where Xf is the Hamiltonian vector field of
f . It maps the Poisson bracket to the Lie algebroid bracket of D(E), respects the
anchors in the sense that a(δ(f)) = Xf for f ∈ C∞(M), and takes values in the
Lie subalgebroid D0(E) of D(E), whose sections respect the metric.

Now suppose that G × M → M is a Hamiltonian action of a Lie group G on
M , with a bracket-preserving moment map, Ĵ : g → C∞(M). Then XĴ(X) = XM ,
for all X ∈ g, where X *→ XM , g → ΓTM , is the infinitesimal action. Now
ρ = δ ◦ Ĵ : g → Γ D(E) is a derivative representation of g on E.

There is also a well-known notion of a Lie algebroid representation, which we
recall.

Definition 2.3. A representation of a Lie algebroid A, also on base M , on the
vector bundle E is a Lie algebroid morphism from A to D(E).

If the base M is a point, A is merely a Lie algebra and E is a vector space, and
this definition reduces to that of a linear representation.

To express the relationship between these notions, we recall the definition of
an action Lie algebroid. Consider an infinitesimal action of a Lie algebra g on a
manifold M , i. e., a map X *→ XM , g → ΓTM , which is R–linear, and preserves
brackets, [X, Y ]M = [XM , YM ] for all X, Y ∈ g. Extend this notation to maps
V : M → g so that VM is the vector field on M defined by VM (m) = (V (m)M )(m),
for m ∈ M . Then the trivial vector bundle M × g on M acquires a Lie algebroid
structure with anchor a : M ×g → TM defined by a(m, X) = XM (m), and bracket

(11) [V, W ] = VM (W ) − WM (V ) + [V, W ]•,
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where VM (W ) denotes the Lie derivative with respect to VM of the vector-valued
function W , and [V, W ]• is the pointwise bracket of maps into g. With this Lie
algebroid structure, the trivial vector bundle M×g is called the action Lie algebroid
corresponding to the infinitesimal action X *→ XM , and we denote it by g <* M .

Observe that if V, W : M → g are constant maps, then the Lie algebroid bracket
[V, W ] is constant also, and is constant at the bracket in g of the values of V and
W . In fact this property, together with the anchor a : g <* M → TM and (6),
determines (11).

We can now relate the two concepts in Definitions 2.1 and 2.3.

Theorem 2.4. Let X *→ XM be an infinitesimal action of a Lie algebra g on
M . There is a one-to-one correspondence between derivative representations of g

on E, associated to the given infinitesimal action, and representations of the action
Lie algebroid g <* M on E.

Proof. Let ρ : g → Γ D(E) be a derivative representation of g associated to the
given infinitesimal action X *→ XM . By definition, the anchor of ρ(X) is XM . We
define a vector bundle morphism σ from M × g to D(E) by

(12) σ(m, X) = (ρ(X))(m).

This vector bundle morphism is a morphism of Lie algebroids from g <* M to D(E)
because (i) it clearly satisfies the condition on the anchors, and (ii) the bracket con-
dition is satisfied for constant maps from M to g. Conversely, if σ is a representation
of g <* M on E, formula (12) defines a morphism ρ from g to Γ D(E).

The significance of Theorem 2.4 is that, on the one hand, it can be immediately
generalized once we extend the definition of action Lie algebroid to the case of Lie
algebroids that are not Lie algebras, and on the other hand, when the given actions
globalize, it admits a global formulation. We deal with these two aspects in the
following sections.

Example 2.5. If ρ is the map defined in Example 2.2, the map σ defined by
(12) is a representation of g<* M on E, more precisely, a morphism of Lie algebroids
from g <* M to the Lie subalgebroid D0(E) of D(E).

Example 2.6. Given any principal bundle P (M, H) and a linear representation
of H on a vector space V , let E = P ×H V be the associated vector bundle.
Let A = TP/H be the Atiyah Lie algebroid of the principal bundle. There is a
representation σ of A on E defined as follows (see, e.g., [30, App.A]). A section ψ

of E can be identified with an H–equivariant map, ψ̃ : P → V , and a section X of
TP/H can be identified with an H–invariant vector field X̃ on P . Since the Lie

derivative of ψ̃ with respect to X̃ is also an H–equivariant map from P to V , it
corresponds to a section σ(X)(ψ).

If, in particular, P is a Lie group G with H a closed subgroup, this construction
associates to any linear representation of H on V the representation σ of TG/H
on E = G ×H V . On the other hand, the Lie algebroid TG/H is canonically
isomorphic to the action Lie algebroid g <* (G/H) arising from the standard action
of g on M = G/H , under the map TG/H → g <* (G/H) defined by the canonical
right identificatiion of TG with G × g. It follows by Theorem 2.4 that there is a
one-to-one correspondence between the linear representations of h on V and the
derivative representations of g on E = G ×H V .
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In this case, the derivative representation of g on E = G×H V associated to the
representation σ of A = TG/H on E is the infinitesimal of the linear representation
of G induced from that of H . So this result is the infinitesimal counterpart of an
observation that was made in [22] relating semi-linear representations of Lie groups
to induced representations.

Example 2.7. A representation of a Lie algebroid A on a vector bundle E
extends to a representation by derivations of its exterior algebra, that is, a morphism
from the R–Lie algebra ΓA to the R–Lie algebra of derivations of Γ(

∧
E), and

conversely the restriction to ΓE of such a representation by derivations of Γ(
∧

E)
is a representaion of A on E in the sense of Definition 2.3.

Remark 2.8. Consider a Lie algebroid A and a vector bundle E on the same
base M . Several authors [41] [10] consider the A–connections on E, defined as
the vector bundle morphisms A → D(E) satisfying condition (7) on the anchors,
without a bracket condition. If A = TM , this is precisely the standard concept of
linear connection in E.

The curvature of such an A–connection ∇ is defined as in (9). Now a repre-
sentation of A on E is precisely a flat A–connection on E. Extensive use of the
notion of A–connection and of representation of Lie algebroids was made in [41]
[10], especially the representations of A on

∧n A where n is the rank of A. The
one-to-one correspondence described in the proof of Theorem 2.4 is actually the re-
striction to the derivative endomorphisms of a one-to-one correspondence between
derivative pre-representations of g on E, where we only require linearity of the map
g → Γ D(E), and A–connections on E.

The vector bundle that we have called the Atiyah Lie algebroid of a principal
bundle was introduced by Atiyah in 1957 [1], ten years before Pradines introduced
the abstract concept of Lie algebroid. It is also called the gauge algebroid of the
principal bundle, and its sections are then called infinitesimal gauge transforma-
tions of the bundle. The definition of derivative representation comes from [22].
The derivative representations are a particular case of the graded infinitesimal rep-
resentations of de Barros [2]. When g is the Lie algebra of derivations of C∞(M)
and when the map g → ΓD(E) is C∞(M)–linear, a derivative representation is a
flat derivation law in the sense of Koszul [25]. The definition of Lie algebroid repre-
sentation may be found in [30, III.2.9]; it was probably first formulated in [38]. The
corresponding algebraic notion is that of a left module over a Lie pseudo-algebra.

3. Lie algebroid actions and representations

In this section we first consider the infinitesimal actions of a Lie algebroid A
with base M on a fibered manifold with base M , that is, on a surjective submersion
onto M . Such an infinitesimal action of A → M on ϕ : F → M defines a Lie
algebroid structure on the vector bundle ϕ∗A, the pullback of A, which is called
the action Lie algebroid defined by the given infinitesimal action of A on F .

We then extend the definition of the derivative representations to the case of a
Lie algebroid A and a vector bundle with base F . As a particular case of this notion,
we recover Definition 2.1 in the case where M is a point. Finally in this section
we show that the one-to-one correspondence between derivative representations
and representations of action Lie algebroids can be extended to this more general
situation.
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Definition 3.1. Let A be a Lie algebroid on M , and let ϕ : F → M be a
fibered manifold. An infinitesimal action of A on F is an R–linear map X *→
XF , ΓA → ΓTF , such that
(i) for each X ∈ ΓA, XF is projectable to a(X),
(ii) the map X *→ XF preserves brackets,
(iii) the map X *→ XF is C∞(M)–linear in the following sense: for each f ∈ C∞(M)
and each X ∈ ΓA,

(13) (fX)F = (f ◦ ϕ)XF .

If ΓTF is given the C∞(M)–module structure defined by (f, Y ) *→ (f ◦ ϕ)Y ,
C∞(M) × ΓTF → ΓTF , then Equation (13) is the condition that X *→ XF is a
morphism of left modules.

If, in particular, the base M is a point, then A is a Lie algebra, and we recover
the notion of infinitesimal action of a Lie algebra on a manifold F , conditions (i)
and (iii) being trivially satisfied.

If F = M and ϕ is the identity, an infinitesimal action of the Lie algebroid A
on the manifold M is a C∞(M)–linear map X *→ XM from ΓA to ΓTM , i.e., a
morphism of vector bundles from A to TM , which by condition (i) is necessarily
the anchor of A.

It is shown in [17] that whenever an infinitesimal action of A on ϕ : F → M
is defined, there is an associated Lie algebroid structure on the pullback vector
bundle, ϕ∗A,

ϕ∗A −−−−−−−−→ A

"
"

F −−−−−−−−→ M.
ϕ

With this Lie algebroid structure, ϕ∗A is called the action Lie algebroid associated
to the infinitesimal action X *→ XF , and it is denoted A <* F . We recall the
definition of this Lie algebroid structure. We identify the module of sections of
the pullback with C∞(F ) ⊗ ΓA, where the tensor product is over C∞(M). Thus
h⊗ fX = h(f ◦ϕ)⊗X and h⊗X is identified with h(X ◦ϕ), for h ∈ C∞(F ), f ∈
C∞(M), X ∈ ΓA. Then ϕ∗A is a Lie algebroid with the following anchor, aF ,

(14) aF (h ⊗ X) = hXF ,

and R–bilinear bracket,

(15) [h ⊗ X, k ⊗ Y ] = hk ⊗ [X, Y ] + hXF (k) ⊗ Y − kYF (h) ⊗ X,

where h, k ∈ C∞(F ), X, Y ∈ ΓA.
If the base M is a point, this Lie algebroid over F is merely the product F ×A

with the action Lie algebroid structure over base F defined in Section 2.
The notion of action and the construction of an action Lie algebroid extend to

the situation in which ϕ is an arbitrary smooth map, but we shall not need this
generality here.

Example 3.2. Let A be any Lie algebroid on a connected base M , and let
f : M̃ → M be any covering, with group π. Then there is a canonical infinitesimal
action of A on M̃ in which X

M̃
is the π–invariant lift of a(X) to M̃ .
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Example 3.3. Given any principal bundle P (M, H), the Atiyah Lie algebroid

TP/H with base M acts on P → M by X *→
−→
X , where

−→
X is the right-invariant

vector field on P defined by X ∈ Γ(TP/H); the action Lie algebroid is canonically
isomorphic to TP .

In view of Theorem 2.4, we shall define the notion of derivative representation
of a Lie algebroid A with base M on a vector bundle E with base F , associated to
an infinitesimal action of A on F , in such a way that the one-to-one correspondence
between derivative representations and representations of the action Lie algebroid
is extended.

Definition 3.4. Let A be a Lie algebroid on M , and let ϕ : F → M be a
fibered manifold. Let X *→ XF , ΓA → ΓTF , be an infinitesimal action of A on
F . Let us consider a vector bundle E on F . A derivative representation of A on
E associated to the infinitesimal action X *→ XF is a morphism, ρ, of Lie algebras
from ΓA to Γ D(E) such that
(i) for any X ∈ ΓA,

(16) (ρ(X))F = XF ,

(ii) ρ is C∞(M)–linear in the following sense: for each f ∈ C∞(M) and each
X ∈ ΓA,

(17) ρ(fX) = (f ◦ ϕ)ρ(X) .

Since for any X ∈ ΓA, ρ(X) is a section of D(E), condition (16) expresses the
fact that, for any h ∈ C∞(F ), ψ ∈ ΓE,

(18) ρ(X)(hψ) = hρ(X)(ψ) + XF (h)ψ.

Theorem 3.5. Let A, F , X *→ XF and E be as in Definition 3.4. There is a
one-to-one correspondence between derivative representations of A on E associated
to the infinitesimal action X *→ XF and representations of the action Lie algebroid
A <* F on E.

Proof. We sketch the proof which is very similar to that of Theorem 2.4. If
ρ : ΓA → Γ D(E) is a derivative representation of A on E associated to the given
infinitesimal action of A on F , we define σ : ϕ∗A → E in terms of sections of the
form h ⊗ X , h ∈ C∞(F ), X ∈ ΓA, by

σ(h ⊗ X)(p) = h(p)ρ(X)(p) ,

for any p ∈ F . Then σ is a representation of the Lie algebroid ϕ∗A on E.
Conversely, if σ is a representation of the Lie algebroid ϕ∗A on E, we set, for

X ∈ ΓA, and p ∈ F ,

ρ(X)(p) = σ(X ◦ ϕ)(p) .

Then ρ is a derivative representation of A on E.

Thus we have obtained a generalization of Theorem 2.4 to the case of Lie
algebroids acting on vector bundles.

The Lie algebroid structure (15) of an action Lie algebroid corresponds in the
algebraic setting treated by Fel’dman [11] to a crossed product structure on its
space of sections.
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4. Semi-linear representations of Lie groups and action groupoids

In this section we provide a global formulation in terms of Lie groupoids for
the construction described in Section 2: the relationship between derivative repre-
sentations of Lie algebras on vector bundles and action Lie algebroids has a global
analogue, the relationship between the semi-linear representations of Lie groups act-
ing on vector bundles and the action groupoids, described in Theorem 4.8 below. In
the following section we shall discuss the more general case of a global formulation
for Lie algebroid representations. These global constructions are such that applying
the Lie functor to the Lie groups and Lie groupoids under consideration yields the
known infinitesimal constructions for Lie algebras and Lie algebroids.

For the basic definitions of groupoid theory used in what follows, see [30] or
[28] or [6] (note that the composition convention in [6] is the opposite to that
followed here). Given a vector bundle (E, q, M), we denote by Φ(E) the set of all
linear isomorphisms from a fiber of E to some (in general different) fiber of E. Then
Φ(E) is a Lie groupoid with base M , with its groupoid structure arising from the
ordinary composition of maps, and its smooth structure given by locally identifying
Φ(M ×V ) with M ×GL(V )×M . (In [30], this groupoid is called the linear frame
groupoid of E.) The theorem which follows is fundamental to the results of this
section.

Theorem 4.1. The Lie algebroid of the Lie groupoid Φ(E) is canonically iso-
morphic to D(E).

Theorem 4.1 emerged from two separate lines of work. On the one hand, a proof
was given by Kumpera [26] in unpublished notes of 1971, but was not included
in the published version (Appendix A of [27]). A simplification of Kumpera’s
proof was given by Mackenzie in 1987 [30, III.4.5]. On the other hand, it was
remarked by Hermann in [14] and independently by Kosmann-Schwarzbach in [22]
that the derivative endomorphisms of the space of sections of a vector bundle are the
infinitesimal generators of one-parameter groups of vector bundle automorphisms.
This leads precisely to the result that AΦ(E) ∼= D(E).

We now define the semi-linear isomorphisms of ΓE and correspondingly the
semi-linear representations of a Lie group on the vector bundle, E.

Definition 4.2. Let (E, q, M) be a vector bundle. A semi-linear isomorphism
of ΓE is an R–linear automorphism µ of ΓE such that there exists an R–linear
isomorphism, µM , of C∞(M) satisfying

(19) µ(fψ) = µM (f) µ(ψ) ,

for all f ∈ C∞(M) and all ψ ∈ ΓE.

It follows that µM is a ring automorphism of C∞(M). Any automorphism ν of
the vector bundle E that projects onto a transformation νM of the base manifold
gives rise to a semi-linear isomorphism ψ *→ ν · ψ of ΓE defined by

(20) ν · ψ = ν ◦ ψ ◦ (νM )−1 ,

in which case the ring endomorphism of C∞(M) is f *→ f ◦ (νM )−1, and conversely,
every semi-linear isomorphism of ΓE arises from a vector bundle automorphism of
E. (See [21] [22].)
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Proposition 4.3. Formula (20) establishes a one-to-one correspondence be-
tween vector bundle automorphisms of E and semi-linear isomorphisms of ΓE.

The semi-linear isomorphisms of ΓE are the R–isomorphisms of ΓE which can
be extended to automorphisms of the algebra of sections of the tensor algebra of E.

Definition 4.4. A semi-linear representation of a Lie group G on E is a
morphism, R, from G into the group of semi-linear isomorphisms of ΓE such that,
for any ψ ∈ ΓE, the map (g, m) *→ R(g)(ψ)(m), G × M → E, is smooth.

Each semi-linear representation, R, of G on E is associated to an action g *→ gM

of G on M such that (R(g))M (f) = f ◦ (gM )−1.
There is also a well-known notion of a Lie groupoid representation, which we

recall.

Definition 4.5. A representation of a Lie groupoid G with base M on the
vector bundle E is a base-preserving Lie groupoid morphism from G to Φ(E).

If the base M is a point, G is merely a Lie group and E is a vector space, and
this definition reduces to that of a linear representation. In general it follows from
Theorem 4.1 that applying the Lie functor to a representation of G on E yields a
representation of AG on E.

To express the relationship between the notion of semi-linear representation
and that of a groupoid representation, we recall the definition of action groupoid.
Consider an action g *→ gM of a Lie group G on a manifold M . The product
manifold G × M becomes a Lie groupoid with base M when it is equipped with
the source map (g, m) *→ m, the target map (g, m) *→ gM (m), for g ∈ G, m ∈ M ,
the partial multiplication ((g1, m1), (g2, m2)) *→ (g1g2, m2) defined if and only if
m1 = (g2)M (m2), and the inversion (g, m) *→ (g−1, gM (m)). With this Lie groupoid
structure, the product manifold G×M is called the action groupoid corresponding
to the action g *→ gM , and we denote it by G <* M . The following result is proved
in [17, Th. 2.5].

Proposition 4.6. If g is the Lie algebra of the Lie group G, the Lie algebroid
of the action groupoid G <* M is the action Lie algebroid g <* M associated to the
infinitesimal of the action of G.

Example 4.7. The representation σ of the Lie algebroid g<* M on E of Example
2.5 can be integrated to a morphism G <* M → Φ0(E), where Φ0(E) is the Lie
subgroupoid of Φ(E) of isometries between the fibers of E, i.e., to an orthogonal
representation of G <* M on E, if and only if (E,∇) together with the metric
constitute G–invariant data in the sense of [13].

We can now relate the two concepts defined in 4.4 and 4.5.

Theorem 4.8. Let g *→ gM be an action of a Lie group G on M . There is a one-
to-one correspondence between semi-linear representations of G on E, associated to
the given action, and representations of the action groupoid G <* M on E.

Proof. The proof follows from the observations that semi-linear representations
are in one-to-one correspondence with the actions of G on E by vector bundle
automorphisms, which in turn are in one-to-one correspondence with morphisms of
Lie groupoids from the action groupoid, G <* M , to Φ(E), i.e., representations of
the action groupoid on E [30].
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In view of the properties of the Lie functor stated in Theorem 4.1 and Propo-
sition 4.6, this theorem implies Theorem 2.4 when the action of g on M can be
integrated globally.

Remark 4.9. The semi-linear transformations of ΓE are another particular
case of the pseudo-linear transformations of Jacobson [20], in which the linear
mapping DC vanishes, and the ring automorphism f *→ f̄ of C = C∞(M) is, in the
notation of Definition 4.2, the map µM .

Remark 4.10. The isomorphism of Theorem 4.1 arises as an infinitesimal ver-
sion of the correspondence between vector bundle automorphisms and semi-linear
isomorphisms (see Proposition 4.3), but also admits another formulation.

A vector field X on a vector bundle (E, q, M) is linear if the flow of X consists
of local vector bundle automorphisms of E. Such a vector field clearly projects
to a vector field XM on M . In [32], linear vector fields are characterized as pairs
X ∈ ΓTE, XM ∈ ΓTM which constitute a vector bundle morphism from (E, q, M)
to (TE, T (q), TM).

The one-to-one correspondence between linear vector fields on E and derivative
endomorphisms of ΓE can be expressed directly as follows [23] [32]. Given a vector
field X on E which projects to a vector field XM on M , and a section ψ of E, we
define

(21) DX(ψ)(m) = Tm(ψ)(XM (m)) − X(ψ(m)),

for m ∈ M . (Here the right-hand side is a vertical tangent vector, which we regard
as an element of E in the usual way.) When X is linear, the R–linear map DX

is a derivative endomorphism of ΓE associated with XM , and is called the Lie
derivation with respect to X . Conversely, given a derivative endomorphism D of
ΓE associated with a derivation XM of C∞(M), we set

(22) XD(p) = Tm(ψ)(XM (m)) − (Dψ)(m),

where p ∈ E and ψ is a section of E such that ψ(m) = p. Then XD is a well-defined
linear vector field on E, and the maps X *→ DX and D *→ XD are obviously inverses
of one another. Moreover this one-to-one correspondence preserves brackets. In
fact, the linear vector fields are the section of a Lie algebroid T LINE with base M ,
defined in [32], and this correspondence arises from a Lie algebroid isomorphism
from T LINE to D(E). Therefore the isomorphism of Theorem 4.1 may also be
formulated as an isomorphism between the Lie algebroid of Φ(E) and T LINE.

An infinitesimal action of a Lie algebroid A on a vector bundle E in the sense
of Definition 3.1 is called linear if the action is by linear vector fields. Since a
Lie algebroid morphism from A to T LINE can be identified with a Lie algebroid
morphism from A to D(E), it follows that the linear infinitesimal actions of A on
E can be identified with the representations of A on E in the sense of Definition
2.3. Since, by condition (i) of Definition 3.1, for each X ∈ ΓA, XM = a(X), the
correspondence established by (21) coincides with that of [17, p. 212].

A more general non-linear version of the bijective correspondence between vec-
tor fields on E and differential operators on the sections of E was established in
[24]. Consider a fiber bundle (F, q, M). Then, given an infinitesimal automorphism
of the bundle, that is, a vector field X on F which projects to a vector field XM

on M , and a section ψ of F , formula (21) defines a vertical tangent vector to F ,
and we thus obtain a section of ψ∗V F , where V F is the vertical tangent bundle
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of F . In this way one obtains an operator which is a first-order differential section
operator from F to V F in the terminology of [34]. Conversely, such an operator
corresponds to an infinitesimal automorphism if and only if it is quasi-scalar. For a
fibered manifold (F, q, M), the set of infinitesimal automorphisms has both a mod-
ule structure over C∞(M) and a bracket, making it a Lie pseudo-algebra, but in
general there is no underlying Lie algebroid.

5. Groupoid actions and representations

More generally, we now consider the action of a Lie groupoid on a fibered
manifold. (We shall not consider the still more general case of the action of a
Lie groupoid on an arbitrary smooth map. For this, see both [17] and the recent
account of Moerdijk and Mrčun [33].)

Let G be a Lie groupoid with base M and source map α, and let ϕ : F → M be
a fibered manifold. We denote by ϕ∗G the pullback in the following commutative
diagram,

ϕ∗G −−−−−−−−→ G

"
" α

F −−−−−−−−→ M.
ϕ

For m ∈ M , we denote ϕ−1(m) ⊆ F by Fm.

Definition 5.1. Let G be a Lie groupoid with base M , source map α and
target map β, and let ϕ : F → M be a fibered manifold. An action of G on F is a
map, S, from G to the set of smooth bijective maps from a fiber of F to some (in
general different) fiber of F , such that
(i) for any g ∈ G, S(g) is a map from Fα(g) to Fβ(g),
(ii) for any g1 ∈ G and g2 ∈ G such that β(g1) = α(g2), S(g2g1) = S(g2) ◦ S(g1),
(iii) the map (g, p) *→ S(g)(p) from ϕ∗G to F is smooth.

If, in particular, the base M is a point, then G is a Lie group, and we recover
the notion of action of a Lie group on a manifold F .

When F = M and ϕ is the identity, the only action of the Lie groupoid G on
M is that given by S(g)(αg) = βg.

It was originally shown by Ehresmann [8] that whenever an action, S, of G
on ϕ : F → M is defined, there is an associated Lie groupoid structure on the
manifold ϕ∗G, with base F . The source map is (g, p) *→ p, while the target map
is (g, p) *→ S(g)(p). The partial multiplication is ((g1, p1), (g2, p2)) *→ (g1g2, p2)
defined if and only if g1 = S(g2)p2, and the inversion is (g, p) *→ (g−1, S(g)(p)).
With this Lie groupoid structure, ϕ∗G is called the action groupoid associated to
the given action, and we denote it by G <* F . The top arrow in the preceding
diagram is a morphism of Lie groupoids from G <* F to G, over ϕ : F → M .

If M is a point, then the Lie groupoid G is a Lie group, and the Lie groupoid
structure defined on G × F reduces to the action groupoid structure described in
Section 4 associated to a Lie group action on a manifold.
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The Lie functor maps action groupoids to action Lie algebroids. More precisely,
the differential, σ, of S is defined by

σ(X)(p) = TS(p)(Xϕ(p)) ,

where p ∈ F and X ∈ ΓAG, while TS(p) denotes the tangent map at the unity,
ϕ(p) ∈ M , of the map g *→ S(g)(p) from G to F . The result which follows was
proved in [17].

Proposition 5.2. Let S be an action of the Lie groupoid G on ϕ : F → M .
Then S differentiates to an infinitesimal action of the Lie algebroid AG on F , and
the Lie algebroid of the action groupoid G <* F is the action Lie algebroid AG <* F .

Before considering a notion of semi-linear representation for Lie groupoids, we
recall the notion of bisection.

Definition 5.3. Let G be a Lie groupoid, with base M , source map α and
target map β. A map b : M → G is a bisection of G if α ◦ b = IdM and β ◦ b is a
diffeomorphism of M .

The set of bisections of G is a group under the composition law defined by

(b1 · b2)(m) = b1((β ◦ b2)(m))b2(m) ,

for bisections b1 and b2, and m ∈ M . The group of bisections of G is denoted by
B(G).

Proposition 5.4. Let (E, q, N) be a vector bundle. There is a canonical group
isomorphism from B(Φ(E)) to the group of vector bundle automorphisms of E.

Proof. Given a bisection, b, of Φ(E), we define a bundle map, b̃, from E to itself
by

b̃(v) = b(q(v))(v) ,

for v ∈ E. Then b̃ is a vector bundle automorphism of E, projecting onto the
diffeomorphism β ◦ b of N . Conversely, given a vector bundle automorphism u of
E, the map x *→ u|Ex , x ∈ N , defines a bisection of Φ(E). The smoothness of the
map is proved by using the local triviality of E. These maps are mutually inverse
and they are group morphisms.

It follows from Proposition 4.3 that B(Φ(E)) is isomorphic to the group of
semi-linear isomorphisms of ΓE.

Now consider Lie groupoids G1 and G2 on the same base M . It is clear
that any Lie groupoid morphism u : G1 → G2 over M defines a group morphism
U : B(G1) → B(G2) of the corresponding groups of bisections by

(23) U(b)(m) = u(b(m)),

for b ∈ B(G1) and m ∈ M . Thus a semi-linear representation of a Lie group G
on a vector bundle (E, q, M) may be regarded as a group morphism from B(G) to
B(Φ(E)) which satisfies the smoothness condition in 4.4.

Let G be a Lie groupoid acting on a fibered manifold, ϕ : F → M , with action
groupoid G <* F . We consider a vector bundle E on base F and a representation of
G<* F on E, i.e., a morphism of Lie groupoids from G<* F to Φ(E). For groupoids
in the category of sets, this notion was studied by Brown [5]. In the smooth case,
such a representation is a global form of a derivative representation. Indeed, by
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Proposition 5.2 it differentiates to a representation of AG <* F on E, which by
Theorem 3.5 is a derivative representation of AG on E.

Thus for each g ∈ G and p ∈ Fαg , we are given an isomorphism from Ep to
ES(g)p, where S is the given action of G on F . According to (23) and to Propo-
sition 5.4, there is a group morphism from B(G <* F ) to the group of semi-linear
isomorphisms of ΓE. In addition, given a bisection b of G, there is a bisection b̂ of
G <* F defined by

b̂(p) = (b(ϕ(p)), p),

for p ∈ F , and the map b *→ b̂ is a group morphism from B(G) to B(G <* F ).
Composing these maps we obtain a group morphism from B(G) to the group of
semi-linear isomorphisms of ΓE. This group morphism, R, is associated with the
given action of G on F , in the sense that if v ∈ Ep for p ∈ F , then R(b)v ∈ Ep′ ,
where p′ = S(b(ϕp))p, for all b ∈ B(G). Thus we have:

Proposition 5.5. Given an action of a Lie groupoid G on a fibered manifold
ϕ : F → M , to any representation of G <* F on a vector bundle E with base F
there corresponds a representation of the group of bisections of G by semi-linear
isomorphisms of ΓE, associated to the given action.

Since the Lie algebra of sections of AG can be formally regarded as the Lie
algebra of the infinite-dimensional group B(G), this proposition can be viewed
as a global form of part of Proposition 3.5. When the Lie groupoid G is a Lie
group, its group of bisections is the group itself, so this proposition is a partial
generalization of Theorem 4.8 to the case of Lie groupoids. We may therefore regard
the group morphisms from B(G) to the group of semi-linear isomorphisms of ΓE
satisfying a suitable smoothness condition as the semi-linear representations of G on
E. However, the characterization of smoothness for such semi-linear representations
of groupoids in terms of the bisections of G alone appears to be a difficult matter.
The concept of bisection may readily be localized, leading to a sheaf of germs of
local bisections, but the relationship between bisections of G and bisections of G<* F
evades a simple description.

Remark 5.6. The representation of the group of bisections in Proposition 5.5
may be approached in an alternative way. We consider a representation of G <* F
on E as above and, for g ∈ G and p ∈ Fαg, we denote the isomorphism from Ep to
ES(g)p by ρ(g, p). Given g ∈ G, to any section ψ of E over Fαg we can associate a
section g · ψ of E over Fβg, by

(24) (g · ψ)(p) = ρ(g, S(g−1)p)(ψ(S(g−1)p)),

for p ∈ Fβg. The map ψ *→ g · ψ is semi-linear with respect to the action S,

(g · (fψ))(p) = f(S(g−1)p)(g · ψ)(p),

for f ∈ C∞(Fαg). By allowing g to range through the values of a bisection, we
obtain a semi-linear isomorphism of ΓE: take any b ∈ B(G) and for ψ ∈ ΓE and
p ∈ E define

(b · ψ)(p) = (g · ψ)(p)

where g = b((β ◦ b)−1(ϕ(p))). It is clear that the resulting map from B(G) to the
group of semi-linear isomorphisms of ΓE is the same as that of Proposition 5.5.
This formulation perhaps shows more clearly the effect of the action on sections of
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E, but it is still unclear how to characterize the smoothness of ρ in terms of the
maps ψ *→ g · ψ.

6. Appendix: some algebraic formulations

As we remarked in the introduction, both the derivative endomorphisms and the
semi-linear isomorphisms are particular cases of the pseudo-linear transformations
in the sense of Jacobson. Here, we characterize the pseudo-linear endomorphisms
of a left module E over a ring C in terms of twisted derivations. In particular,
the derivative endomorphisms are characterized in terms of derivations. We also
characterize the semi-linear isomorphisms in terms of algebra automorphisms. The
case that is relevant to differential geometry is that of E = ΓE and C = C∞(M),
where E is a vector bundle over a manifold M . For simplicity, we shall formulate
the results in this case only.

The notion of derivation of an algebra can be generalized as follows.

Definition 6.1. Let A be an algebra and let α be a linear endomorphism of
A. A twisted derivation of A with respect to α is a linear endomorphism U of A

such that, for all a, b ∈ A,

(25) U(ab) = U(a)b + α(a)U(b).

It follows from (25) that, if Im(U) has an element which is not a torsion element,
the map α is an algebra endomorphism.

Definition 6.2. An R–linear endomorphism u of ΓE is called pseudo-linear if
there exist R–linear endomorphisms uM and uM of C∞(M) such that

(26) u(fψ) = uM (f)u(ψ) + uM (f)ψ,

for all f ∈ C∞(M) and ψ ∈ ΓE.

It follows from (26) that, whenever there exists ψ ∈ ΓE such that u(ψ) and ψ
are linearly independent over the ring C∞(M), (i) uM is an algebra endomorphism
of C∞(M), and (ii) uM is a twisted derivation of C∞(M) with respect to uM .

Clearly the derivative endomorphisms (resp., the semi-linear isomorphisms) of
ΓE are the pseudo-linear endomorphisms for which uM is the identity of C∞(M)
(resp., which are bijective and for which uM = 0).

Following Grothendieck [12, 16.5], we let A(E) be the vector space C∞(M) ⊕
ΓE with the commutative R–algebra structure such that the product of any two
elements of C∞(M) is their product in the ring C∞(M), the product of f ∈ C∞(M)
and ψ ∈ ΓE is fψ in the C∞(M)–module ΓE, and the product of any two sections
of ΓE vanishes. We can now formulate the following results, whose proofs are all
straightforward computations.

By a slight abuse of language, we let uM also denote the endomorphism of
A(E) which coincides with uM on C∞(M) and vanishes on ΓE.

Proposition 6.3. Let uM : C∞(M) → C∞(M), uM : C∞(M) → C∞(M)
and u : ΓE → ΓE be R–linear maps. Then uM + u is a twisted derivation of the
R–algebra A(E) with respect to uM if and only if (i) uM is a twisted derivation
of C∞(M) with respect to uM , and (ii) u is a pseudo-linear endomorphism of ΓE
with associated endomorphisms of C∞(M), uM and uM .

When uM is the identity of C∞(M), the twisted derivations are ordinary deriva-
tions, so we obtain the following corollary.
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Proposition 6.4. Let uM : C∞(M) → C∞(M) and u : ΓE → ΓE be R–linear
maps. Then uM + u is a derivation of the R–algebra A(E) if and only if (i) uM

is a derivation of C∞(M), and (ii) u is a derivative endomorphism of ΓE with
associated derivation of C∞(M), uM .

An analogous characterization holds for the semi-linear isomorphisms, in terms
of algebra automorphisms.

Proposition 6.5. Let uM : C∞(M) → C∞(M) and u : ΓE → ΓE be R–linear
isomorphisms. Then uM + u is an algebra automorphism of A(E) if and only if (i)
uM is an algebra automorphism of C∞(M), and (ii) u is a semi-linear isomorphism
of ΓE with associated automorphism of C∞(M), uM .

The vector space of pseudo-linear endomorphisms of ΓE is not closed under
composition, but it follows from Proposition 6.5 that the semi-linear isomorphisms
of ΓE form a group. In addition, just like the set of twisted derivations, the set of
pseudo-linear endomorphisms is not closed under commutators, but it follows from
Proposition 6.4 that the derivative endomorphisms of ΓE form a Lie algebra.
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Séminaire Topologie Géom. Différentielle, 3, 1962. 24 pages.
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